#### **Estimation of Streamflow Recharge**

Estimated streamflow recharge is presented in table 12, which summarizes recharge for both continuously-gaged and ungaged streams. Values in table 12 have been adjusted, when appropriate, to reflect redistribution of estimated recharge to the Minnelusa outcrop that infiltrates into the Madison hydrogeologic unit. Because most of the loss occurs on the Madison outcrop, total streamflow recharge to the Madison hydrogeologic unit was only increased by about 1 percent due to redistribution, but streamflow recharge to the Minnelusa hydrogeologic unit decreased by about 8 percent.

Total estimated streamflow recharge rates for the Madison hydrogeologic unit for summer periods ranged from about 18 ft<sup>3</sup>/s during dry years to almost 80 ft<sup>3</sup>/s during wet years (table 12). Total streamflow recharge rates for the Madison hydrogeologic unit for winter periods ranged from about 12 ft<sup>3</sup>/s during dry years to about 60 ft<sup>3</sup>/s during wet years. Average streamflow recharge to the Minnelusa hydrogeologic unit (about 7 ft<sup>3</sup>/s) was only about 14 percent of the combined streamflow recharge to the Madison and Minnelusa aquifers (45 ft<sup>3</sup>/s). Increases in recharge rates during wet years largely were due to increases in the duration and quantity of stream base flow that was maintained over longer periods of time.

#### **Continuously Gaged Streams**

Calculations of streamflow recharge to the Madison and Minnelusa hydrogeologic units for continuously gaged streams are described in this section. Different loss zones required different approaches depending on loss-zone characteristics and gage location.

#### **Battle Creek**

Estimated streamflow recharge from Battle Creek to the Madison hydrogeologic unit averaged about 2.7 ft<sup>3</sup>/s (table 12). Streamflow recharge to the Minnelusa hydrogeologic unit was assumed to be zero because the stream gains flow as a result of springflow along the Minnelusa outcrop (Hortness and Driscoll, 1998). Battle Creek exceeded its loss threshold to the Madison hydrogeologic unit 16 percent of the time during WY88-97 and did not flow at the gage upstream from the loss zone 6 percent of the time. Gage site 14 (pl. 3) is located about 2 mi upstream from the loss zone, and the drainage area for that location is about 88 percent of the total basin area contributing to the loss zone. Therefore, the gaged flow was increased proportionately to account for the ungaged flow. This synthetic record was used to compute streamflow recharge.

#### **Spring Creek**

Estimated streamflow recharge from Spring Creek to the Madison and Minnelusa hydrogeologic units averaged 9.9 and 0.8  $ft^3/s$ , respectively (table 12). Although Spring Creek is impounded by a dam at Sheridan Lake, streamflow results primarily from uncontrolled overflow and fluctuates similarly to uncontrolled streams in the study area. Spring Creek has the second largest drainage area in the study area (table 11) and accounted for 24 percent of the total streamflow recharge to the Madison and Minnelusa hydrogeologic units during the 10-year period. Spring Creek exceeded its loss threshold of about 25  $ft^3/s$  to the Madison and Minnelusa hydrogeologic units 21 percent of the time and did not flow at the gage above the loss zone 5 percent of time during the 10-year period. The continuous gage above the Spring Creek loss zone (pl. 3, gage site 24) accounts for all of the flow contributing to the loss zone and, therefore, required no adjustments to the measured flow.

#### **Rapid Creek**

Estimated streamflow recharge from Rapid Creek to the Madison and Minnelusa hydrogeologic units averaged 8.0 and 2.0  $ft^3/s$ , respectively (table 12). Rapid Creek is regulated by releases from Pactola Reservoir, and releases greater than the loss threshold are generally maintained. Although Rapid Creek has the largest drainage area in the study area, the stream has a relatively small loss threshold of about 10  $ft^3/s$ (Hortness and Driscoll, 1998) for the Madison and Minnelusa hydrogeologic units combined. Despite the small loss threshold, Rapid Creek accounted for about 22 percent of the total streamflow recharge to the Madison and Minnelusa hydrogeologic units because flow was seldom less than the threshold. Hortness and Driscoll (1998) did not estimate separate loss thresholds for the two hydrogeologic units; however, investigations by Hines (1991) indicate that about 80 percent of the total loss threshold can be attributed to the Madison hydrogeologic unit.

Flow from Tittle Springs, located on the Madison outcrop near Rapid Creek (pl. 1), probably originates from Rapid Creek (Hines, 1991). Therefore, this springflow was not included in streamflow-recharge or water-budget calculations.

#### Table 12. Streamflow recharge rates to the Madison and Minnelusa hydrogeologic units

|                 | Continuously gaged streams |                    |        |         |          |       |         |          |       |                   |
|-----------------|----------------------------|--------------------|--------|---------|----------|-------|---------|----------|-------|-------------------|
| Stress period   | Battle                     | Creek <sup>1</sup> | Spring | J Creek | Rapid    | Creek | Boxelde | er Creek | Elk C | reek <sup>1</sup> |
|                 | Mdsn                       | Mnls               | Mdsn   | Mnis    | Mdsn     | Mnls  | Mdsn    | Mnls     | Mdsn  | Mnls              |
|                 |                            |                    |        | Dry     | y Period |       |         |          |       |                   |
| W-88            | 0.3                        | 0.0                | 1.1    | 0.0     | 8.0      | 2.0   | 4.2     | 0.0      | 1.2   | 0.0               |
| S-88            | .5                         | .0                 | 2.5    | .0      | 8.0      | 2.0   | 5.7     | .0       | 1.5   | .0                |
| W-89            | .2                         | .0                 | .2     | .0      | 7.9      | 1.7   | 2.8     | .0       | .8    | .0                |
| S-89            | .7                         | .0                 | 1.8    | .0      | 8.0      | 2.0   | 5.3     | .0       | 1.5   | .0                |
| W-90            | 1.1                        | .0                 | 1.3    | .0      | 8.0      | 1.9   | 4.3     | .0       | 1.2   | .0                |
| S-90            | 4.1                        | .0                 | 11.2   | .9      | 8.0      | 2.0   | 7.7     | .0       | 2.1   | .0                |
| W-91            | .8                         | .0                 | 3.1    | .0      | 8.0      | 1.8   | 2.4     | .0       | .7    | .0                |
| S-91            | 4.4                        | .0                 | 16.8   | 1.9     | 8.0      | 2.0   | 17.1    | 2.7      | 3.8   | 1.0               |
| W-92            | 1.5                        | .0                 | 6.7    | .0      | 8.0      | 2.0   | 7.8     | .0       | 1.9   | .0                |
| S-92            | 2.3                        | .0                 | 8.2    | .0      | 8.0      | 2.0   | 6.9     | .0       | 2.9   | .1                |
| W-93            | 1.1                        | .0                 | 4.1    | .1      | 8.0      | 1.9   | 5.0     | .1       | 1.3   | .1                |
| Average dry     | 1.5                        | .0                 | 5.2    | .3      | 8.0      | 1.9   | 6.3     | .3       | 1.7   | .1                |
|                 |                            |                    |        | We      | t Period |       |         |          |       |                   |
| S-93            | 5.7                        | .0                 | 19.9   | 2.6     | 8.0      | 2.0   | 25.3    | 5.5      | 4.8   | 2.3               |
| W-94            | 3.3                        | .0                 | 11.1   | .2      | 8.0      | 2.0   | 11.2    | .5       | 3.0   | .7                |
| S-94            | 2.1                        | .0                 | 11.0   | .9      | 8.0      | 2.0   | 19.2    | 3.8      | 4.1   | 1.6               |
| W-95            | 2.0                        | .0                 | 7.1    | .1      | 8.0      | 2.0   | 9.7     | .1       | 3.5   | .2                |
| S-95            | 5.0                        | .0                 | 18.0   | 2.1     | 8.0      | 2.0   | 25.5    | 6.7      | 4.6   | 2.0               |
| W-96            | 3.1                        | .0                 | 13.1   | .1      | 8.0      | 2.0   | 14.1    | .5       | 4.2   | .5                |
| S-96            | 5.2                        | .0                 | 20.3   | 2.5     | 8.0      | 2.0   | 28.8    | 7.6      | 3.4   | 3.4               |
| W-97            | 4.6                        | .0                 | 18.5   | 1.5     | 8.0      | 2.0   | 21.5    | 2.1      | 3.1   | 1.9               |
| S-97            | 6.0                        | .0                 | 21.0   | 3.4     | 8.0      | 2.0   | 32.3    | 12.6     | 3.0   | 3.9               |
| Average wet     | 4.1                        | .0                 | 15.6   | 1.5     | 8.0      | 2.0   | 20.8    | 4.4      | 3.7   | 1.8               |
| Overall average | 2.7                        | .0                 | 9.9    | .8      | 8.0      | 2.0   | 12.8    | 2.1      | 2.6   | .9                |

[Recharge rates in cubic feet per second. Mdsn, Madison; Mnls, Minnelusa; W, winter; S, summer (W-88 = winter 1988)]

| Ungaged streams |        |         |             |                |          |           |               |               |           |         |      |      | Tetel                 |
|-----------------|--------|---------|-------------|----------------|----------|-----------|---------------|---------------|-----------|---------|------|------|-----------------------|
| Stress period   | Deadma | n Gulch | Rocke<br>Gu | erville<br>Ich | Victoria | a Gulch   | Unna<br>tribu | amed<br>Itary | Little El | k Creek | stre | ams  | Total<br>Mdsn<br>Mnls |
|                 | Mdsn   | Mnls    | Mdsn        | Mnls           | Mdsn     | Mnls      | Mdsn          | Mnls          | Mdsn      | Mnls    | Mdsn | Mnls | -                     |
|                 |        |         |             |                | D        | ry Period |               |               |           |         |      |      |                       |
| W-88            | 0.1    | 0.0     | 0.2         | 0.0            | 0.1      | 0.0       | 0.0           | 0.0           | 0.4       | 0.0     | 15.6 | 2.0  | 17.6                  |
| S-88            | .0     | .0      | .1          | .0             | .2       | .0        | .1            | .0            | .4        | .2      | 19.0 | 2.2  | 21.2                  |
| W-89            | .0     | .0      | .1          | .0             | .0       | .0        | .0            | .0            | .3        | .1      | 12.3 | 1.8  | 14.1                  |
| S-89            | .0     | .0      | .1          | .0             | .1       | .0        | .0            | .0            | .5        | .1      | 18.0 | 2.1  | 20.1                  |
| W-90            | .0     | .0      | .1          | .0             | .1       | .0        | .0            | .0            | .4        | .1      | 16.5 | 2.0  | 18.5                  |
| S-90            | .2     | .0      | .4          | .0             | .9       | .0        | .1            | .0            | .6        | .3      | 35.3 | 3.2  | 38.5                  |
| W-91            | .1     | .0      | .1          | .0             | .2       | .0        | .0            | .0            | .3        | .0      | 15.7 | 1.8  | 17.5                  |
| S-91            | .6     | .1      | 1.2         | .2             | 1.4      | .0        | .2            | .0            | .9        | .9      | 54.4 | 8.8  | 63.2                  |
| W-92            | .1     | .0      | .3          | .0             | .4       | .0        | .1            | .0            | .7        | .2      | 27.5 | 2.2  | 29.7                  |
| S-92            | .1     | .0      | .3          | .0             | .5       | .0        | .1            | .0            | .6        | .1      | 29.9 | 2.2  | 32.1                  |
| W-93            | .1     | .0      | .2          | .0             | .3       | .0        | .0            | .0            | .5        | .1      | 20.6 | 2.3  | 22.9                  |
| Average dry     | .1     | .0      | .3          | .0             | .4       | .0        | .1            | .0            | .5        | .2      | 24.1 | 2.8  | 26.9                  |
|                 |        |         |             |                | W        | et Period | l             |               |           |         |      |      |                       |
| S-93            | .8     | .0      | 1.7         | .1             | 1.7      | .0        | .4            | .0            | 1.1       | 1.6     | 69.4 | 14.1 | 83.5                  |
| W-94            | .4     | .0      | .9          | .0             | .8       | .0        | .1            | .0            | .8        | .5      | 39.6 | 3.9  | 43.5                  |
| S-94            | .2     | .0      | .5          | .0             | .9       | .0        | .3            | .0            | .9        | 1.1     | 47.2 | 9.4  | 56.6                  |
| W-95            | .2     | .0      | .4          | .0             | .5       | .0        | .1            | .0            | .8        | .3      | 32.3 | 2.7  | 35.0                  |
| S-95            | 1.1    | .1      | 2.1         | .3             | 1.5      | .0        | .5            | .1            | 1.1       | 1.6     | 67.4 | 14.9 | 82.3                  |
| W-96            | .5     | .0      | 1.2         | .0             | .9       | .0        | .1            | .0            | .9        | .7      | 46.1 | 3.8  | 49.9                  |
| S-96            | .8     | .0      | 1.7         | .1             | 1.7      | .0        | .5            | .0            | 1.1       | 1.9     | 71.5 | 17.5 | 89.0                  |
| W-97            | .7     | .0      | 1.6         | .0             | 1.4      | .0        | .2            | .0            | 1.0       | 1.4     | 60.6 | 8.9  | 69.5                  |
| S-97            | 1.2    | .1      | 2.5         | .2             | 1.9      | .0        | .7            | .1            | 1.2       | 2.1     | 77.8 | 24.4 | 102.2                 |
| Average wet     | .7     | .0      | 1.4         | .1             | 1.3      | .0        | .3            | .0            | 1.0       | 1.2     | 56.9 | 11.1 | 68.0                  |
| Overall average | .4     | .0      | .8          | .0             | .8       | .0        | .2            | .0            | .7        | .7      | 38.8 | 6.5  | 45.3                  |

 Table 12.
 Streamflow recharge rates to the Madison and Minnelusa hydrogeologic units—Continued

 [Recharge rates in cubic feet per second. Mdsn, Madison; Mnls, Minnelusa; W, winter; S, summer (W-88 = winter 1988)]

<sup>1</sup>Loss rate at model boundary. Table shows 50 percent of total loss assumed to enter the aquifer analysis area.

#### **Boxelder Creek**

Estimated streamflow recharge from Boxelder Creek to the Madison and Minnelusa hydrogeologic units averaged 12.8 and 2.1 ft<sup>3</sup>/s, respectively (table 12). Loss threshold estimates for Boxelder Creek were complicated by hydrogeologic features in the outcrop areas. Three springs are located along Boxelder Creek within the Madison outcrop: Gravel Spring, Doty Spring, and Dome Spring (pl. 1). Rahn and Gries (1973) determined from dye testing that these springs are directly connected to upstream losses. Although complicated by variable springflow, estimated thresholds reflect approximate net losses (Hortness and Driscoll, 1998), and therefore, these springflows were not included in streamflow-recharge or water-budget calculations. Hortness and Driscoll (1998) estimated general loss thresholds of greater than 25 ft<sup>3</sup>/s for the Madison outcrop, less than 20  $ft^3/s$  for the Minnelusa outcrop, less than 5  $ft^3/s$  for the Minnekahta outcrop, and a combined threshold for the three outcrops of approximately 50 ft<sup>3</sup>/s. These estimates, however, did not consider the isolated Madison outcrop near the anticline along Boxelder Creek (pl. 1).

An important effect of the anticline is that it separates the Minnelusa recharge area to the west from Minnelusa aquifer to the east causing much of the recharge on the Minnelusa outcrop to enter the Madison aquifer. A hydrogeologic section through this area illustrates this point, showing that a large area of the Minnelusa hydrogeologic unit is mostly above the water table west of the anticline (fig. 22, section D-D'). Because the Minnelusa hydrogeologic unit in this area is largely in the unsaturated zone, there is little horizontal Darcian flow, and recharge to the Minnelusa outcrop can infiltrate vertically into the underlying Madison aquifer under the force of gravity. Considering these various hydrogeologic conditions, the estimated loss thresholds for the Madison and Minnelusa hydrogeologic units for this report are 30 and 16 ft<sup>3</sup>/s, respectively, for a total of 46  $ft^3/s$  (table 11).

Boxelder Creek has the third largest drainage area in the study area but accounted for the largest streamflow recharge to the Madison and Minnelusa hydrogeologic units, about 33 percent during the 10-year period. This relates to the fact that Boxelder Creek is located in the northern part of the study area where precipitation is greater and the loss threshold is the largest for streams in the study area (table 11). Boxelder Creek flowed continually during the 10-year period but exceeded its estimated loss threshold to the Madison and Minnelusa hydrogeologic units only 12 percent of the time. The continuous gage on Boxelder Creek above the loss zone (pl. 3, gage site 34) accounts for about 93 percent of the total basin area contributing to the loss zone. Therefore, the gaged flow was increased proportionately to account for the ungaged flow.

#### **Elk Creek**

Estimated streamflow recharge from Elk Creek to the Madison and Minnelusa hydrogeologic units averaged 2.6 and 0.9 ft<sup>3</sup>/s, respectively (table 12). Measured flow in Elk Creek just upstream of the Madison outcrop (pl. 3, gage site 39) was used to calculate streamflow recharge. Because data for this site were not collected before September 1991, a synthetic flow record was generated for the missing period by regressing measured streamflow in Elk Creek against flow in Boxelder Creek at gage sites 39 and 34 (pl. 3). Because the Elk Creek loss zone is located at the northern boundary of the aquifer analysis area, only one-half of the streamflow recharge was assumed to flow into the aquifer analysis area.

Elk Creek flowed continually during the 10-year period and exceeded its loss threshold 11 percent of time. This basin generally receives greater precipitation than Boxelder Creek but is smaller in size and has a smaller loss threshold. Elk Creek accounted for about 8 percent of the total streamflow recharge to the Madison and Minnelusa hydrogeologic units.

Four tributaries downstream from gage site 39 contribute to flow in the Elk Creek loss zone (pl. 3). The drainage basins for these tributaries are partially on the Madison outcrop. Because direct precipitation on the outcrop is accounted for in areal recharge, only the areas of the basins outside the outcrop were used to estimate additional streamflow below gage site 39. These basin areas outside the outcrop have a total area of 13.6 mi<sup>2</sup>, which is 63.3 percent of the basin above gage site 39; thus, the flow record at the gage (partially synthetic) was increased by 63.3 percent.

Results of streamflow measurements for several reaches of Elk Creek that were compiled by Hortness and Driscoll (1998) are presented in table 13 along with additional measurements made after August 20, 1996. Loss thresholds of 11  $\text{ft}^3$ /s for the Madison outcrop and 8  $\text{ft}^3$ /s for the Minnelusa outcrop (table 11) were estimated by Hortness and Driscoll (1998) based

Table 13. Elk Creek streamflow-loss rates for the Madison and Minnelusa outcrops

| [Modified from Hortness and Driscoll | (1998). All values | given in cubic feet | per second. Site location | ons are shown on plate 3 | and listed in table 11 |
|--------------------------------------|--------------------|---------------------|---------------------------|--------------------------|------------------------|
| , undetermined]                      |                    |                     |                           |                          |                        |

| Date     | Flow rate<br>at gage<br>site 39 | Madison outcrop loss<br>rate between gage<br>sites 39 and 43 | Madison outcrop loss<br>rate between gage<br>sites 43 and 44 | Total Madison<br>outcrop loss rate | Minnelusa outcrop<br>loss rate (gage<br>sites 44 to 45) |
|----------|---------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|---------------------------------------------------------|
| 04-24-96 | 31.9                            | 6.8                                                          | 3.3                                                          | 10.1                               | 7.9                                                     |
| 05-07-96 | 26.6                            | 6.5                                                          | 4.8                                                          | 11.3                               | 8.1                                                     |
| 07-01-96 | 12.1                            | 7.6                                                          | -7.5                                                         | .1                                 | 6.4                                                     |
| 07-12-96 | 9.9                             | 8.1                                                          | -5.4                                                         | 2.7                                | 5.3                                                     |
| 07-22-96 | 7.4                             | 8.2                                                          | -5.1                                                         | 3.1                                | 4.8                                                     |
| 08-20-96 | 4.7                             | 7.0                                                          | -5.2                                                         | 1.8                                | 4.5                                                     |
| 10-03-96 | 3.8                             | 5.4                                                          | -3.0                                                         | 2.4                                |                                                         |
| 10-21-99 | <sup>1</sup> 5.2                |                                                              | -6.1                                                         |                                    | 4.2                                                     |

<sup>1</sup>Mean daily value.

on the first two measurement dates (April 24 and May 7, 1996). Subsequent measurements, which were made during particularly wet climatic conditions, indicated that the loss rate on the Minnelusa outcrop decreased only slightly, but the loss rate on the Madison outcrop decreased substantially because of streamflow gains in the reach between gage sites 43 and 44. Measured losses between gage sites 39 and 43 remained relatively stable.

Hortness and Driscoll (1998) attributed the streamflow gain that occurred between sites 43 and 44 to springflow from the Madison aquifer and indicated that local areal recharge during a climatically wet period contributed to springflow. A laccolith, which is exposed on the northern side of the springflow area (Strobel and others, 1999), could cause areal recharge water to be perched on low-permeability igneous intrusive bodies. Water stored in perched areas might seep downgradient and discharge as springflow after periods of greater precipitation. Conversely, part of the springflow could result from reemerging upstream losses because of the larger streamflows during that period. Because streamflow losses and gains both can occur in the same stream reach at the same time, it is not known what effect springflow has on streamflow losses. The complex nature of this transient springflow precludes the determination of the ratio of areal-recharge source water to streamflow-recharge source water. Therefore, it was arbitrarily assumed that one-half of the estimated

springflow resulted from areal recharge and one-half resulted from streamflow recharge, and those estimates were adjusted accordingly (also see "Areal Recharge" section). In addition, estimated springflow was added to streamflow that could potentially be lost to the Minnelusa outcrop.

Based on streamflow gains (table 13) springflow was estimated as about 5 ft<sup>3</sup>/s for the latter part of the summer-1996 period (S-96), 3 ft<sup>3</sup>/s for the winter-1997 period (W-97), and 5 ft<sup>3</sup>/s for the summer-1997 period (S-97). Because the earlier part of the 10-year period was climatically dryer, springflow was assumed not to have occurred prior to S-96.

#### **Ungaged Streams**

Ungaged streams include Deadman Gulch, Rockerville Gulch, Victoria Creek, the unnamed tributary, and Little Elk Creek (table 11 and pl. 3). These smaller basins accounted for about 8 percent (3.5 ft<sup>3</sup>/s) of the total streamflow recharge to the Madison and Minnelusa hydrogeologic units (table 12).

Synthetic flow records were generated for smaller ungaged basins by correlating flow rates in nearby larger gaged basins. An assumption was made that flow rates are directly correlated to the size of the basin. Streamflow in Rapid Creek was not used to generate synthetic flow records because streamflow is regulated by Pactola Dam. Streamflow in Battle Creek was used to create a synthetic flow record for Deadman Gulch and Rockerville Gulch (pl. 3). Streamflow in Spring Creek was used to create a synthetic flow record for Victoria Creek. Streamflow in Boxelder Creek was used to create a synthetic flow record for the unnamed tributary and for Little Elk Creek. Streamflow in Little Elk Creek was estimated based on Boxelder Creek rather than Elk Creek because precipitation for Little Elk Creek is similar to that of Boxelder Creek (table 11 and pl. 3).

Loss thresholds for Victoria Creek and Little Elk Creek were determined by Hortness and Driscoll (1998) but were not determined for Deadman Gulch, Rockerville Gulch, and the unnamed tributary. Thresholds for these streams were assumed to be small compared to those of the larger streams and were estimated as 2 and 4 ft<sup>3</sup>/s for the Madison and Minnelusa outcrops, respectively. The Minnelusa outcrop thresholds were assumed to be larger than thresholds for the Madison outcrop because stream reaches crossing the Minnelusa outcrop are longer than those of the Madison outcrop. Although these loss-threshold estimates are very uncertain, error in the estimate has a small effect on total calculated streamflow recharge because these basins account for less than 1 percent of the total area contributing to loss zones in the study area.

## **Areal Recharge**

Areal recharge is recharge resulting from infiltration of precipitation on outcrops. Methods used in estimating areal recharge are discussed in the following section, after which estimates are presented.

#### Methods

The Madison and Minnelusa outcrop areas were each divided into five areal recharge zones, bounded by major streams that cross the outcrops. These zones include Battle Creek to Spring Creek (zone 1), Spring Creek to Rapid Creek (zone 2), Rapid Creek to Boxelder Creek (zone 3), Boxelder Creek to Little Elk Creek (zone 4), and Little Elk Creek to Elk Creek (zone 5) (table 14 and pl. 3). Average annual precipitation for each zone (table 14) shows that the northern outcrop areas receive a greater amount of precipitation than do the southern areas.

Evapotranspiration (ET) on the Precambrian core of the Black Hills could be estimated with greater

confidence than in other areas of the Black Hills. This relates to an assumption that precipitation on the Precambrian core that does not evapotranspire infiltrates and reemerges as streamflow and can, therefore, be measured for a given basin. Therefore, streamflow yield on the Precambrian core was used as a surrogate to indirectly estimate recharge on the Madison and Minnelusa outcrops. Because of the high permeability of the Madison and Minnelusa outcrops, runoff from the outcrops is considered negligible (Carter, Driscoll, and Hamade, 2001) and therefore, recharge is assumed to be the difference between ET and precipitation. This method also assumes that ET on the Madison and Minnelusa outcrops is similar to that of the Precambrian core.

ET on the Precambrian core was estimated by correlating precipitation on drainage basins in the study area with basin yield. The estimated ET was then extrapolated to the Madison and Minnelusa outcrops areas. Because of the general decreased porosity with depth in these rocks (Rahn, 1985, p. 161), ground water probably does not infiltrate deeper than about 500 ft; however, a small amount of ground water probably moves from the Precambrian core into the Madison hydrogeologic unit via upward seepage through the Deadwood aquifer. Therefore, the ultimate destination of precipitation falling on drainage basins in the Precambrian core can be divided into three categories: (1) evapotranspiration, (2) flow into streams either as shallow ground-water interflow or direct runoff, or (3) ground-water outflow into overlying Paleozoic rocks near the periphery of the Precambrian core. Therefore, the fraction of precipitation that is evapotranspired can be estimated from equation 5.

$$\left(\frac{ET}{P}\right)_{PC} = 1 - \left(\frac{Y + GW_O}{P}\right)_{PC} \tag{5}$$

where the subscript *PC* represents the Precambrian core and,

- ET = evapotranspiration;
  - P = precipitation on basin;
  - *Y* = streamflow yield from basin in Precambrian core; and
- $GW_O$  = ground-water outflow from Precambrian core.

| Zone  | Area covered                       | A<br>(squar | rea<br>e miles) | Average annual precipitation <sup>1</sup><br>(inches) |           |  |
|-------|------------------------------------|-------------|-----------------|-------------------------------------------------------|-----------|--|
|       |                                    | Madison     | Minnelusa       | Madison                                               | Minnelusa |  |
| 1     | Battle Creek to Spring Creek       | 6.6         | 15.1            | 19.9                                                  | 19.4      |  |
| 2     | Spring Creek to Rapid Creek        | 4.6         | 7.1             | 19.1                                                  | 18.6      |  |
| 3     | Rapid Creek to Boxelder Creek      | 9.8         | 12.5            | 19.6                                                  | 18.9      |  |
| 4     | Boxelder Creek to Little Elk Creek | 27.3        | 15.2            | 20.0                                                  | 19.2      |  |
| 5     | Little Elk Creek to Elk Creek      | 10.1        | 3.6             | 24.0                                                  | 22.3      |  |
| Total |                                    | 58.4        | 53.5            | NA                                                    | NA        |  |

 Table 14.
 Areal recharge zones and average annual precipitation on Madison and Minnelusa outcrops

 [NA, not applicable]
 [NA, not applicable]

<sup>1</sup>Calculated from precipitation data for WY61-98 (Driscoll, Hamade, and Kenner, 2000).

Because runoff is assumed to be zero on the Madison and Minnelusa outcrops, precipitation is equal to the sum of areal recharge and ET:

$$\left(\frac{R+ET}{P}\right)_{MM} = 1 \tag{6}$$

where the subscript MM represents the Madison and Minnelusa outcrops and R = areal recharge.

Based on assumptions described previously:

$$\left(\frac{ET}{P}\right)_{MM} = \left(\frac{ET}{P}\right)_{PC}.$$
(7)

Therefore, equations 5, 6 and 7 can be combined as:

$$\left(\frac{R}{P}\right)_{MM} = \left(\frac{Y + GW_O}{P}\right)_{PC} \tag{8}$$

where the quantity,  $Y + GW_O$ , is the "total yield" from a drainage basin.

Four surface-water basins in the Precambrian core were analyzed to determine the terms on the right hand side of equation 8. These basins include Battle, Spring, Boxelder, and Elk Creeks measured above the Madison outcrop (table 11 and pl. 3). Although these basins mainly are composed of Precambrian rocks, small outcrop areas of Madison Limestone and Deadwood Formation exist near the western and eastern boundaries of some of the basins.

Monthly precipitation data (Driscoll, Hamade, and Kenner, 2000) were used to interpolate digital grids describing the distribution of precipitation for the drainage basins. These grids were used to compile average precipitation for each 6-month period for each of the drainage basins. Daily streamflow data for all four basins was separated into summer and winter seasons and averaged into 6-month time intervals (October 1 to March 31 and April 1 to September 30). Ground-water outflow from the Precambrian core  $(GW_{O}, \text{eq. 5})$ , which was estimated to be 6.3 ft<sup>3</sup>/s (see "Seepage from Deadwood Aquifer" section), was proportioned according to basin area among all of the basins in the Precambrian core in the study area. The proportioned amount was then added to measured streamflow to compute total yield and divided by average precipitation for each of the four basins (eq. 6). Total yield versus precipitation was plotted, and separate curves were fitted through data for the winter and summer periods (fig. 29) using a least-squares method for nonlinear regression. The nonlinear regression produced a better fit (higher  $R^2$  value) than linear regression, especially for the summer period. This relates to the fact that during intense precipitation events, ET consumes a smaller percentage of precipitation than for smaller precipitation events.

These fitted curves were used for estimating areal recharge to the Madison and Minnelusa outcrops for 6-month periods. Based on equation 8, areal recharge on the Madison and Minnelusa outcrops as a



Figure 29. Correlation of total yield to precipitation on basins in Precambrian core.

function of precipitation was equated to total yield from basins in the Precambrian core. Precipitation for each areal recharge zone was calculated using the same method as for the Precambrian core and used to estimate areal recharge from the curves in figure 29. The winter curve shows that the colder months allow greater recharge for the same precipitation rate than the summer period. The summer curve shows substantially increasing total yield for precipitation exceeding 18 inches per 6-month period. The curves are not valid for precipitation exceeding the range of data shown in figure 29.

Areal recharge for the summer periods ranged from less than 1 inch to more than 5 inches per 6-month period with an average summer recharge of 2.3 inches (fig. 30). Areal recharge in the winter periods was less than 1 inch. The average areal recharge was 13 percent of precipitation. Areal recharge ranged from about 2 percent of precipitation in the summer of 1988 to about 26 percent in summer 1995 (fig. 31).

In the study area, the Minnelusa hydrogeologic unit contains "unsaturated areas," as previously defined (see "Concepts of the Ground-Water Flow System" section), across about 73 percent of the outcrop (pl. 2). Some of the precipitation infiltrating the unsaturated area of the Minnelusa outcrop probably infiltrates the underlying Madison aquifer. The same assumptions for the redistribution of streamflow recharge also were applied to areal recharge (table 15).

#### **Estimation of Areal Recharge**

Estimated areal recharge rates for each of the five areal recharge zones for the Madison and Minnelusa hydrogeologic units are shown in table 16. About 64 percent of areal recharge occurred north of Boxelder Creek (zones 4 and 5) because of larger outcrop areas and greater precipitation amounts than the zones to the south. Average total areal recharge was about 49 percent of streamflow recharge (table 7) for the study area. Total areal recharge rates in the summer ranged from less than 3  $ft^3$ /s during dry years to almost 100 ft<sup>3</sup>/s during wet years. Areal recharge rates in the winter ranged from about 1 ft<sup>3</sup>/s during dry years to about 12 ft<sup>3</sup>/s during wet years. During the extremely wet summer-1995 period (S-95), areal recharge exceeded that of streamflow recharge (tables 12 and 16).



**Figure 30**. Spatially averaged precipitation and estimated areal recharge per 6-month period for the Madison and Minnelusa outcrops.



Figure 31. Spatially averaged areal recharge as a percentage of precipitation on the Madison and Minnelusa outcrops for winter (W) and summer (S).

 Table 15.
 Redistribution of average areal recharge from the unsaturated area of the Minnelusa outcrop to the Madison aquifer in inches per 6-month period, WY88-97

| Zone <sup>1</sup> | Recharge to<br>Madison<br>outcrop | Recharge to<br>Minnelusa<br>outcrop | Percentage of<br>Minnelusa<br>outcrop area<br>unsaturated | Percentage of<br>infiltration on<br>Minnelusa outcrop<br>redistributed | Adjusted<br>Madison<br>recharge | Adjusted<br>Minnelusa<br>recharge |
|-------------------|-----------------------------------|-------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|-----------------------------------|
|                   | а                                 | b                                   | С                                                         | d                                                                      | е                               | f                                 |
|                   |                                   |                                     |                                                           | d = c/2                                                                | e = a+b*d/100                   | f = b-b*d/100                     |
| 1                 | 1.2                               | 0.9                                 | 59.4                                                      | 29.7                                                                   | 1.5                             | 0.7                               |
| 2                 | 1.0                               | .8                                  | 84.5                                                      | 42.2                                                                   | 1.4                             | .5                                |
| 3                 | 1.4                               | 1.1                                 | 70.0                                                      | 35.0                                                                   | 1.8                             | .7                                |
| 4                 | 1.4                               | 1.6                                 | 68.7                                                      | 34.3                                                                   | 1.9                             | 1.0                               |
| 5                 | 1.9                               | 1.7                                 | 70.1                                                      | 35.0                                                                   | 2.4                             | 1.1                               |

<sup>1</sup>Zones are described in table 14.

#### Table 16. Areal recharge rates to the Madison and Minnelusa hydrogeologic units by zones

[Recharge rates in cubic feet per second (ft<sup>3</sup>/s); W, winter; S, summer (W-88 = winter 1988); Mdsn, Madison, Mnls, Minnelusa]

| Stress          |        | Madison | recharge | by zone | 1      | N        | linnelusa | recharg | e by zon | e <sup>1</sup> | Total |      | Total        |
|-----------------|--------|---------|----------|---------|--------|----------|-----------|---------|----------|----------------|-------|------|--------------|
| period          | Zone 1 | Zone 2  | Zone 3   | Zone 4  | Zone 5 | Zone 1   | Zone 2    | Zone 3  | Zone 4   | Zone 5         | Mdsn  | Mnis | Mdsn<br>Mnls |
|                 |        |         |          |         | Dr     | y Period |           |         |          |                |       |      |              |
| W-88            | 0.0    | 0.0     | 0.1      | 0.3     | 0.5    | 0.0      | 0.0       | 0.0     | 0.1      | 0.1            | 0.9   | 0.2  | 1.1          |
| S-88            | .2     | .1      | .1       | .6      | .9     | .2       | .0        | .1      | .1       | .1             | 1.9   | .5   | 2.4          |
| W-89            | .1     | .1      | .3       | .6      | .5     | .1       | .0        | .2      | .2       | .1             | 1.6   | .6   | 2.2          |
| S-89            | .9     | 1.6     | 2.0      | 3.1     | 2.4    | 1.0      | .8        | 1.0     | .9       | .3             | 10.0  | 4.0  | 14.0         |
| W-90            | .2     | .1      | .3       | 1.1     | 1.5    | .2       | .1        | .2      | .3       | .2             | 3.2   | 1.0  | 4.2          |
| S-90            | 2.3    | .8      | 1.2      | 2.2     | .9     | 2.2      | .5        | .6      | .7       | .1             | 7.4   | 4.1  | 11.5         |
| W-91            | .1     | .1      | .2       | .6      | .8     | .1       | .0        | .1      | .2       | .1             | 1.8   | .5   | 2.3          |
| S-91            | 4.5    | 5.5     | 11.0     | 24.0    | 7.5    | 4.3      | 2.6       | 4.9     | 6.4      | 1.3            | 52.5  | 19.5 | 72.0         |
| W-92            | .3     | .1      | .3       | .8      | .9     | .3       | .1        | .1      | .2       | .1             | 2.4   | .8   | 3.2          |
| S-92            | .5     | .4      | .9       | 3.1     | 1.0    | .6       | .2        | .4      | .9       | .2             | 5.9   | 2.3  | 8.2          |
| W-93            | .1     | .1      | .2       | .7      | 1.1    | .1       | .0        | .1      | .2       | .1             | 2.2   | .5   | 2.7          |
| Average dry     | .8     | .8      | 1.5      | 3.4     | 1.6    | .8       | .4        | .7      | .9       | .2             | 8.2   | 3.1  | 11.3         |
|                 |        |         |          |         | We     | t Period |           |         |          |                |       |      |              |
| S-93            | 6.2    | 4.0     | 6.2      | 19.6    | 10.0   | 7.1      | 2.3       | 3.5     | 5.3      | 1.7            | 46.0  | 19.9 | 65.9         |
| W-94            | .1     | .0      | .2       | .8      | 1.8    | .0       | .0        | .1      | .2       | .2             | 2.9   | .5   | 3.4          |
| S-94            | .4     | .1      | .3       | .8      | .4     | .4       | .1        | .1      | .3       | .1             | 2.0   | 1.0  | 3.0          |
| W-95            | .3     | .1      | .6       | 2.4     | 3.1    | .2       | .0        | .3      | .6       | .4             | 6.5   | 1.5  | 8.0          |
| S-95            | 5.5    | 2.1     | 10.9     | 35.8    | 18.4   | 5.5      | 1.1       | 4.6     | 11.6     | 2.9            | 72.7  | 25.7 | 98.4         |
| W-96            | .2     | .1      | .5       | 2.2     | 2.8    | .2       | .1        | .2      | .5       | .3             | 5.8   | 1.3  | 7.1          |
| S-96            | 3.0    | 1.5     | 4.3      | 17.8    | 4.5    | 3.0      | .9        | 2.1     | 4.4      | 1.1            | 31.1  | 11.5 | 42.6         |
| W-97            | .5     | .4      | 1.3      | 4.8     | 2.6    | .5       | .2        | .7      | 1.2      | .6             | 9.6   | 3.2  | 12.8         |
| S-97            | 3.1    | 1.8     | 10.6     | 35.0    | 5.8    | 3.3      | 1.1       | 5.9     | 11.6     | 1.4            | 56.3  | 23.3 | 79.6         |
| Average wet     | 2.1    | 1.1     | 3.9      | 13.2    | 5.5    | 2.2      | .6        | 1.9     | 4.0      | 1.0            | 25.9  | 9.8  | 35.7         |
| Overall average | 1.4    | 1.0     | 2.6      | 7.8     | 3.4    | 1.5      | .5        | 1.3     | 2.3      | .6             | 16.1  | 6.1  | 22.2         |

<sup>1</sup>See table 14 for description of zones.

## Springflow

Springs in the aquifer analysis area that are included in water-budget calculations are Jackson-Cleghorn Springs, City Springs, Deadwood Avenue Springs, and springs along Boxelder and Elk Creeks (pl. 3). Geochemical analysis indicates that the largest spring complex in the aquifer analysis area, Jackson-Cleghorn, flows from the Madison aquifer (Back and others, 1983; Anderson and others, 1999). All of these springs are located in areas where hydraulic head in the Madison aquifer is generally higher than in the Minnelusa aquifer. Because of the upward hydraulic gradient, and for simplicity, it is assumed that the source of all springs considered is the Madison aquifer.

Flow from some springs can be relatively steady, whereas flow from others may fluctuate considerably. Topographic altitude, hydraulic head variation, and hydraulic properties of the overlying material may affect springflow rates. Flows from Tittle Springs, Gravel Spring, Doty Spring, and Dome Spring occur within the Madison streamflow-loss zones (pl. 1). Because estimated streamflow-loss thresholds represent approximate net loss (Hortness and Driscoll, 1998), flow from these springs was accounted for in streamflow loss estimates and, therefore, was omitted from water-budget calculations. A summary of springflow estimates and details on individual springs follow.

#### **Estimation of Springflow**

Springs included in the water budget area are listed in table 17. A total of about 31  $\text{ft}^3$ /s is the estimated average flow from these springs for WY88-97. Total springflow averaged 25.3  $\text{ft}^3$ /s for the dry period and 37.4  $\text{ft}^3$ /s for the wet period.

 Table 17.
 Summary of estimated springflow

[Discharge rates in cubic feet per second; W, winter; S, summer (W-88 = winter 1988)]

| Stress period   | Jackson-Cleghorn<br>Springs | City<br>Springs | Deadwood Avenue<br>Springs | Boxelder<br>Springs | Elk<br>Springs | Total |
|-----------------|-----------------------------|-----------------|----------------------------|---------------------|----------------|-------|
|                 |                             |                 | Dry Period                 |                     |                |       |
| W-88            | 21.6                        | 1.9             | 2.8                        | 0.0                 | 0.3            | 26.6  |
| S-88            | 21.6                        | 1.0             | 2.8                        | .0                  | .3             | 25.7  |
| W-89            | 21.6                        | 1.0             | 2.8                        | .0                  | .0             | 25.4  |
| S-89            | 21.6                        | .7              | 2.8                        | .0                  | .0             | 25.1  |
| W-90            | 21.6                        | .8              | 2.8                        | .0                  | .0             | 25.2  |
| S-90            | 21.6                        | .8              | 2.8                        | .0                  | .0             | 25.2  |
| W-91            | 21.6                        | .3              | 2.8                        | .0                  | .1             | 24.8  |
| S-91            | 21.6                        | 1.3             | 2.8                        | .0                  | .1             | 25.8  |
| W-92            | 21.6                        | .6              | 2.8                        | .0                  | .0             | 25.0  |
| S-92            | 21.6                        | .4              | 2.8                        | .0                  | .0             | 24.8  |
| W-93            | 21.6                        | .3              | 2.8                        | .2                  | .1             | 25.0  |
| Average dry     | 21.6                        | .8              | 2.8                        | .0                  | .1             | 25.3  |
|                 |                             |                 | Wet Period                 |                     |                |       |
| S-93            | 21.6                        | 2.1             | 2.8                        | .2                  | .1             | 26.8  |
| W-94            | 21.6                        | 1.5             | 2.8                        | .0                  | .4             | 26.3  |
| S-94            | 21.6                        | 1.4             | 2.8                        | .0                  | .4             | 26.2  |
| W-95            | 21.6                        | 1.3             | 2.8                        | .5                  | 8.6            | 34.8  |
| S-95            | 21.6                        | 3.3             | 2.8                        | .5                  | 8.6            | 36.8  |
| W-96            | 21.6                        | 2.8             | 2.8                        | 2.5                 | 8.2            | 37.9  |
| S-96            | 21.6                        | 4.0             | 2.8                        | 2.5                 | 8.2            | 39.1  |
| W-97            | 21.6                        | 3.5             | 2.8                        | 6.8                 | 18.9           | 53.6  |
| S-97            | 21.6                        | 4.9             | 2.8                        | 6.8                 | 18.9           | 55.0  |
| Average wet     | 21.6                        | 2.8             | 2.8                        | 2.2                 | 8.0            | 37.4  |
| Overall average | 21.6                        | 1.7             | 2.8                        | 1.0                 | 3.7            | 30.8  |

64 Flow-System Analysis of Madison and Minnelusa Aquifers in the Rapid City Area, SD—Conceptual Model

#### **Jackson-Cleghorn Springs**

Anderson and others (1999) estimated springflow from Jackson-Cleghorn Springs to be about 21.6 ft<sup>3</sup>/s during WY88-89 using a control-volume analysis. This spring complex probably is a regional discharge point with a relatively stable flow (see "Hydraulic Response to Recharge" and "Flowpaths" sections). Therefore, in the absence of further data, the springflow was estimated to be constant at 21.6 ft<sup>3</sup>/s for the 10-year period.

#### **City Springs**

Flow from City Springs and some unnamed springs about 0.3 mi to the east were estimated from the streamflow record at gage site 90 (table 11 and pl. 3), which is located about 2 mi downstream on a tributary of Rapid Creek. Base flow at this site was assumed to be equal to springflow and was estimated by using a hydrograph separation program called HYSEP (Sloto and Crouse, 1996). Estimated springflow for 6-month periods varied from 0.3 to 4.9 ft<sup>3</sup>/s with an average of 1.7 ft<sup>3</sup>/s.

#### **Deadwood Avenue Springs**

Flow from Deadwood Avenue Spring no. 1 was estimated from the streamflow record for gage site 91 (pl. 3 and table 11), which is located about 1 mi downstream on a tributary of Rapid Creek. Gage site 91 was measured continuously during WY88-90. Base flow at this site was assumed to be equal to flow from spring no. 1 and was estimated by using the hydrograph separation program HYSEP (Sloto and Crouse, 1996). The estimated base flow was relatively steady with a mean of 2.4  $\text{ft}^3$ /s, a maximum and minimum daily rate of 1.8 and 3.3  $\text{ft}^3$ /s, respectively, and standard deviation of 0.3. Because flow records were available only for a 3-year period, the mean value of 2.4  $\text{ft}^3$ /s was used in water-budget calculations for the entire 10-year period for spring no. 1.

On October 18, 2000, Deadwood Avenue Springs nos. 1 and 2 were measured at 2.22 and 0.43 ft<sup>3</sup>/s, respectively, at the locations where flow enters Rapid Creek. The fall of 2000 was very dry, and all flow in these streams was assumed to have originated from the springs. Because flow from spring no. 1 on this date was nearly equal to the estimated average, it was assumed that the measured flow from spring no. 2 was also equal to the average rate for that spring. Therefore, total flow for the two springs was estimated to be constant at 2.8 ft<sup>3</sup>/s.

#### **Boxelder Springs and Elk Springs**

Springs along Boxelder Creek 2 mi west of I-90 and Elk Creek near I-90 (pl. 3) generally flow only when hydraulic head in the Madison aquifer is estimated to be above the land surface. Annual flow from these springs was estimated for WY87-97 by Carter, Driscoll, Hamade, and Jarrell (2001). These annual springflow estimates were included as 6-month time steps for this report by assuming flow remained constant during winter and summer for each year. Springflow was negligible during the early part of the analysis period until 1995 when flow increased rapidly due to rising water levels. The combined estimated flow from these springs during WY97 was about 26 ft<sup>3</sup>/s.

## Water Use

Locations of public supply, irrigation, and industrial wells are shown on plate 3. The city of Rapid City maintained water-use records that were used to compile data for water-budget calculations. Water use from public-supply wells outside of Rapid City was estimated by extrapolating per capita water use in Rapid City to populations served by other public water supplies. Irrigation and industrial water use was estimated based on water-permit information including pump capacities and acreage. A summary of water-use estimates follows, which is followed by separate descriptions of water use from Rapid City wells, other public-supply wells, irrigation, and industrial sources.

#### **Estimation of Water Use**

Rapid City withdrew an average of 3.8 ft<sup>3</sup>/s (2,500,000 gal/d) from the Madison aquifer and 1.0 ft<sup>3</sup>/s (680,000 gal/d) from the Minnelusa aquifer during WY88-97 (table 18), which was about 48 percent of all water use from the Madison and Minnelusa aquifers in the aquifer analysis area. In the 1980's, the city of Rapid City obtained much of its water from the Minnelusa aquifer. Madison aquifer production surpassed the Minnelusa aquifer production after 1991 as new city wells were completed. Other public-supply wells and domestic wells accounted for about 36 percent of all Madison and Minnelusa aquifer water use during WY88-97, while irrigation and industrial wells accounted for about 16 percent.

Water use from the Madison and Minnelusa aquifers accounts for about 14 percent of the total water budget for WY88-97 (table 7). Total withdrawal rates from the Madison aquifer averaged 6.7 ft<sup>3</sup>/s and ranged from about 2 to 15 ft<sup>3</sup>/s. Total withdrawal rates from the Minnelusa aquifer averaged 3.4 ft<sup>3</sup>/s and ranged from about 2 to 5 ft<sup>3</sup>/s (table 18).

## **Rapid City Wells**

Rapid City's production wells (pl. 3) are completed primarily in the Madison aquifer (table 4). In response to drought conditions in the late 1980's, the city initiated a drilling program in the Madison aquifer to reduce dependence on surface water and infiltration galleries along Rapid Creek (Anderson and others,

**Table 18.**Water use from Madison and Minnelusa aquifers[Rates in cubic feet per second; W, winter; S, summer (W-88 = winter 1988)]

|                 |               | Madisor                                              | n aquifer                       |            |               |                                                      |                                 |       |                               |
|-----------------|---------------|------------------------------------------------------|---------------------------------|------------|---------------|------------------------------------------------------|---------------------------------|-------|-------------------------------|
| Stress period   | Rapid<br>City | Other<br>public and<br>domestic<br>water<br>supplies | Industrial<br>and<br>irrigation | Total      | Rapid<br>City | Other<br>public and<br>domestic<br>water<br>supplies | Industrial<br>and<br>irrigation | Total | Total<br>Madison<br>Minnelusa |
|                 |               |                                                      |                                 | Dry Period |               |                                                      |                                 |       |                               |
| W-88            | 0.0           | 1.3                                                  | 0.6                             | 1.9        | 1.5           | 1.2                                                  | 0.2                             | 2.9   | 4.8                           |
| S-88            | .0            | 3.4                                                  | 1.3                             | 4.7        | 1.4           | 3.1                                                  | 1.2                             | 5.7   | 10.4                          |
| W-89            | .0            | 1.1                                                  | .6                              | 1.7        | .5            | 1.0                                                  | .2                              | 1.7   | 3.4                           |
| S-89            | .1            | 2.0                                                  | 1.3                             | 3.4        | .7            | 1.8                                                  | 1.2                             | 3.7   | 7.1                           |
| W-90            | .0            | 1.2                                                  | .6                              | 1.8        | 1.6           | 1.1                                                  | .2                              | 2.9   | 4.7                           |
| S-90            | .9            | 2.0                                                  | 1.3                             | 4.2        | 1.9           | 1.8                                                  | 1.2                             | 4.9   | 9.1                           |
| W-91            | 1.0           | 1.4                                                  | .6                              | 3.0        | 1.8           | 1.3                                                  | .2                              | 3.3   | 6.3                           |
| S-91            | 3.3           | 2.2                                                  | 1.7                             | 7.2        | 1.6           | 2.0                                                  | 1.0                             | 4.6   | 11.8                          |
| W-92            | 3.6           | 1.2                                                  | .6                              | 5.4        | 1.3           | 1.1                                                  | .2                              | 2.6   | 8.0                           |
| S-92            | 9.1           | 2.1                                                  | 1.3                             | 12.5       | 1.2           | 1.9                                                  | 1.2                             | 4.3   | 16.8                          |
| W-93            | 1.7           | 1.4                                                  | .6                              | 3.7        | 1.1           | 1.3                                                  | .2                              | 2.6   | 6.3                           |
| Average dry     | 1.8           | 1.8                                                  | 1.0                             | 4.5        | 1.3           | 1.6                                                  | .6                              | 3.6   | 8.1                           |
|                 |               |                                                      |                                 | Wet Period |               |                                                      |                                 |       |                               |
| S-93            | 10.6          | 1.9                                                  | 1.1                             | 13.6       | 1.1           | 1.8                                                  | 1.1                             | 4.0   | 17.6                          |
| W-94            | 4.2           | 1.4                                                  | .6                              | 6.2        | .6            | 1.3                                                  | .2                              | 2.1   | 8.3                           |
| S-94            | 10.9          | 2.8                                                  | 1.3                             | 15.0       | .3            | 2.6                                                  | 1.2                             | 4.1   | 19.1                          |
| W-95            | 3.7           | 1.4                                                  | .7                              | 5.8        | .8            | 1.3                                                  | .2                              | 2.3   | 8.1                           |
| S-95            | 7.5           | 2.3                                                  | 1.2                             | 11.0       | .6            | 2.1                                                  | 1.0                             | 3.7   | 14.7                          |
| W-96            | .9            | 1.6                                                  | .7                              | 3.2        | .5            | 1.4                                                  | .2                              | 2.1   | 5.3                           |
| S-96            | 7.6           | 2.6                                                  | 1.2                             | 11.4       | .6            | 2.4                                                  | 1.0                             | 4.0   | 15.4                          |
| W-97            | 3.2           | 1.6                                                  | .7                              | 5.5        | .8            | 1.5                                                  | .2                              | 2.5   | 8.0                           |
| S-97            | 8.4           | 2.3                                                  | 1.2                             | 11.9       | .9            | 2.2                                                  | 1.0                             | 4.1   | 16.0                          |
| Average wet     | 6.3           | 2.0                                                  | 1.0                             | 9.3        | .7            | 1.8                                                  | .7                              | 3.2   | 12.5                          |
| Overall average | 3.8           | 1.9                                                  | 1.0                             | 6.7        | 1.0           | 1.7                                                  | .7                              | 3.4   | 10.1                          |

1999). Estimated water use for all Rapid City groundwater and surface-water sources is shown in table 19 and averaged about 20 ft<sup>3</sup>/s during summer periods and 12 ft<sup>3</sup>/s during winter periods. Average production from the Madison and Minnelusa aquifers is shown in table 20 and sometimes accounted for more than onehalf of the total water use, with withdrawals from the Madison aquifer exceeding 10 ft<sup>3</sup>/s during S-93 and S-94. The average withdrawal after 1991, when most of the Madison wells were completed, was about 7 ft<sup>3</sup>/s. Table 19 shows total Rapid City water use as a fraction of the average for WY97 so that water use could be calculated for other public-supply wells based on Rapid City population equivalents in 1997.

#### **Other Public-Supply Wells**

The Madison and Minnelusa aquifers are used extensively as public water supplies outside of Rapid City. Most of these wells are located within a band about 2 to 3 mi wide, on or adjacent to the Minnelusa outcrop (pl. 3). These public water supplies predominately serve small suburban developments and commercial establishments (tables 21 and 22).

To estimate the water use from public water supplies outside of Rapid City, per capita water use was assumed to be similar to that of Rapid City. Average withdrawal from each public-supply well was estimated based on the population served by that well and the per capita water use within Rapid City. This assumption would, however, overestimate water use from public supplies outside of Rapid City because per capita commercial water use inside of Rapid City is greater than that outside. However, this overestimation of water use from public water supplies was assumed to be offset by water use from private domestic wells outside of Rapid City, which was neglected.

The estimated per capita water use for Rapid City during the winter-1997 period (W-97) was 123 gal/d and the summer-1997 period (S-97) was 177 gal/d. These were calculated by dividing water use for Rapid City in WY97 (table 19) by the population equivalent of 73,000 in 1997 (South Dakota Department of Environment and Natural Resources, written commun., 1999). Water use for each public water supply for WY97 was based on Rapid City population equivalents. Water use for each 6-month period was determined by multiplying by the water-use fraction of WY97 (table 19). Average water use for each public supply well for the 10-year period is shown in tables 21 and 22. The average withdrawal rate from the Madison aquifer totaled about 1.9 ft<sup>3</sup>/s and ranged from 0.01 to 0.47 ft<sup>3</sup>/s for individual water supplies. The average withdrawal rate from the Minnelusa aquifer totaled about 1.7 ft<sup>3</sup>/s and ranged from 0.01 to 0.20 ft<sup>3</sup>/s for individual water supplies.

## Table 19. Total Rapid City water use as an average per stress period

[Includes all surface- and ground-water sources. Mgal/d, million gallons per day; ft<sup>3</sup>/s, cubic feet per second; W, winter; S, summer (W-88 = winter 1988)]

| Stress<br>period | Total<br>water use<br>(Mgal/d) <sup>1</sup> | Total<br>water use<br>(ft <sup>3</sup> /s) | Water use as<br>fraction of average<br>WY97 water use for<br>each season |
|------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------|
|                  |                                             | Dry Period                                 |                                                                          |
| W-88             | 6.94                                        | 10.74                                      | 0.77                                                                     |
| S-88             | 18.79                                       | 29.07                                      | 1.46                                                                     |
| W-89             | 6.03                                        | 9.33                                       | .67                                                                      |
| S-89             | 10.99                                       | 17.01                                      | .85                                                                      |
| W-90             | 6.67                                        | 10.32                                      | .74                                                                      |
| S-90             | 10.9                                        | 16.87                                      | .85                                                                      |
| W-91             | 7.59                                        | 11.74                                      | .84                                                                      |
| S-91             | 11.91                                       | 18.43                                      | .92                                                                      |
| W-92             | 6.8                                         | 10.52                                      | .76                                                                      |
| S-92             | 11.57                                       | 17.90                                      | .90                                                                      |
| W-93             | 7.79                                        | 12.05                                      | .87                                                                      |
|                  |                                             | Wet Period                                 |                                                                          |
| S-93             | 10.58                                       | 16.37                                      | .82                                                                      |
| W-94             | 7.90                                        | 12.22                                      | .88                                                                      |
| S-94             | 15.55                                       | 24.06                                      | 1.21                                                                     |
| W-95             | 7.81                                        | 12.08                                      | .87                                                                      |
| S-95             | 12.81                                       | 19.82                                      | .99                                                                      |
| W-96             | 8.46                                        | 13.09                                      | .94                                                                      |
| S-96             | 14.19                                       | 21.96                                      | 1.10                                                                     |
| W-97             | 8.99                                        | 13.91                                      | 1.00                                                                     |
| S-97             | 12.89                                       | 19.95                                      | 1.00                                                                     |

<sup>1</sup>Rapid City Water Department, written commun, 1999.

#### Table 20. Rapid City production well withdrawals

[Rate in cubic feet per second; Mdsn, Madison aquifer; Mnls, Minnelusa aquifer; W, winter; S, summer (W-88 = winter 1988). Source is Rapid City Water Department, written commun., 1999]

| Stroop  | Well name and the aquifer the well is completed in |                           |                           |              |              |                           |              |              |               |               |       | tal  |
|---------|----------------------------------------------------|---------------------------|---------------------------|--------------|--------------|---------------------------|--------------|--------------|---------------|---------------|-------|------|
| period  | RC-1 <sup>1</sup><br>Mdsn                          | RC-1 <sup>1</sup><br>MnIs | RC-3 <sup>2</sup><br>Mnls | RC-4<br>Mnls | RC-5<br>Mdsn | RC-6 <sup>3</sup><br>Mdsn | RC-8<br>Mdsn | RC-9<br>Mdsn | RC-10<br>Mdsn | RC-11<br>Mdsn | Mdsn  | Mnls |
|         |                                                    |                           |                           |              |              | Dry Period                | l            |              |               |               |       |      |
| W-88    | 0.00                                               | 0.00                      | 0.59                      | 0.94         | 0.00         | 0.00                      | 0.00         | 0.00         | 0.00          | 0.00          | 0.00  | 1.53 |
| S-88    | .00                                                | .00                       | .52                       | .90          | .00          | .00                       | .00          | .00          | .00           | .00           | .00   | 1.42 |
| W-89    | .00                                                | .00                       | .52                       | .01          | .00          | .00                       | .00          | .00          | .00           | .00           | .00   | .53  |
| S-89    | .07                                                | .07                       | .48                       | .18          | .00          | .00                       | .00          | .00          | .00           | .00           | .07   | .73  |
| W-90    | .00                                                | .00                       | .60                       | 1.03         | .00          | .00                       | .00          | .00          | .00           | .00           | .00   | 1.63 |
| S-90    | .21                                                | .21                       | .69                       | .97          | .71          | .00                       | .00          | .00          | .00           | .00           | .92   | 1.87 |
| W-91    | .10                                                | .10                       | .74                       | .96          | .34          | .52                       | .00          | .00          | .00           | .00           | .96   | 1.80 |
| S-91    | .32                                                | .32                       | .30                       | .96          | 2.18         | .48                       | .36          | .00          | .00           | .00           | 3.34  | 1.58 |
| W-92    | .31                                                | .31                       | .00                       | 1.00         | 3.12         | .00                       | .14          | .00          | 1.35          | .00           | 4.92  | 1.31 |
| S-92    | .31                                                | .31                       | .00                       | .87          | 2.06         | .64                       | .76          | 3.86         | .26           | .16           | 8.05  | 1.18 |
| W-93    | .31                                                | .31                       | .00                       | .80          | .00          | .06                       | .18          | .85          | 1.99          | .05           | 3.44  | 1.11 |
|         |                                                    |                           |                           |              | v            | /et Period                |              |              |               |               |       |      |
| S-93    | .33                                                | .33                       | .00                       | .79          | .75          | .81                       | 1.21         | 5.22         | 1.62          | .32           | 10.26 | 1.12 |
| W-94    | .32                                                | .32                       | .00                       | .32          | .18          | .65                       | .71          | .48          | 2.53          | .19           | 5.06  | .64  |
| S-94    | .31                                                | .31                       | .00                       | .02          | 1.05         | 1.01                      | 1.18         | 4.19         | 2.03          | .65           | 10.42 | .33  |
| W-95    | .08                                                | .08                       | .00                       | .73          | .56          | .16                       | .10          | .53          | 2.14          | .24           | 3.81  | .81  |
| S-95    | .00                                                | .00                       | .00                       | .63          | 1.17         | .59                       | 1.11         | 2.07         | .62           | .39           | 5.95  | .63  |
| W-96    | .00                                                | .00                       | .00                       | .48          | .09          | .00                       | .00          | .19          | 1.86          | .00           | 2.14  | .48  |
| S-96    | .00                                                | .00                       | .00                       | .64          | .94          | .87                       | 1.02         | 2.39         | 1.82          | .51           | 7.55  | .64  |
| W-97    | .00                                                | .00                       | .00                       | .83          | .38          | .16                       | .04          | .72          | 2.07          | .06           | 3.43  | .83  |
| S-97    | .00                                                | .00                       | .00                       | .87          | 1.76         | .47                       | .98          | 2.65         | .00           | .46           | 6.32  | .87  |
| Average | .13                                                | .13                       | .22                       | .70          | .77          | .32                       | .39          | 1.16         | .91           | .15           | 3.83  | 1.05 |

<sup>1</sup>Minnelusa and Madison aquifer withdrawals were each estimated as 0.4 times the total withdrawal because the well is open to the Minnelusa, Madison, and Deadwood aquifers.

<sup>2</sup>Also may produce from Madison aquifer. <sup>3</sup>Also may produce from Minnelusa aquifer.

#### Table 21. Public water supply withdrawals from Madison aquifer excluding Rapid City wells

[gal/min, gallons per minute; ft<sup>3</sup>/s, cubic feet per second; WY, water year; Well information (excluding withdrawals) is from South Dakota Department of Environment and Natural Resources, written commun., 1999]

| Site<br>number<br>(pl. 3) | Public water-supply<br>identification<br>number | Name                                     | Year of construction | Population<br>equivalent <sup>1</sup> | Average<br>estimated<br>WY88-97<br>withdrawal<br>(gal/min) | Average<br>estimated<br>WY88-97<br>withdrawal <sup>2</sup><br>(ft <sup>3</sup> /s) |
|---------------------------|-------------------------------------------------|------------------------------------------|----------------------|---------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|
| 1                         | 4602159                                         | Stagebarn Subdivision                    | 1993                 | 165                                   | 18                                                         | 0.04                                                                               |
| 2                         | 4600893                                         | Stagebarn Elementary School              | 1980                 | 360                                   | 36                                                         | .08                                                                                |
| 3                         | 4602000                                         | Peaceful Pines                           | 1976                 | 102                                   | 9                                                          | .02                                                                                |
| 4                         | 4600043a                                        | Black Hawk Water Company                 | 1986                 | 900                                   | 90                                                         | .20                                                                                |
| 5                         | 4600862                                         | Weston Heights                           | 1985                 | 220                                   | 22                                                         | .05                                                                                |
| 6                         | 4602106                                         | Cavalry Trails Homeowner Association     | 1980                 | 54                                    | 4                                                          | .01                                                                                |
| 7                         | 4602150                                         | Coca Cola Bottling Company               | 1991                 | 70                                    | 9                                                          | .02                                                                                |
| 8                         | 4600046                                         | Box Elder                                | 1982                 | 2,137                                 | 211                                                        | .47                                                                                |
| 9                         | 4600863a                                        | Ponderosa Ridge                          | 1974                 | 45                                    | 4                                                          | .01                                                                                |
| 10                        | 4600863                                         | Ponderosa Ridge                          | 1977                 | 45                                    | 4                                                          | .01                                                                                |
| 11                        | 4600253                                         | Westberry Trails Water Users Association | 1972                 | 157                                   | 13                                                         | .03                                                                                |
| 12                        | 4602084                                         | Rimrock Ridge Water Association          | 1978                 | 36                                    | 4                                                          | .01                                                                                |
| 13                        | 4600264                                         | Chapel Lane Water Company                | 1975                 | 1,200                                 | 117                                                        | .26                                                                                |
| 14                        | 4600265                                         | Carriage Hills                           | 1980                 | 270                                   | 27                                                         | .06                                                                                |
| 15                        | 4600274                                         | Rapid Valley Sanitary District           | 1991                 | 1,360                                 | 94                                                         | .21                                                                                |
| 16                        | 4600405                                         | Ponderosa Park                           | 1950                 | 54                                    | 4                                                          | .01                                                                                |
| 17                        | 4602149                                         | CPH - Countryside South                  | 1972                 | 35                                    | 4                                                          | .01                                                                                |
| 18                        | 4600263a                                        | CPH - Whispering Pines                   | 1964                 | 35                                    | 4                                                          | .01                                                                                |
| 19                        | 4600263                                         | CPH - Whispering Pines                   | 1976                 | 35                                    | 4                                                          | .01                                                                                |
| 20                        | 4600050                                         | Highland Hills                           | 1986                 | 40                                    | 4                                                          | .01                                                                                |
| 21                        | 4600015                                         | Spring Canyon Water Company              | 1968                 | 42                                    | 4                                                          | .01                                                                                |
| 22                        | 4600528                                         | Bear Country                             | 1975                 | 304                                   | 31                                                         | .07                                                                                |
| 23                        | 4600910a                                        | Hart Ranch                               | 1984                 | 600                                   | 58                                                         | .13                                                                                |
| 24                        | 4600910                                         | Hart Ranch                               | 1984                 | 20                                    | 45                                                         | .10                                                                                |
| 25                        | 4600948                                         | Pine Grove                               | 1983                 | 270                                   | 27                                                         | .06                                                                                |
| Total                     |                                                 |                                          |                      | 8,556                                 | 847                                                        | 1.90                                                                               |

<sup>1</sup>When the reported population for a public water supply included more than one well location, the population was prorated based on estimates from water managers or the well capacity.

<sup>2</sup>Average withdrawals less than 0.01 ft<sup>3</sup>/s were rounded up to 0.01 ft<sup>3</sup>/s for several smaller public water supplies.

#### Table 22. Public water supply withdrawals from Minnelusa aquifer excluding Rapid City wells

[gal/min, gallons per minute; ft<sup>3</sup>/s, cubic feet per second; WY, water year. Well information (excluding withdrawals) is from South Dakota Department of Environment and Natural Resources, written commun., 1999]

| Site<br>number<br>(pl. 3) | Public<br>water-supply<br>identification<br>number | Name                                     | Year of construction | Population<br>equivalent <sup>1</sup> | Average<br>WY88-97<br>withdrawal<br>(gal/min) | Average<br>WY88-97<br>withdrawal <sup>2</sup><br>(ft <sup>3</sup> /s) |
|---------------------------|----------------------------------------------------|------------------------------------------|----------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| 26                        | 4600929                                            | Elk Creek Steakhouse                     | 1978                 | 104                                   | 8                                             | 0.02                                                                  |
| 27                        | 4600630                                            | Elk Creek Resort                         | 1994                 | 60                                    | 5                                             | .01                                                                   |
| 28                        | 4602133                                            | Covered Wagon Resort                     |                      | 390                                   | 40                                            | .09                                                                   |
| 29                        | 4602123                                            | Dakotah Spirit Resort                    |                      | 100                                   | 8                                             | .02                                                                   |
| 30                        | 4600239                                            | Elk Creek Water Company                  | 1973                 | 321                                   | 31                                            | .07                                                                   |
| 31                        | 4600421a                                           | Wonderland Homes                         | 1982                 | 325                                   | 31                                            | .07                                                                   |
| 32                        | 4600639                                            | Piedmont Medical Center                  | 1976                 | 75                                    | 8                                             | .02                                                                   |
| 33                        | 4600421                                            | Wonderland Homes                         | 1975                 | 325                                   | 31                                            | .07                                                                   |
| 34                        | 4601000a                                           | East Ridge Acres                         | 1972                 | 55                                    | 5                                             | .01                                                                   |
| 35                        | 4600402                                            | The Niche                                | 1974                 | 50                                    | 5                                             | .01                                                                   |
| 36                        | 4600515                                            | Midland Heights                          | 1975                 | 177                                   | 17                                            | .04                                                                   |
| 37                        | 4601000                                            | East Ridge Acres                         | 1978                 | 55                                    | 5                                             | .01                                                                   |
| 38                        | 4600041a                                           | Pine Hills Park                          | 1984                 | 150                                   | 13                                            | .03                                                                   |
| 39                        | 4600041                                            | Pine Hills Park                          | 1972                 | 155                                   | 13                                            | .03                                                                   |
| 40                        | 4600516                                            | Golden Meadows                           | 1978                 | 114                                   | 8                                             | .02                                                                   |
| 41                        | 4602165                                            | Fort Welikit Family Campground           | 1994                 | 27                                    | 4                                             | .01                                                                   |
| 42                        | 4600587                                            | Heritage Park                            | 1963                 | 188                                   | 17                                            | .04                                                                   |
| 43                        | 4600042                                            | Woodland Hills                           | 1945                 | 110                                   | 8                                             | .02                                                                   |
| 44                        | 4600043                                            | Black Hawk Water Company                 | 1982                 | 885                                   | 85                                            | .19                                                                   |
| 45                        | 4600040                                            | Valley View Mobile Home Park             | 1973                 | 291                                   | 26                                            | .06                                                                   |
| 46                        | 4600257                                            | Cimarron Park                            | 1972                 | 200                                   | 17                                            | .04                                                                   |
| 47                        | 4600514                                            | Northdale Sanitary District              | 1978                 | 489                                   | 49                                            | .11                                                                   |
| 48                        | 4600258                                            | Leos Trailer Court                       | 1990                 | 25                                    | 4                                             | .01                                                                   |
| 49                        | 4602122                                            | B & J Mobile Home Park                   | 1994                 | 156                                   | 5                                             | .01                                                                   |
| 50                        | 4600260                                            | Ponderosa Mobile Home Ranch              | 1963                 | 100                                   | 8                                             | .02                                                                   |
| 51                        | 4600269                                            | Hidden Valley Water Association Inc.     | 1954                 | 50                                    | 5                                             | .01                                                                   |
| 52                        | 4602039                                            | Buck N Gator Bar                         | 1960                 | 100                                   | 8                                             | .02                                                                   |
| 53                        | 4602070                                            | Dacotah Cement - North                   | 1941                 | 35                                    | 4                                             | .01                                                                   |
| 54                        | 4600643                                            | Dacotah Cement - East/west               | 1923                 | 75                                    | 8                                             | .02                                                                   |
| 55                        | 4600643a                                           | Dacotah Cement - East/west               | 1934                 | 75                                    | 8                                             | .02                                                                   |
| 56                        | 4600253a                                           | Westberry Trails Water Users Association | 1974                 | 20                                    | 4                                             | .01                                                                   |
| 57                        | 4602182                                            | Sioux San Hospital                       | 1960                 | 200                                   | 17                                            | .04                                                                   |
| 58                        | 4601062                                            | Cedar Canyon Weslyan Camp                | 1956                 | 93                                    | 8                                             | .02                                                                   |
| 59                        | 4600908                                            | Lake Park Motel                          | 1976                 | 80                                    | 8                                             | .02                                                                   |
| 60                        | 4602134                                            | Ponderosa Water Company                  | 1985                 | 38                                    | 4                                             | .01                                                                   |
| 61                        | 4602153                                            | Pineview Water Association               | 1984                 | 34                                    | 4                                             | .01                                                                   |
| 62                        | 4601115                                            | Memorial Christian School                | 1976                 | 177                                   | 17                                            | .04                                                                   |
| 63                        | 4600589                                            | Travelodge                               | 1992                 | 175                                   | 8                                             | .02                                                                   |

#### Table 22. Public water supply withdrawals from Minnelusa aquifer excluding Rapid City wells-Continued

[gal/min, gallons per minute; ft<sup>3</sup>/s, cubic feet per second; WY, water year. Well information (excluding withdrawals) is from South Dakota Department of Environment and Natural Resources, written commun., 1999]

| Site<br>number<br>(pl. 3) | Public<br>water-supply<br>identification<br>number | Name                        | Year of construction | Population<br>equivalent <sup>1</sup> | Average<br>WY88-97<br>withdrawal<br>(gal/min) | Average<br>WY88-97<br>withdrawal <sup>2</sup><br>(ft <sup>3</sup> /s) |
|---------------------------|----------------------------------------------------|-----------------------------|----------------------|---------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------|
| 64                        | 4601037                                            | Rushmore Waterslide         | 1984                 | 500                                   | 49                                            | 0.11                                                                  |
| 65                        | 4600890                                            | Reptile Gardens Inc.        | 1965                 | 900                                   | 89                                            | .20                                                                   |
| 66                        | 4601061                                            | Flying T Chuckwagon Suppers | 1993                 | 204                                   | 17                                            | .04                                                                   |
| 67                        | 4602118                                            | Dairy Barn - Hayloft B&b    | 1994                 | 42                                    | 5                                             | .01                                                                   |
| 68                        | 4600669                                            | Happy Holiday Inc.          | 1965                 | 67                                    | 5                                             | .01                                                                   |
| Total                     |                                                    |                             |                      | 7,792                                 | 719                                           | 1.65                                                                  |

<sup>1</sup>When the reported population for a public water supply included more than one well location, the population was prorated based on estimates from water managers or the well capacity.

 $^{2}$ Average withdrawals less than 0.01 ft<sup>3</sup>/s were rounded up to 0.01 ft<sup>3</sup>/s for several smaller public water supplies.

#### **Irrigation and Industrial Water Use**

Irrigation and industrial withdrawals from the Madison and Minnelusa aquifers were estimated from water-rights permit information (South Dakota Department of Environment and Natural Resources, written commun., 1999) including well capacity and acreage. Average withdrawal rates totaled about 0.95 ft<sup>3</sup>/s from the Madison aquifer (table 23) and ranged from 0.03 to 0.55 ft<sup>3</sup>/s for individual wells. Average withdrawal rates totaled 0.65 ft<sup>3</sup>/s for individual wells aquifer (table 24) and ranged from 0.04 to 0.2 ft<sup>3</sup>/s for individual wells.

#### 

[gal/min, gallons per minute; ft<sup>3</sup>/s, cubic feet per second; WY, water year]

| Site<br>number<br>(pl. 3) | Water-rights<br>permit<br>number <sup>1</sup> | Year of<br>construc-<br>tion | Average<br>WY88-97<br>with-<br>drawal <sup>1</sup><br>(gal/min) | Average<br>WY88-97<br>with-<br>drawal<br>(ft <sup>3</sup> /s) |
|---------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| 69                        | 2286-2                                        | 1993                         | 31                                                              | 0.07                                                          |
| 70                        | 2256-2                                        | 1992                         | 76                                                              | .17                                                           |
| 71                        | 2313-2                                        | 1994                         | 13                                                              | .03                                                           |
| 72                        | 454-2                                         | 1957                         | 246                                                             | .55                                                           |
| 73                        | 1911-2                                        | 1984                         | 58                                                              | .13                                                           |
| Total                     |                                               | -                            | 424                                                             | .95                                                           |

<sup>1</sup>Well information compiled from South Dakota Department of Environment and Natural Resources, written commun., 1999.

# **Table 24.**Industrial and irrigation withdrawals fromMinnelusa aquifer

[gal/min, gallons per minute; ft<sup>3</sup>/s, cubic feet per second; WY, water year]

| Site<br>number<br>(pl. 3) | Water-rights<br>permit<br>number <sup>1</sup> | Year of<br>construc-<br>tion | Average<br>WY88-97<br>with-<br>drawal <sup>1</sup><br>(gal/min) | Average<br>WY88-97<br>with-<br>drawal<br>(ft <sup>3</sup> /s) |
|---------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
| 74                        | 842-1                                         | 1968                         | 35                                                              | 0.08                                                          |
| 75                        | 1656-2                                        | 1954                         | 89                                                              | .20                                                           |
| 76                        | 1798-2                                        | 1956                         | 22                                                              | .05                                                           |
| 77                        | 815-2                                         | 1923                         | 89                                                              | .20                                                           |
| 78                        | 2137-2                                        | 1990                         | 35                                                              | .08                                                           |
| 79                        | 1901-2                                        | 1984                         | 17                                                              | .04                                                           |
| Total                     |                                               | -                            | 287                                                             | .65                                                           |

<sup>1</sup>Well information compiled from South Dakota Department of Environment and Natural Resources, written commun., 1999.

## Leakage to Overlying Aquifers

Water from the Minnelusa aquifer under artesian pressure probably moves into overlying units including the Minnekahta and Inyan Kara aquifers through fractures or breccia pipes. According to Davis and others (1961), the Inyan Kara aquifer probably receives some recharge from underlying aquifers because recharge on its outcrop is relatively small. Gott and others (1974) suggest that the upward leakage occurs through breccia pipes. Behal (1988) applied statistical analysis to water quality in the Inyan Kara aquifer, in which t-tests indicated water near lineaments was different from water away from lineaments for some constituents but not others. This statistical analysis also indicated that water near lineaments was geochemically similar to a mixture of Madison and Minnelusa aquifer water for some constituents but not others. Although these results were not conclusive, the analysis indicated a strong possibility that ground water leaks upward from the Madison and Minnelusa aquifers through fractures or breccia pipes.

Because very little data were available to estimate the upward leakage from the Minnelusa aquifer, the overall water-budget calculation was used to estimate this amount to be about 2  $\text{ft}^3$ /s or about 3 percent of the total budget (table 7).

aquifer analysis area and was calculated by Darcy's Law using the hydraulic gradient from plates 1 and 2 and estimated transmissivity (T). T along the eastern boundary was adjusted in balancing the water budgets. The eastern boundary was subdivided into 14 zones (pl. 3), and outflow from each zone was calculated separately (table 25). The values listed in table 25 are within the ranges of effective T shown in figures 9 and 10 and represent the T tensor perpendicular to the boundary. The northern and southern boundaries were assumed to be parallel to flow and, therefore, would have no flow across them. Outflow from the confining units was assumed to be negligible.

Hydraulic gradient along the eastern boundary was assumed to remain relatively constant; hence, estimated regional outflow also was constant throughout the 10-year period. Regional outflow was estimated to be about 11 ft<sup>3</sup>/s for both the Madison and Minnelusa hydrogeologic units (table 25).

## **Regional Outflow**

Regional outflow occurs from the Madison and Minnelusa aquifers across the eastern boundary of the

#### Table 25. Outflow from boundary zones

[Boundary zones shown on plate 3. ft, feet; ft<sup>2</sup>/d, square feet per day; ft<sup>3</sup>/s, cubic feet per second; T, transmissivity]

| Devenderer       | Boundary          | I                     | Madison aquife            | r                               | M                     | linnelusa aquif           | er                              |
|------------------|-------------------|-----------------------|---------------------------|---------------------------------|-----------------------|---------------------------|---------------------------------|
| zone             | width<br>(ft)     | Hydraulic<br>gradient | T<br>(ft <sup>2</sup> /d) | Outflow<br>(ft <sup>3</sup> /s) | Hydraulic<br>gradient | T<br>(ft <sup>2</sup> /d) | Outflow<br>(ft <sup>3</sup> /s) |
| 1                | 14,492            | 0.004                 | 664                       | 0.4                             | 0.006                 | 600                       | 0.6                             |
| 2                | 14,492            | .006                  | 664                       | .7                              | .007                  | 600                       | .7                              |
| 3                | 14,492            | .005                  | 664                       | .6                              | .009                  | 600                       | .9                              |
| 4                | 14,492            | .003                  | 664                       | .3                              | .012                  | 600                       | 1.2                             |
| 5                | 14,492            | .001                  | 1,005                     | .2                              | .010                  | 600                       | 1.0                             |
| 6                | 14,492            | .000                  | 3,096                     | .0                              | .012                  | 600                       | 1.2                             |
| 7                | 14,217            | .005                  | 3,310                     | 2.7                             | .008                  | 600                       | .8                              |
| 8                | 14,217            | .004                  | 1,009                     | .7                              | .009                  | 600                       | .9                              |
| 9                | 14,217            | .007                  | 664                       | .8                              | .008                  | 600                       | .8                              |
| 10               | 14,217            | .011                  | 664                       | 1.2                             | .007                  | 600                       | .7                              |
| 11               | 14,217            | .010                  | 664                       | 1.1                             | .007                  | 600                       | .7                              |
| 12               | 14,217            | .007                  | 664                       | .8                              | .007                  | 600                       | .7                              |
| 13               | 14,217            | .007                  | 664                       | .8                              | .007                  | 600                       | .7                              |
| 14               | 14,217            | .006                  | 664                       | .7                              | .003                  | 600                       | .3                              |
| Fotal outflow ac | ross eastern bour | ıdary                 |                           | 11.0                            |                       |                           | 11.2                            |

## SUMMARY

The Madison and Minnelusa aquifers are important sources of water for Rapid City and surrounding communities. To provide information for effective management of these important aquifers, a conceptual model of ground-water flow was developed. The western part of the study area includes drainage areas that contribute streamflow recharge to the Madison and Minnelusa aquifers. The eastern part of the study area is referred to as the aquifer analysis area and includes the part of the study area where the Madison and the Minnelusa aquifers exist.

In the study area, the Madison and Minnelusa hydrogeologic units outcrop on the eastern flank of the Black Hills and dip easterly. Recharge to the Madison and Minnelusa hydrogeologic units is from streamflow losses and areal recharge on outcrop areas. The Madison hydrogeologic unit includes the karstic Madison aquifer, which is the upper, more permeable 100 to 200 ft of the Madison Limestone, and the Madison confining unit, which consists of the lower, less permeable part of the Madison Limestone and the Englewood Formation. Reported well yields are as high as 2,500 gal/min. Overlying the Madison hydrogeologic unit is the Minnelusa hydrogeologic unit. This unit includes the Minnelusa aquifer, which is the upper, more permeable 200 to 300 ft of the Minnelusa Formation, and the Minnelusa confining unit, which consists of the lower, less permeable part. Reported well yields are as high as 700 gal/min.

Important concepts described in the conceptual model include streamflow recharge, areal recharge, ground-water flow, storage, unsaturated areas west of the unconfined areas, leakage between aquifers, springflow, and regional outflow.

Hydraulic properties described for the hydrogeologic units include transmissivity, vertical hydraulic conductivity, storage coefficient, and specific yield. Estimates of effective transmissivity for the Madison aquifer range from 500 to 20,000 ft<sup>2</sup>/d with the highest values in the Jackson-Cleghorn Springs area and the lowest values in the northeastern and southeastern parts of the aquifer analysis area. Generalized estimated transmissivity distributions for the Minnelusa aquifer ranged from 500 to 10,000 ft<sup>2</sup>/d with the highest values in the Jackson-Cleghorn Springs area and the lowest values in the eastern part of the aquifer analysis area. Anisotropic transmissivity in the Madison aquifer may be localized in orientation and has been documented to have tensor ratios as high as 45:1. Vertical hydraulic conductivities for the Minnelusa confining unit determined from aquifer tests in the Rapid City area range from  $1.3 \times 10^{-3}$  to  $3.0 \times 10^{-1}$  ft/d. Leakage between the Madison and Minnelusa aquifers is spatially variable, which is consistent with the large range of vertical hydraulic conductivity. The confined storage coefficient for the Madison and Minnelusa hydrogeologic units was estimated as  $3 \times 10^{-4}$ . Specific yield was estimated as 0.09 for the Madison and Minnelusa aquifers and 0.03 for the Madison and Minnelusa confining units.

Potentiometric surfaces for the Madison and Minnelusa aquifers interpreted from hydraulic head in wells show a general easterly gradient with many local variations and changes in slope. The hydraulic gradient was estimated to be about 70 ft/mi on average for both aquifers. Temporal hydraulic-head change during WY88-97 ranged from about 5 to 95 ft in continuousrecord observation wells. Temporal hydraulic-head change is small in the Jackson-Cleghorn Springs area and increases with distance from the springs. Confined and unconfined areas are identified based on the structural tops of formations and the potentiometric surface. The location where the average potentiometric surfaces contact the top and bottom of the aquifers and the confining units determine the boundaries of unconfined zones. The areas of Madison and Minnelusa hydrogeologic units unconfined zones are about 53 and 36 mi<sup>2</sup>, respectively. Although the unconfined area represents a small part of the entire aquifer analysis area (629 mi<sup>2</sup>), change in storage in the unconfined area is orders of magnitude larger than that of the confined area.

Dye-tracer tests, stable isotopes, and hydrogeologic features were analyzed conjunctively to estimate generalized ground-water flowpaths in the Madison aquifer and to analyze their influence on the Minnelusa aquifer. Streamflow losses to the Madison hydrogeologic unit from Boxelder Creek generally flow southward from the loss zone along structural features before flowing eastward. Rapid Creek streamflow loss generally flows north from its loss zone before moving towards Jackson-Cleghorn Springs or toward the east. Most of the streamflow loss from Spring Creek moves north towards Jackson-Cleghorn Springs. The western Rapid City area between Boxelder Creek and Spring Creek is described as a high-flow area and is characterized as having undergone extensive tectonic activity, greater brecciation in the Minnelusa Formation, high transmissivities, generally upward hydraulic gradients

from the Madison to Minnelusa aquifer, many karst springs, and converging flowpaths.

Water-budget analysis of the Madison and Minnelusa hydrogeologic units for WY88-97 was divided into 6-month stress periods representing winter and summer seasons. WY88-97 included periods of both low and high recharge rates and were representative of the range of hydrologic conditions during the last 30 years. Three budgets were developed for the water-budget analysis: (1) a dry-period budget for declining water levels, October 1987 through March 1993; (2) a wet-period budget for rising water levels, April 1993 through September 1997; and (3) a full 10-year period budget. By simultaneously balancing these three water budgets, initial estimates of recharge, discharge, change in storage, and related properties were refined. Compiled water-budget flow components include streamflow recharge, areal recharge, seepage from Deadwood aquifer, water use, outflow to overlying units, regional outflow, springflow, and change in ground-water storage.

Total streamflow recharge increased from about 27 ft<sup>3</sup>/s during the dry period to 68 ft<sup>3</sup>/s during the wet period and accounted for 45 ft<sup>3</sup>/s or 61 percent of the total budget for the10-year period. Streamflow recharge to the Minnelusa hydrogeologic unit was only 14 percent of the total streamflow recharge. Total areal recharge for the dry and wet periods was 11 and 36 ft<sup>3</sup>/s, respectively, and 22 ft<sup>3</sup>/s or 30 percent of the 10-year budget.

Average springflow for the dry and wet periods was 25 and 37 ft<sup>3</sup>/s, respectively, and accounted for 31 ft<sup>3</sup>/s or 42 percent of the 10-year budget. Water use increased from about 8 ft<sup>3</sup>/s during the dry period to 13 ft<sup>3</sup>/s during the wet period with a slight decrease in Minnelusa aquifer withdrawals and an increase in Madison aquifer withdrawals resulting from newly completed wells. Water use accounted for 10 ft<sup>3</sup>/s or 14 percent of the 10-year budget. Regional groundwater outflow was 22 ft<sup>3</sup>/s or 30 percent of the 10-year budget. Leakage to hydrogeologic units overlying the Minnelusa aquifer was about 2 ft<sup>3</sup>/s for the 10-year budget. Average net leakage from the Madison hydrogeologic unit to the Minnelusa hydrogeologic unit was 8 ft<sup>3</sup>/s.

Ground-water storage was initially estimated from changes in hydraulic head in confined and unconfined areas, specific yields, and storage coefficients. These properties were refined based on water-budget balances. Total storage decreased by about 8 ft<sup>3</sup>/s for the dry period and increased 21 ft<sup>3</sup>/s for the wet period with a net increase in storage for the 10-year period of  $5.0 \text{ ft}^3/\text{s}$ .

## REFERENCES

- Anderson, M.T., Driscoll, D.G., and Williamson, J.E., 1999, Ground-water and surface-water interaction along Rapid Creek near Rapid City, South Dakota: Water-Resources Investigation Report 98-4214, 99 p.
- Back, William, Hanshaw, B.B., Plummer, L.N., Rahn, P.H., Rightmire, C.T., and Rubin, Meyer, 1983, Process and rate of dedolomitization—Mass transfer and 14C dating in a regional carbonate aquifer: Geological Society of America Bulletin, v. 94, no. 12, p. 1415-1429.
- Bai, Mao, Elsworth, Derek, and Roegiers, Jean-Claude, 1993, Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs: Water Resources Research, v. 29, no. 6, p. 1621-1633.
- Barenblatt, G.I., Zheltov, Iu.P, and Kochia, I.N., 1960, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks: Journal of Applied Mathematics and Mechanics, v. 24, no. 5, p. 852-864.
- Behal, Rajesh, 1988, Occurrence of selenium in the Inyan Kara aquifer system in Meade, Pennington, and Custer Counties, South Dakota: Rapid City, South Dakota School of Mines and Technology, unpublished M.S. thesis, 77 p.
- Blankennagel, R.K., Howells, L.W., and Miller, W.R., 1981, Completion and testing of Madison Limestone test well
  3, NW 1/4 SE 1/4 Sec. 35, T. 2N., R. 27 E., Yellowstone County, Montana: U.S. Geological Survey Open-File Report 81-528, 91 p.
- Blankennagel, R.K., Miller, W.R., Brown, D.L., and Cushing, E.M., 1977, Report on preliminary data for Madison Limestone test well 1, NE 1/4 SE 1/4 Sec. 15, T. 57 N., R. 65 W. Crook County, Wyoming: U.S. Geological Survey Open-File Report 77-164, 97 p., 3 pl.
- Bowles, C.G., and Braddock, W.A., 1963, Solution breccias of the Minnelusa Formation in the Black Hills, South Dakota and Wyoming, *in* Geological Survey Research 1963—Short papers in geology and hydrology, Articles 60-121: U.S. Geological Survey Professional Paper 475-C, art. 83, p. C91-C95.
- Brobst, D.A., and Epstein, J.B., 1963, Geology of the Fanny Peak quadrangle, Wyoming-South Dakota: U.S. Geological Survey Bulletin 1063-1, 377 p., 2 pl.
- Busby, J.F., Kimball, B.A., Downey, J.S., and Peter, K.D., 1995, Geochemistry of water in aquifers and confining units of the northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming: U.S. Geological Survey Professional Paper 1402-F, 146 p., 2 pl.

Busby, J.F., Plummer, L.N., Lee, R.W., and Hanshaw, B.B., 1991, Geochemical evolution of water in the Madison aquifer in parts of Montana, South Dakota, and Wyoming: U.S. Geological Survey Professional Paper 1273-F, 89 p.

Carter, J.M., Driscoll, D.G., and Hamade, G.R., 2001, Estimated recharge to the Madison and Minnelusa aquifers in the Black Hills area, South Dakota and Wyoming, water years 1931-98: U.S. Geological Survey Water-Resources Investigations Report 00-4278, 66 p.

Carter, J.M., Driscoll, D.G., Hamade, G.R., and Jarrell, G.J., 2001, Hydrologic budgets for the Madison and Minnelusa aquifers, Black Hills of South Dakota and Wyoming, water years 1987-96: U.S. Geological Survey Water-Resources Investigations Report 01-4119, 53 p.

Carter, J.M., and Redden, J.A., 1999a, Altitude of the top of the Minnelusa Formation in the Black Hills area, South Dakota: U.S. Geological Survey Hydrologic Investigations Atlas HA-744-C, 2 sheets, scale 1:100,000.

——1999b, Altitude of the top of the Madison Limestone in the Black Hills area, South Dakota: U.S. Geological Survey Hydrologic Investigations Atlas HA-744-D, 2 sheets, scale 1:100,000.

——1999c, Altitude of the top of the Deadwood Formation in the Black Hills area, South Dakota: U.S. Geological Survey Hydrologic Investigations Atlas HA-744-E, 2 sheets, scale 1:100,000.

Cattermole, J.M., 1969, Geologic map of the Rapid City west quadrangle, Pennington County, South Dakota: U.S. Geological Survey Geologic Quadrangle Map GQ-828, scale 1:24,000.

Clemens, Torsten, Hueckinghaus, Dirk, Sauter, Martin, Liedl, Rudolf, and Teutsch, George, 1997, Modelling the genesis of karst aquifer systems using a coupled reactive network model, *in* Pointet, Thierry, ed., Hard rock hydrosystems: IAHS-AISH (International Association of Hydrological Sciences Association - Association Internationale des Sciences Hydrologiques), Fifth Scientific Assembly of the International Association of Hydrological Sciences, Symposium 2, Rabat, Morocco, Apr. 23-May 3, 1997, Publication 241, p. 3-10.

Cooley, R.L., Konikow, L.F., and Naff, R.L., 1986, Nonlinear-regression groundwater flow modeling of a deep regional aquifer system: Water Resources Research, v. 22, no. 13, p. 1759-1778.

Davis, R.W., Dyer C.F., and Powell, J.E., 1961, Progress report on wells penetrating artesian aquifers in South Dakota: U.S. Geological Survey Water-Supply Paper 1534, 100 p.

Domenico, P.A., and Schwartz, F.W., 1990, Physical and chemical hydrogeology: New York, John Wiley and Sons, Inc., 824 p. Downey, J.S., 1984, Geohydrology of the Madison and associated aquifers in parts of Montana, North Dakota, and Wyoming: U.S. Geological Survey Professional Paper 1273-G, 47 p.

Downey, J.S., and Dinwiddie, G.A., 1988, The regional aquifer system underlying the northern Great Plains in parts of Montana, North Dakota, South Dakota, and Wyoming—Summary: U.S. Geological Survey Professional Paper 1402-A, 63 p.

Driscoll, D.G., Bradford, W.L., and Moran, M.J., 2000, Selected hydrologic data, through water year 1998, Black Hills Hydrology Study, South Dakota: U.S. Geological Survey Open-File Report 00-70, 284 p.

Driscoll, D.G., and Carter, J.M., 2001, Hydrologic conditions and budgets in the Black Hills area of South Dakota, through water year 1998: U.S. Geological Survey Water-Resources Investigations Report 01-4226, 143 p.

Driscoll, D.G., Hamade, G.R., and Kenner, S.J., 2000, Summary of precipitation data for the Black Hills area of South Dakota, water years 1931-98: U.S. Geological Survey Open File Report 00-329, 151 p.

Driscoll, F.G., 1986, Groundwater and wells (2d ed.): St. Paul, Minn., Johnson Filtration Systems Inc., 1,089 p.

Ferris, J.G., Knowles, D.B., Brown, R.H., and Stallman, R.W., 1962, Theory of aquifer tests, U.S. Geological Survey Water-Supply Paper 1536-E, 174 p.

Ford, D.C., 1989, Features of the genesis of Jewel Cave and Wind Cave, Black Hills, South Dakota: National Speleological Society Bulletin, no. 51, p. 100-110.

Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, N.J., Prentice-Hall, Inc., 604 p.

Gabrovsek, Franci, and Dreybrodt, Wolfgang, 2000, Role of mixing corrosion in calcite-aggressive H<sub>2</sub>O-CO<sub>2</sub>-CaCO<sub>3</sub> solutions in the early evolution of karst aquifers in limestone: Water Resources Research, v. 36, no. 5, p. 1179-1188.

Gott, G.B., Wolcott D.E., and Bowles, C.G., 1974, Stratigraphy of the Inyan Kara Group and localization of uranium deposits, southern Black Hills, South Dakota and Wyoming: U.S. Geological Survey Professional Paper 763, 57 p., 4 pl.

Greene, E.A., 1993, Hydraulic properties of the Madison aquifer system in the western Rapid City area, South Dakota: U.S. Geological Survey Water-Resources Investigations Report 93-4008, 56 p.

——1999, Characterizing recharge to wells in carbonate aquifers using environmental and artificially recharged tracers, *in* Morganwalp, D.W., and Buxton, H.T., eds., Proceedings of the Technical Meeting, Charleston, S.C., March 8-12, 1999, Toxic Substances Hydrology Program: U.S. Geological Survey Water-Resources Investigations Report 99-4018-C, p. 803-808.

Greene, E.A., and Rahn, P.H., 1995, Localized anisotropic transmissivity in a karst aquifer: Ground Water, v. 33, no. 5, p. 806-816.

Greene, E.A., Shapiro, A.M., and Carter, J.M., 1998, Hydrologic characterization of the Minnelusa and Madison aquifers near Spearfish, South Dakota: U.S. Geological Survey Water-Resources Investigation Report 98-4156, 64 p.

Gries, J.P., 1996, Roadside geology of South Dakota: Missoula, Mont., Mountain Press Publishing Co., 358 p.

Gries, J.P., and Martin, J.E., 1985, Composite outcrop section of the Paleozoic and Mesozoic strata in the Black Hills and surrounding areas, *in* Rich, F.J., ed., Geology of the Black Hills, South Dakota and Wyoming (2d ed.): Field Trip Guidebook for the annual meeting of the Rocky Mountain Section of the Geological Society of America, Rapid City, S. Dak., April 1981, p. 261-292.

Hantush, M.S., 1960, Modification of the theory of leaky aquifers: Journal of Geophysical Research, v. 65, no. 11, p. 3713-3725.

——1966a, Analysis of data from pumping tests in anisotropic aquifers: Journal of Geophysical Research, v. 71, no. 2, p. 421-426.

Hantush, M.S., and Jacob, C.E., 1955, Non-steady radial flow in an infinite leaky aquifer: American Geophysical Union Transactions, v. 36, no. 1, p. 95-100.

Hayes, T.S., 1999, Episodic sediment-discharge events in Cascade Springs, southern Black Hills, South Dakota: U.S. Geological Survey Water-Resources Investigations Report 99-4168, 34 p.

Hines, G.K., 1991, Ground-water and surface-water interaction in a reach of Rapid Creek near Rapid City, South Dakota: Rapid City, South Dakota School of Mines and Technology, unpublished M.S. thesis, 175 p.

Hortness, J.E., and Driscoll, D.G., 1998, Streamflow losses in the Black Hills of western South Dakota: U.S. Geological Survey Water-Resources Investigations Report 98-4116, 99 p.

Howard, A.D., 1964, A model for cavern development under artesian ground-water flow, with special reference to the Black Hills: National Speleological Society Bulletin, no. 26, p. 7-16.

Howard, A.D., and Groves, C.G., 1995, Early development of karst systems— 2. Turbulent flow: Water Resources Research, v. 31, no. 1, p. 19-26. Kaufman, G., and Braun, J., 1999, Karst aquifer evolution in fractured rocks: Water Resources Research, v. 35, no. 11, p. 3223-3238.

——2000, Karst aquifer evolution in fractured, porous rocks: Water-Resources Research, v. 36, no. 6, p. 1381-1391.

Klemp, J.A., 1995, Source aquifers for large springs in northwestern Lawrence County, South Dakota: Rapid City, South Dakota School of Mines and Technology, unpublished M.S. thesis, 175 p.

Konikow, L.F., 1976, Preliminary digital model of groundwater flow in the Madison Group, Powder River Basin and adjacent areas, Wyoming, Montana, South Dakota, North Dakota, and Nebraska: U.S. Geological Survey Water-Resources Investigations 63-75, 44 p., 6 pl.

Kruseman, G.P., and de Ridder, N.A., 1991, Analysis and evaluation of pumping test data (2d ed.): International Institute for Land Reclamation and Improvement, Publication 47, 377 p.

Kyllonen, D.P., and Peter, K.D., 1987, Geohydrology and water quality of the Inyan Kara, Minnelusa, and Madison aquifers of the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming: U.S. Geological Survey Water-Resources Investigations Report 86-4158, 61 p.

Lohman, S.W., and others, 1972, Definitions of selected ground-water terms—Revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.

Long, A.J., 2000, Modeling techniques for karst aquifers—Anisotropy, dual porosity, and linear systems analysis: Rapid City, South Dakota School of Mines and Technology, unpublished Ph.D. dissertation, 59 p.

Long, A.J., and Derickson, R.G., 1999, Linear systems analysis in a karst aquifer: Journal of Hydrology (Elsevier), v. 219, p. 206-217.

McQuillan, H., 1973, Small-scale fracture density in Asmari Formation of southwest Iran and its relation to bed thickness and structural setting: Association of Petroleum Geologists Bulletin, v. 57, p. 2367-2385.

Miller, W.R., 1976, Water in carbonate rocks of the Madison Group in southeastern Montana—A preliminary evaluation: U.S. Geological Survey Water-Supply Paper 2043, 51 p.

National Oceanic and Atmospheric Administration, 1996, Climatological data annual summary, South Dakota: National Oceanic and Atmospheric Administration, v. 101, no. 13, ISSN 0364-5045, 31 p.

Naus, C.A., Driscoll, D.G., and Carter, J.M., 2001, Geochemistry of the Madison and Minnelusa aquifers in the Black Hills area, South Dakota: U.S. Geological Survey Water-Resources Investigations Report 01-4129, 118 p. Neuman, S.P., and Witherspoon, P.A., 1969a, Theory of flow in confined two-aquifer system: Water Resources Research, v. 5, no. 4, p. 803-816.

Pakkong, Mongkol, 1979, Ground water of the Boulder Park area, Lawrence County, South Dakota: Rapid City, South Dakota School of Mines and Technology, unpublished M.S. thesis, 91 p., 4 pl.

Peter, K.D., Kyllonen, D.P., and Mills, K.R., 1988, Geologic structure and altitude of the top of the Minnelusa Formation, northeastern Black Hills, South Dakota: U.S. Geological Survey Water-Resources Investigations Report 85-4233, 1 sheet, scale 1:100,000.

Plummer, L.N., Busby, J.F., Lee, R.W., and Hanshaw, B.B., 1990, Geochemical modeling of the Madison aquifer in parts of Montana, Wyoming, and South Dakota: Water Resources Research, v. 26, no. 9, p. 1981-2014.

Price, N.J., 1959, Mechanics of jointing in rocks: Geological Magazine, v. 96, no. 2, p. 149-167.

Rahn, P.H., 1971, The hydrologic significance of the November, 1986 dye test on Boxelder Creek, Black Hills, South Dakota: Proceedings, South Dakota Academy of Science, v. 50, p. 52-56.

——1985, Ground water stored in the rocks of western South Dakota, *in* Rich, F.J., ed., Geology of the Black Hills, South Dakota and Wyoming (2d ed.): Geological Society of America, Field trip guidebook, American Geological Institute, p. 154-174.

Rahn P.H., and Gries, J.P., 1973, Large springs in the Black Hills, South Dakota and Wyoming: South Dakota Geological Survey Report of Investigations 107, 46 p.

Reilly, T.E., Franke, O.L., and Bennett, G.D., 1987, The principle of superposition and its application in groundwater hydraulics: U.S. Geological Survey Techniques of Water-Resources Investigations, book 3, chap. B6, 27 p.

Sloto, R.A., and Crouse, M.Y., 1996, HYSEP—A computer program for streamflow hydrograph separation and analysis: U.S. Geological Survey Water-Resources Investigations Report 96-4040, 46 p. Stearns, D.W., and Friedman, M., 1972, Reservoirs in fractured rock, *in* King, R.E., ed., Stratigraphic oil and gas fields—Classification, exploration methods, and case histories: American Association of Petroleum Geologists Memoir 16 and Soc. Exploration Geophysicists Spec., Pub. 10, p. 82-106.

Streltsova, T.D., 1988, Well testing in heterogeneous formations: New York, John Wiley and Sons, 413 p.

Strobel M.L., Jarrell, G.J., Sawyer, J.F., Schleicher, J.R., and Fahrenbach, M.D., 1999, Distribution of hydrogeologic units in the Black Hills area, South Dakota: U.S. Geological Survey Hydrologic Investigations Atlas HA-743, 3 sheets, scale 1:100,000.

Theis, C.V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Transactions of the American Geophysical Union, v. 16, p. 519-529.

Todd, D.K., 1980, Groundwater hydrology (2d ed.): New York, John Wiley and Sons, 535 p.

U.S. Census Bureau, 2000, United States census 2000: accessed January 2001, at URL http://www.census.gov

U.S. Geological Survey, 1967-75, Water resources data for South Dakota, 1966-74— part 1. Surface-water records (published annually).

Warren, J.E., and Root, P.J., 1963, The behavior of naturally fractured reservoirs: Society of Petroleum Engineers Journal, Trans., AIME, v. 228, p. 245-255.

Wenker, A.W., 1997, Geological setting and water quality of headwater springs in the Black Hills of South Dakota: Rapid City, South Dakota School of Mines and Technology, unpublished M.S. thesis, 101 p.

Woodward-Clyde Consultants, 1980, Well field hydrology technical report for the Energy Transportation Systems Incorporated coal slurry pipeline project: Woodward-Clyde Consultants, prepared for the U.S. Bureau of Land Management [variously paged].

# APPENDICES

## **APPENDIX A: AQUIFER TEST AT RC-9**

An aquifer test of the Madison aquifer was conducted in October 1995 by pumping well RC-9 and measuring drawdown in wells CHLN-2, RC-11, CL-2, and SP-2 (fig. 9). Industrial and municipal withdrawals from the Madison aquifer were discontinued in the area 9 days before the aquifer test began, during the pumping period, and for 6 days after pumping. The pumping rate from RC-9 was about 2,550 gal/min. A schematic diagram of RC-9 is shown in figure 32, and conceptual illustration of the aquifer test is shown in figure 33. Hydraulic-head trends were measured for 5 days prior to the test. Based on this trend and the level of recovery after a period equivalent to that of pumping (6 days), a hydraulic-head trend was estimated for the pumping and recovery period (fig. 34). The estimated trend line reflects the fact that full recovery does not take place after a period equivalent to that of pumping



**Figure 32**. Schematic showing construction details of Rapid City well no. 9 (RC-9, site 49, table 28, plate 1) completed in the Madison aquifer.

(Driscoll, 1986, p. 252-253). Drawdown was calculated as the difference between this trend line and the measured hydraulic head (fig. 35). The trend line was checked by extrapolating the drawdown curve that would occur if pumping had continued through the recovery period. The extrapolated drawdown curve was calculated by requiring that  $L_1 = L_2$  for every  $\Delta t$  value (fig. 35) (Ferris and others, 1962, p. 100-102). If the extrapolated drawdown curve appeared reasonable, the trend line was assumed to be a good estimate.

Before any analysis of data, all measurements were corrected for fluctuations induced by changes in barometric pressure (Ferris and others, 1962; Kruseman and de Ridder, 1991). Prior to the aquifer test, the relationship between barometric pressure and hydraulic head in each observation well was established. This relationship was used to correct the data so that it represents drawdown under conditions of constant barometric pressure. Measured drawdown corrected for trend and barometric effects is listed in table 27 at the end of this section.

The drawdown portion of the curves was analyzed using the method of Hantush (1960) for estimating aquifer properties in a leaky confined aquifer. The method assumes there is storage in the intervening confining unit(s). The analysis computes *T*, *S*, and  $\beta$ , which is given by the following equation:

$$\beta = \frac{r}{4} \left[ \sqrt{\frac{K_{v}'S'}{b'TS}} + \sqrt{\frac{K_{v}'S''}{b''TS}} \right]$$
(9)

where

- $\beta$  = a dimensionless "lumped" parameter;
- r = distance from the pumped well to the observation well [L];
- T = transmissivity of the pumped aquifer [L<sup>2</sup>/T];
- $K_{\nu}'$  = vertical hydraulic conductivity of the overlying confining unit [L/T];
- $K_{v}''$  = vertical hydraulic conductivity of the underlying confining unit [L/T];
  - *S* = storage coefficient of the pumped aquifer [dimensionless];
- S'' = storage coefficient of the underlying confining unit [dimensionless];
- b'' = thickness of the underlying confining unit [L].



Figure 33. Diagram showing aquifer test conceptual model for multiple aquifer system.



**Figure 34**. Aquifer test well hydrograph for CL-2 (site 50, table 28, plate 1). The trend line is the estimated water level that would have occurred without pumping.



**Figure 35**. Drawdown and recovery curves for CL-2 (site 50, table 28 and plate 1). Curve shows drawdown if pumping had continued. For the extrapolated drawdown,  $L_2 = L_1$  for every  $\Delta t$ .

Aquifer properties were estimated using a nonlinear least squares parameter estimation technique to achieve a best fit of the drawdown data (fig. 36). Although this curve fitting method allows upper and lower limits to be placed on parameter values to be estimated, estimates were all within reasonable ranges without any constraints imposed. Table 26 shows the properties estimated by the Hantush (1960) method.  $K_{y}$ for the Minnelusa confining unit was computed using equation 9 by assuming that S' for the Minnelusa confining unit is  $10^{-4}$  and b' is 300 ft. It was also assumed that  $K_{v}$  for the Minnelusa confining unit was at least one order of magnitude greater than that of the Madison confining unit, which makes the second term in equation 9 negligible. Because of this, no values of  $K_{y}$ or S for the Madison confining unit are reported.

Except for RC-11, the pumped well and observation wells do not fully penetrate the aquifer. The flow pattern to partially penetrating wells is different from fully penetrating wells. However, these effects are negligible when the distance from pumped well to observation well is larger than twice the saturated aquifer thickness (Todd, 1980, p. 149-150). This was confirmed because the aquifer test analysis produced the same results with and without applying corrections for partial penetration.

Interference in the aquifer test occurred in well SP-2 when well BHPL (fig. 9) began pumping about 2 days into the test. The increased drawdown in SP-2 was estimated and corrected for by applying the method of Hantush and Jacob (1955) to the variable pumping rate of BHPL. This method was used because it was applied in a previous investigation whereby well RC-5 was pumped and drawdown measured in SP-2 (Greene, 1993). That aquifer test was interpreted as indicating the presence of anisotropic transmissivity. Because these three wells are nearly in a line, it was assumed that the directional T and other aquifer properties between RC-5 and SP-2 were similar to that between BHPL and SP-2. Therefore, by applying the same analytical model as in Greene (1993) and using the same properties, the drawdown at SP-2 resulting only from pumping at BHPL could be estimated because of the principle of superposition (Reilly and others, 1987). This drawdown was then subtracted from the total drawdown to obtain the drawdown resulting from withdrawal at RC-9.



**Figure 36**. Drawdown curves and curve fit for the Hantush (1960) method for RC-9 aquifer test, October 1995.

**Table 26.** Aquifer properties for the Madison aquifer estimated by the Hantush (1960) method [ft, feet; ft<sup>2</sup>/d, feet squared per day; ft/d, feet per day; *r*, distance from pumped well; *T*, transmissivity; *S*, storage coefficient;  $\beta$ , lumped parameter;  $K_{\nu}$  vertical hydraulic conductivity]

| Observation well<br>and site number<br>(pl. 1) | r<br>(ft) | <i>T</i><br>(ft <sup>2</sup> /d) | <i>S</i><br>(dimensionless) | β<br>(dimensionless) | <i>K<sub>ν</sub></i> of Minnelusa<br>confining unit<br>(ft/d) |
|------------------------------------------------|-----------|----------------------------------|-----------------------------|----------------------|---------------------------------------------------------------|
| CL-2 (50)                                      | 6,290     | 14,700                           | 2.1x10 <sup>-5</sup>        | 2.1                  | 1.7                                                           |
| RC-11 (62)                                     | 8,603     | 11,500                           | 2.7x10 <sup>-4</sup>        | 1.2                  | 2.7                                                           |
| CHLN-2 (56)                                    | 7,562     | 14,100                           | 1.4x10 <sup>-5</sup>        | 2.3                  | .9                                                            |
| SP-2 (46)                                      | 4,564     | 13,900                           | 6.8x10 <sup>-5</sup>        | .36                  | .3                                                            |

| Observation<br>(site                                   | well CHLN-2<br>56) | Observation<br>(site                                   | ion well CL-2 Observation well RC-11 Observation<br>ite 50) (site 62) (site |                                                        | Observation<br>(site | ion well SP-2<br>ite 46)                               |                    |
|--------------------------------------------------------|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|----------------------|--------------------------------------------------------|--------------------|
| Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet) | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)                                                          | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)   | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet) |
| 5                                                      | 0.01               | 5                                                      | 0.02                                                                        | 375                                                    | 0.01                 | 15                                                     | 0.04               |
| 15                                                     | .03                | 15                                                     | .04                                                                         | 385                                                    | .03                  | 25                                                     | .16                |
| 25                                                     | .05                | 25                                                     | .07                                                                         | 395                                                    | .04                  | 35                                                     | .28                |
| 35                                                     | .08                | 35                                                     | .11                                                                         | 405                                                    | .05                  | 45                                                     | .36                |
| 45                                                     | .11                | 45                                                     | .11                                                                         | 415                                                    | .07                  | 55                                                     | .45                |
| 55                                                     | .12                | 55                                                     | .14                                                                         | 445                                                    | .07                  | 65                                                     | .62                |
| 65                                                     | .14                | 65                                                     | .18                                                                         | 485                                                    | .08                  | 75                                                     | .74                |
| 75                                                     | .17                | 75                                                     | .21                                                                         | 535                                                    | .08                  | 85                                                     | .79                |
| 85                                                     | .19                | 85                                                     | .21                                                                         | 595                                                    | .10                  | 95                                                     | .89                |
| 95                                                     | .22                | 95                                                     | .21                                                                         | 665                                                    | .12                  | 105                                                    | .99                |
| 105                                                    | .24                | 105                                                    | .23                                                                         | 745                                                    | .14                  | 115                                                    | 1.04               |
| 115                                                    | .26                | 115                                                    | .25                                                                         | 835                                                    | .15                  | 125                                                    | 1.14               |
| 125                                                    | .27                | 125                                                    | .27                                                                         | 935                                                    | .15                  | 135                                                    | 1.21               |
| 135                                                    | .27                | 135                                                    | .30                                                                         | 1,045                                                  | .19                  | 145                                                    | 1.30               |
| 145                                                    | .29                | 145                                                    | .30                                                                         | 1,165                                                  | .22                  | 175                                                    | 1.48               |
| 155                                                    | .31                | 155                                                    | .35                                                                         | 1,295                                                  | .28                  | 215                                                    | 1.71               |
| 165                                                    | .33                | 165                                                    | .35                                                                         | 1,435                                                  | .29                  | 265                                                    | 1.92               |
| 175                                                    | .34                | 175                                                    | .37                                                                         | 1,575                                                  | .31                  | 325                                                    | 2.16               |
| 185                                                    | .36                | 205                                                    | .42                                                                         | 1,725                                                  | .33                  | 395                                                    | 2.48               |
| 195                                                    | .38                | 245                                                    | .46                                                                         | 1,895                                                  | .37                  | 475                                                    | 2.77               |
| 225                                                    | .43                | 295                                                    | .53                                                                         | 2,065                                                  | .42                  | 565                                                    | 3.01               |
| 255                                                    | .46                | 355                                                    | .59                                                                         | 2,245                                                  | .45                  | 665                                                    | 3.26               |
| 295                                                    | .51                | 425                                                    | .69                                                                         | 2,425                                                  | .48                  | 775                                                    | 3.44               |
| 345                                                    | .56                | 505                                                    | .81                                                                         | 2,625                                                  | .53                  | 895                                                    | 3.55               |
| 405                                                    | .65                | 595                                                    | .90                                                                         | 2,825                                                  | .59                  | 1,025                                                  | 3.71               |
| 465                                                    | .72                | 695                                                    | .97                                                                         | 3,035                                                  | .61                  | 1,165                                                  | 3.99               |
| 535                                                    | .79                | 805                                                    | 1.07                                                                        | 3,255                                                  | .67                  | 1,305                                                  | 4.17               |
| 615                                                    | .87                | 925                                                    | 1.16                                                                        | 3,475                                                  | .72                  | 1,455                                                  | 4.31               |
| 695                                                    | .94                | 1,055                                                  | 1.24                                                                        | 3,715                                                  | .76                  | 1,625                                                  | 4.33               |
| 785                                                    | 1.02               | 1,195                                                  | 1.32                                                                        | 3,955                                                  | .79                  | 1,795                                                  | 4.37               |
| 875                                                    | 1.07               | 1,335                                                  | 1.40                                                                        | 4,215                                                  | .85                  | 1,085                                                  | 3.85               |
| 975                                                    | 1.14               | 1,485                                                  | 1.49                                                                        | 4,465                                                  | .89                  | 1,225                                                  | 4.08               |
| 1,085                                                  | 1.21               | 1,655                                                  | 1.55                                                                        | 4,735                                                  | .92                  | 1,365                                                  | 4.28               |

 Table 27.
 Drawdown data for the RC-9 aquifer test

| Observation<br>(site                                   | Observation well CHLN-2<br>(site 56) |                                                        | Observation well CL-2<br>(site 50) |                                                        | Observation well RC-11<br>(site 62) |                                                        | ו well SP-2<br>46) |
|--------------------------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------------------------------------------|--------------------|
| Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)                   | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)                 | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)                  | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet) |
| 1,195                                                  | 1.27                                 | 1,825                                                  | 1.61                               | 5,005                                                  | 0.97                                | 1,515                                                  | 4.31               |
| 1,315                                                  | 1.36                                 | 2,005                                                  | 1.70                               | 5,275                                                  | .98                                 | 1,685                                                  | 4.37               |
| 1,435                                                  | 1.43                                 | 2,185                                                  | 1.80                               | 5,565                                                  | 1.01                                | 1,855                                                  | 4.43               |
| 1,555                                                  | 1.49                                 | 2,385                                                  | 1.82                               | 5,855                                                  | 1.07                                | 1,165                                                  | 3.99               |
| 1,695                                                  | 1.54                                 | 2,585                                                  | 1.85                               | 6,155                                                  | 1.06                                | 1,215                                                  | 4.07               |
| 1,825                                                  | 1.59                                 | 2,795                                                  | 1.97                               | 6,475                                                  | 1.13                                | 1,265                                                  | 4.13               |
| 1,965                                                  | 1.65                                 | 3,015                                                  | 2.01                               | 6,785                                                  | 1.13                                | 1,325                                                  | 4.22               |
| 2,115                                                  | 1.71                                 | 3,235                                                  | 2.08                               | 7,105                                                  | 1.17                                | 1,385                                                  | 4.28               |
| 2,265                                                  | 1.75                                 | 3,475                                                  | 2.16                               | 7,445                                                  | 1.20                                | 1,435                                                  | 4.28               |
| 2,425                                                  | 1.78                                 | 3,715                                                  | 2.22                               | 7,775                                                  | 1.22                                | 1,495                                                  | 4.30               |
| 2,585                                                  | 1.84                                 | 3,965                                                  | 2.27                               | 8,125                                                  | 1.26                                | 1,555                                                  | 4.30               |
| 2,745                                                  | 1.90                                 | 4,215                                                  | 2.34                               | 8,465                                                  | 1.30                                | 1,615                                                  | 4.33               |
| 2,915                                                  | 1.97                                 | 4,485                                                  | 2.34                               | 8,825                                                  | 1.30                                | 1,665                                                  | 4.34               |
| 3,085                                                  | 2.01                                 | 4,755                                                  | 2.43                               |                                                        |                                     | 1,725                                                  | 4.37               |
| 3,265                                                  | 2.06                                 | 5,025                                                  | 2.49                               |                                                        |                                     | 1,785                                                  | 4.21               |
| 3,445                                                  | 2.10                                 | 5,315                                                  | 2.52                               |                                                        |                                     | 1,855                                                  | 4.26               |
| 3,635                                                  | 2.15                                 | 5,605                                                  | 2.57                               |                                                        |                                     | 1,915                                                  | 4.34               |
| 3,825                                                  | 2.19                                 | 5,905                                                  | 2.58                               |                                                        |                                     | 1,975                                                  | 4.39               |
| 4,015                                                  | 2.21                                 | 6,215                                                  | 2.64                               |                                                        |                                     | 2,035                                                  | 4.45               |
| 4,215                                                  | 2.25                                 | 6,525                                                  | 2.65                               |                                                        |                                     | 2,105                                                  | 4.49               |
| 4,425                                                  | 2.32                                 | 6,845                                                  | 2.73                               |                                                        |                                     | 2,165                                                  | 4.54               |
| 4,625                                                  | 2.35                                 | 7,175                                                  | 2.77                               |                                                        |                                     | 2,225                                                  | 4.50               |
| 4,845                                                  | 2.39                                 | 7,505                                                  | 2.78                               |                                                        |                                     | 2,295                                                  | 4.48               |
| 5,055                                                  | 2.46                                 | 7,855                                                  | 2.79                               |                                                        |                                     | 2,355                                                  | 4.45               |
| 5,275                                                  | 2.46                                 | 8,195                                                  | 2.81                               |                                                        |                                     | 2,425                                                  | 4.46               |
| 5,495                                                  | 2.50                                 | 8,555                                                  | 2.86                               |                                                        |                                     | 2,495                                                  | 4.48               |
| 5,725                                                  | 2.55                                 | 8,765                                                  | 2.87                               |                                                        |                                     | 2,555                                                  | 4.56               |
| 5,955                                                  | 2.58                                 |                                                        |                                    |                                                        |                                     | 2,625                                                  | 4.63               |
| 6,195                                                  | 2.61                                 |                                                        |                                    |                                                        |                                     | 2,695                                                  | 4.69               |
| 6,435                                                  | 2.63                                 |                                                        |                                    |                                                        |                                     | 2,765                                                  | 4.74               |
| 6,675                                                  | 2.68                                 |                                                        |                                    |                                                        |                                     | 2,835                                                  | 4.70               |
| 6,915                                                  | 2.69                                 |                                                        |                                    |                                                        |                                     | 2,905                                                  | 4.76               |
| 7,175                                                  | 2.72                                 |                                                        |                                    |                                                        |                                     | 2,975                                                  | 4.75               |

| Observation (<br>site)                                 | well CHLN-2<br>56) | Observation<br>(site                                   | n well CL-2<br>50) | Observation well RC-11<br>(site 62)                    |                    | Observation well SP-2<br>(site 46)                     |                    |
|--------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------|
| Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet) |
| 7,435                                                  | 2.73               |                                                        |                    |                                                        |                    | 3,045                                                  | 4.77               |
| 7,695                                                  | 2.75               |                                                        |                    |                                                        |                    | 3,115                                                  | 4.81               |
| 7,955                                                  | 2.77               |                                                        |                    |                                                        |                    | 3,185                                                  | 4.82               |
| 8,215                                                  | 2.80               |                                                        |                    |                                                        |                    | 3,265                                                  | 4.87               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,335                                                  | 4.93               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,405                                                  | 4.99               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,485                                                  | 5.08               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,555                                                  | 5.12               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,625                                                  | 5.20               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,705                                                  | 5.21               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,775                                                  | 5.15               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,855                                                  | 5.13               |
|                                                        |                    |                                                        |                    |                                                        |                    | 3,935                                                  | 5.11               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,005                                                  | 5.14               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,095                                                  | 5.19               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,175                                                  | 5.29               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,255                                                  | 5.30               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,335                                                  | 5.23               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,405                                                  | 5.25               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,485                                                  | 5.24               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,565                                                  | 5.31               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,645                                                  | 5.34               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,725                                                  | 5.43               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,815                                                  | 5.52               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,895                                                  | 5.61               |
|                                                        |                    |                                                        |                    |                                                        |                    | 4,975                                                  | 5.69               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,055                                                  | 5.65               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,135                                                  | 5.64               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,225                                                  | 5.63               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,305                                                  | 5.58               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,385                                                  | 5.51               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,475                                                  | 5.52               |
|                                                        |                    |                                                        |                    |                                                        |                    | 5,555                                                  | 5.56               |

 Table 27.
 Drawdown data for the RC-9 aquifer test–Continued

| Observation<br>(site                                   | Observation well CHLN-2<br>(site 56) |                                                        | Observation well CL-2<br>(site 50) |                                                        | well RC-11<br>62)  | Observatior<br>(site                                   | n well SP-2<br>46) |
|--------------------------------------------------------|--------------------------------------|--------------------------------------------------------|------------------------------------|--------------------------------------------------------|--------------------|--------------------------------------------------------|--------------------|
| Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)                   | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet)                 | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet) | Elapsed time<br>since start<br>of pumping<br>(minutes) | Drawdown<br>(feet) |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 5,645                                                  | 5.68               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 5,725                                                  | 5.69               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 5,815                                                  | 5.76               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 5,895                                                  | 5.79               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 5,985                                                  | 5.80               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,075                                                  | 5.77               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,155                                                  | 5.77               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,245                                                  | 5.81               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,335                                                  | 5.90               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,425                                                  | 5.97               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,515                                                  | 6.04               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,605                                                  | 6.10               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,695                                                  | 6.16               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,775                                                  | 6.13               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,865                                                  | 6.17               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 6,955                                                  | 6.19               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,055                                                  | 6.28               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,165                                                  | 6.24               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,255                                                  | 6.30               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,345                                                  | 6.29               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,435                                                  | 6.32               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,525                                                  | 6.27               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,625                                                  | 6.31               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,715                                                  | 6.32               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,805                                                  | 6.41               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,905                                                  | 6.48               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 7,995                                                  | 6.56               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 8,085                                                  | 6.61               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 8,185                                                  | 6.59               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 8,275                                                  | 6.54               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 8,375                                                  | 6.52               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 8,465                                                  | 6.60               |
|                                                        |                                      |                                                        |                                    |                                                        |                    | 8,565                                                  | 6.57               |

#### Table 27. Drawdown data for the RC-9 aquifer test–Continued

## **APPENDIX B: ADDITIONAL TABLES AND HYDROGRAPHS**

#### Table 28. Water wells completed in the Madison aquifer

| Site<br>number | Station<br>identification | Local number | Name                           | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|--------------|--------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pl. 1)        | number                    |              |                                | (feet above                   | sea level)                  | -           |                 |
| 1              | 441759103261202           | 4N6E19AABA2  | MD-90A Tilford No. 2 (TF-2)    | 3,621                         | 3,637                       | 1           | 840             |
| 2              | 441500103253501           | 3N6E 5CACC   |                                | 3,655                         | 3,690                       | 4           | 238             |
| 3              | 441337103225002           | 3N6E15ABB2   | MD-94A Piedmont No. 2 (PDMT-2) | 3,603                         | 3,475                       | 1           | 880             |
| 4              | 441220103213601           | 3N6E23ACD    |                                | 3,341                         | 3,540                       | 2           | 918             |
| 5              | 441157103234301           | 3N6E21DDCD   |                                | 3,854                         | 3,900                       | 4           | 71              |
| 6              | 440958103253401           | 2N6E 5BAC    |                                | 4,340                         | 4,640                       | 4           | 400             |
| 7              | 440934103252001           | 2N6E 5CAD    |                                | 4,280                         | 4,465                       | 4           | 245             |
| 8              | 440933103250701           | 2N6E 5DBD    |                                | 4,280                         | 4,500                       | 4           | 282             |
| 9              | 441636103183801           | 2N7E 8BBC    | Blackhawk Water Company No. 4  | 3,511                         | 3,530                       | 2           | 1,160           |
| 10             | 440851103044801           | 2N9E 7CDCC   | Ellsworth AFB                  | 2,687                         | 3,230                       | 4           | 4,640           |
| 11             | 440828103222601           | 2N6E10DD     |                                | 3,895                         | 4,120                       | 4           | 380             |
| 12             | 440826103174701           | 2N7E 8DDCC2  |                                | 3,450                         | 3,600                       | 4           | 790             |
| 13             | 440823103162701           | 2N7E16AAB    |                                | 3,448                         | 3,400                       | 3           | 1,530           |
| 14             | 440820103232601           | 2N6E15BBBD   |                                | 3,981                         | 4,290                       | 4           | 372             |
| 15             | 440811103222201           | 2N6E15ADAA   | PE-95C Doty Madison            | 3,808                         | 4,059                       | 1           | 425             |
| 16             | 440807103225801           | 2N6E15BDA    |                                | 3,973                         | 4,260                       | 4           | 340             |
| 17             | 440804103230501           | 2N6E15BDB    |                                | 3,976                         | 4,260                       | 4           | 370             |
| 18             | 440804103223001           | 2N6E15AD     |                                | 3,874                         | 4,160                       | 4           | 420             |
| 19             | 440804103222701           | 2N6E15ADDB   |                                | 3,774                         | 4,140                       | 4           | 400             |
| 20             | 440753103110801           | 2N8E13BDCD   | Ellsworth AFB No. 3            |                               | 3,190                       | 4           | 4,440           |
| 21             | 440758103225601           | 2N6E15CBDD   |                                | 3,913                         | 4,260                       | 4           | 540             |
| 22             | 440753103232401           | 2N6E15CBBD   |                                | 3,980                         | 4,260                       | 4           | 410             |
| 23             | 440749103221501           | 2N6E14CBC    |                                | 3,772                         | 4,120                       | 4           | 560             |
| 24             | 440744103223401           | 2N6E15DDB    |                                | 3,876                         | 4,210                       | 4           | 407             |
| 25             | 440658103213001           | 2N6E23DBAB   |                                | 3,660                         | 3,860                       | 4           | 420             |
| 26             | 440655103140501           | 2N7E23DACD   | Rapid City No. 8 (RC-8)        | 3,423                         | 3,527                       | 2           | 2,680           |
| 27             | 440650103193201           | 2N7E19CDAD   |                                | 3,528                         | 3,990                       | 4           | 745             |
| 28             | 440631103211201           | 2N6E26AAD    |                                | 3,645                         | 3,940                       | 4           | 357             |
| 29             | 440630103192501           | 2N7E30BADC   |                                | 3,536                         | 4,000                       | 4           | 745             |
| 30             | 440629103040901           | 2N9E29BBCC   | City of Box Elder              | 2,575                         | 3,043                       | 2           | 4,450           |
| 31             | 440622103152701           | 2N7E27ACAB   | Coke Plant                     | 3,481                         | 3,400                       | 3           | 1460            |
| 32             | 440612103152001           | 2N7E27DABB   | Rapid City No. 10 (RC-10)      | 3,444                         | 3,363                       | 2           | 1,790           |

#### Table 28. Water wells completed in the Madison aquifer-Continued

| Site<br>number | Station<br>identification | Local number | A<br>hy<br>hy<br>(۱)<br>(۱)           | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|--------------|---------------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pi. i)        | number                    |              |                                       | (feet above                   | sea level)                  |             |                 |
| 33             | 440544103180002           | 2N7E32ABBC2  | PE-89C City Quarry No. 2 (CQ-2)       | 3,451                         | 3,492                       | 1           | 826             |
| 34             | 440540103211301           | 2N6E35AADA2  |                                       | 3,646                         | 4,120                       | 2           | 740             |
| 35             | 440526103173001           | 2N7E32ADDD   | Rapid City No. 6 (RC-6)               | 3,447                         | 3,440                       | 2           | 1,300           |
| 36             | 440523103155701           | 2N7E34BDCC   | Black Hills Power & Light (BHPL)      | 3,424                         | 3,300                       | 3           |                 |
| 37             | 440518103193001           | 2N7E31CAB    |                                       | 3,477                         | 3,670                       | 4           | 420             |
| 38             | 440512103215701           | 2N6E35CAC    |                                       | 3,734                         | 4,130                       | 4           | 436             |
| 39             | 440508103220701           | 2N6E35CCAB   |                                       | 3,764                         | 4,140                       | 4           | 450             |
| 40             | 440500103193601           | 2N7E31CCCA   | Westberry Trails No. 2 (WT-2)         | 3,520                         | 3,974                       | 2           | 680             |
| 41             | 440453103184001           | 1N7E 5BBBC   |                                       | 3,405                         | 3,785                       | 4           | 560             |
| 42             | 440446103193201           | 1N7E 6BACB   |                                       | 3,430                         | 4,020                       | 4           | 770             |
| 43             | 440446103161701           | 1N7E 3BBCC   | Lime Creek (LC)                       | 3,417                         | 3,314                       | 1           | 1,390           |
| 44             | 440441103193301           | 1N7E 6BDCD   |                                       | 3,428                         | 4,080                       | 4           | 930             |
| 45             | 440432103191401           | 1N7E 6ACCC   |                                       | 3,405                         | 3,940                       | 4           | 770             |
| 46             | 440430103160202           | 1N7E 3CBAA2  | PE-65A Sioux Park No. 2 (SP-2)        | 3,423                         | 3,297                       | 1           | 1,170           |
| 47             | 440427103131701           | 1N7E 1DBBB   | Rapid City No. 7 (RC-7, Star Village) | 3,146                         | 3,396                       | 1           | 3,280           |
| 48             | 440337103191801           | 1N7E 7ACBD   |                                       | 3,418                         | 3,640                       | 4           | 380             |
| 49             | 440342103160701           | 1N7E10BCDB   | Rapid City No. 9 (RC-9)               | 3,415                         | 3,330                       | 2           | 1,051           |
| 50             | 440338103173302           | 1N7E 8ADDD2  | PE-89A Canyon Lake (CL-2)             | 3,418                         | 3,371                       | 1           | 700             |
| 51             | 440334103095601           | 1N8E 9CAB2   | Rapid Valley No. 4                    | 2,655                         | 3,108                       | 4           | 3,800           |
| 52             | 440326103180702           | 1N7E 8DBCC   | Jackson Springs Well 1A (JS-1A)       | 3,418                         | 3,380                       | 4           | 640             |
| 53             | 440310103173802           | 1N7E 8DDCD2  | Chapel Lane No. 3 (CHLN-3)            | 3,418                         | 3,410                       | 2           | 940             |
| 54             | 440308103184601           | 1N7E18AAAD   | PE-96A Cleghorn (CLEG)                | 3,417                         | 3,414                       | 1           | 200             |
| 55             | 440308103180701           | 1N7E17ABCC   |                                       | 3,419                         | 3,430                       | 4           | 460             |
| 56             | 440300103173501           | 1N7E17AAAC   | Chapel Lane No. 2 (CHLN-2)            | 3,419                         | 3,433                       | 2           | 820             |
| 57             | 440247103192401           | 1N7E18AACB   |                                       | 3,415                         | 3,720                       | 4           | 400             |
| 58             | 440302103194601           | 1N7E18BDBA   |                                       | 3,438                         | 3,640                       | 4           | 450             |
| 59             | 440247103191701           | 1N7E18ACCC   |                                       | 3,434                         | 3,540                       | 4           | 150             |
| 60             | 440238103185201           | 1N7E18DADB   |                                       | 3,416                         | 3,620                       | 4           | 321             |
| 61             | 440223103173201           | 1N7E17DDDA   | Carriage Hills No. 1                  | 3,426                         | 3,871                       | 2           | 725             |
| 62             | 440220103164001           | 1N7E16DCDC   | Rapid City No. 11 (RC-11)             | 3,423                         | 3,487                       | 2           | 1,280           |
| 63             | 440205103172001           | 1N7E21BCAB   |                                       | 3,445                         | 3,900                       | 4           |                 |
| 64             | 440054103173801           | 1N7E29DAAC   |                                       | 3,475                         | 3,900                       | 4           | 1,000           |
| 65             | 440523103194201           | 1N7E31BCAD   |                                       | 3,806                         | 4,260                       | 4           | 598             |
| 66             | 440004103174001           | 1N7E32DABA   | Highland Hills                        | 3,531                         | 3,999                       | 2           | 780             |

#### Table 28. Water wells completed in the Madison aquifer–Continued

[Use codes: 1, continuous-record observation well; 2, public supply well; 3, industrial/commercial; 4, other/unknown. --, no data available]

| Site<br>number | Station<br>identification | Local number | Name                                   | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|--------------|----------------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pi. i)        | number                    |              |                                        | (feet above                   | e sea level)                | -           |                 |
| 67             | 435937103184101           | 1S7E 5BAA    |                                        | 3,626                         | 3,920                       | 2           |                 |
| 68             | 435916103161801           | 1S7E 3CDBD   | PE-86A Reptile Gardens (RG)            | 3,497                         | 3,520                       | 1           | 1,220           |
| 69             | 435903103181301           | 1S7E 8ABAA   |                                        | 3,594                         | 4,100                       | 4           | 754             |
| 70             | 435851103184201           | 1S7E 8BDBA   |                                        | 3,580                         | 4,180                       | 4           | 640             |
| 71             | 435851103143501           | 1S7E11ACAB   | Hart Ranch No. 2                       | 3,498                         | 3,466                       | 2           | 1,740           |
| 72             | 435746103160601           | 1S7E15CBBB   |                                        | 3,488                         | 3,985                       | 4           | 820             |
| 73             | 435718103130301           | 1S8E19BBBB   | Hart Ranch No. 1                       | 3,498                         | 3,555                       | 2           | 2,600           |
| 74             | 435635103181401           | 1S7E20DCAD   | Pine Grove                             | 3,515                         | 4,120                       | 2           | 903             |
| 75             | 435619103161901           | 1S7E27BACA   |                                        | 3,509                         | 4,140                       | 4           | 1,190           |
| 76             | 435518103173001           | 1S7E33BDBD   |                                        | 3,530                         | 4,090                       | 4           | 680             |
| 77             | 435227103185301           | 2S7E17CCAA   | PE-95A Hayward (HWRD)                  | 3,542                         | 3,932                       | 1           | 540             |
|                |                           | Wells N      | ot Shown on Plate 1 (unreliable hydrau | lic heads)                    |                             |             |                 |
| 78             | 442217103272201           | 5N5E26ABDA   |                                        | 3,129                         | 3,625                       | 4           | 1,460           |
| 79             | 440443103161301           | 1N7E 3BBCD   | Rapid City No. 5 (RC-5)                |                               | 3,310                       | 2           | 1,292           |
| 80             | 442058103273001           | 5N5E36DBCB   |                                        | 3,204                         | 3,720                       | 2           | 1,050           |
| 81             | 441845103352001           | 4N4E13B      |                                        | 4,890                         | 5,050                       | 4           | 227             |
| 82             | 441838103344301           | 4N4E13A      |                                        | 4,720                         | 4,880                       | 4           | 227             |
| 83             | 441830103312701           | 4N5E16BDD    |                                        | 4,540                         | 4,620                       | 4           | 115             |
| 84             | 441817103311901           | 4N5E16DBC    |                                        | 4,455                         | 4,620                       | 4           | 360             |
| 85             | 440933103253301           | 2N6E 5CAC    |                                        | 4,300                         | 4,500                       | 4           | 245             |
| 86             | 440908103193401           | 2N7E 7BAC    |                                        | 3,439                         | 3,679                       | 4           |                 |
| 87             | 440805103223001           | 2N6E15AD     |                                        | 3,786                         | 4,160                       | 4           | 430             |
| 88             | 440810103234401           | 2N6E15BC     |                                        | 4,022                         | 4,300                       | 4           | 505             |
| 89             | 440755103231801           | 2N6E15CBA    |                                        | 4,015                         | 4,320                       | 4           | 480             |
| 90             | 440758103214301           | 2N6E14CAC    |                                        | 3,804                         | 4,150                       | 4           | 540             |
| 91             | 440737103222501           | 2N6E15DDD    |                                        | 3,781                         | 4,160                       | 4           | 415             |
| 92             | 440636103214701           | 2N6E26BAAC   |                                        | 3,694                         | 3,950                       | 4           | 340             |
| 93             | 440602103194201           | 2N7E31BCB    |                                        | 3,393                         | 3,770                       | 4           | 525             |
| 94             | 440244103191901           | 1N7E18BAC    |                                        | 3,417                         | 3,620                       | 4           | 380             |
| 95             | 440254103191801           | 1N7E18ACB    |                                        | 3,420                         | 3,630                       | 4           | 320             |
| 96             | 440248103195001           | 1N7E18BCC    |                                        | 3,585                         | 3,600                       | 4           | 32              |
| 97             | 440245103192501           | 1N7E18CAAB   |                                        | 3,410                         | 3,500                       | 4           | 280             |
| 98             | 440242103192301           | 1N7E18CAA    |                                        | 3,342                         | 3,440                       | 4           | 280             |
| 99             | 440241103194001           | 1N7E18CBA    |                                        | 3,650                         | 3,700                       | 4           | 185             |
| 100            | 435143103184401           | 2S7E20BDC    |                                        | 3,490                         | 3,890                       | 4           | 624             |

90 Flow-System Analysis of Madison and Minnelusa Aquifers in the Rapid City Area, SD-Conceptual Model

## Table 29. Water wells completed in the Minnelusa aquifer

| Site<br>number | Station<br>identification | Station<br>identification Local number Name<br>number | Name                           | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|-------------------------------------------------------|--------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pi. 2)        | number                    |                                                       |                                | (feet above                   | sea level)                  |             |                 |
| 102            | 441812103230501           | 4N6E16DCB                                             |                                | 3,454                         | 3,460                       | 4           | 1,460           |
| 103            | 441826103263301           | 4N6E17CCDA                                            |                                | 3,564                         | 3,578                       | 4           | 590             |
| 104            | 441759103261201           | 4N6E19AABA                                            | MD-84B Tilford No. 1 (TF-1)    | 3,608                         | 3,636                       | 1           | 302             |
| 105            | 441701103251101           | 4N6E29ABC                                             | Piedmont East (PDMT-East)      | 3,515                         | 3,542                       | 1           | 180             |
| 106            | 441656103261601           | 4N6E30A                                               |                                | 3,592                         | 3,860                       | 4           | 340             |
| 107            | 441649103262401           | 4N6E30ADCC                                            |                                | 3,593                         | 3,930                       | 4           | 540             |
| 108            | 441620103255301           | 4N6E29CCC                                             |                                | 3,529                         | 3,630                       | 4           | 240             |
| 109            | 441612103252801           | 4N6E32BAA                                             |                                | 3,532                         | 3,590                       | 4           | 265             |
| 110            | 441606103252501           | 4N6E32BAD                                             |                                | 3,557                         | 3,620                       | 4           | 225             |
| 111            | 441556103253201           | 4N6E32BBDD                                            |                                | 3,514                         | 3,680                       | 4           | 280             |
| 112            | 441504103230301           | 3N6E 3BCBC                                            |                                | 3,428                         | 3,460                       | 4           | 755             |
| 113            | 441500103240601           | 3N6E 4                                                |                                | 3,422                         | 3,520                       | 4           | 300             |
| 114            | 441453103243801           | 3N6E 4CB                                              |                                | 3,486                         | 3,570                       | 4           | 328             |
| 115            | 442221103245501           | 3N6E 5DA                                              |                                | 3,527                         | 3,590                       | 4           | 250             |
| 116            | 441314103233301           | 3N6E10ABAA                                            |                                | 3,412                         | 3,400                       | 4           | 425             |
| 117            | 441424103243601           | 3N6E 9BBCD                                            |                                | 3,506                         | 3,780                       | 4           | 320             |
| 118            | 441421103242302           | 3N6E 9BCBB2                                           |                                | 3,510                         | 3,740                       | 4           | 365             |
| 119            | 441400103231501           | 3N6E10BDDB                                            |                                | 3,478                         | 3,435                       | 4           | 625             |
| 120            | 441358103241801           | 3N6E 9CABB                                            |                                | 3,526                         | 3,760                       | 4           | 260             |
| 121            | 441643103232801           | 3N6E10CCC                                             |                                | 3,490                         | 3,530                       | 4           | 275             |
| 122            | 441339103232701           | 3N6E16AAAB                                            |                                | 3,530                         | 3,570                       | 4           | 237             |
| 123            | 441338103233201           | 3N6E16AABA                                            |                                | 3,528                         | 3,590                       | 4           | 190             |
| 124            | 441337103225001           | 3N6E15ABBB                                            | MD-84A Piedmont No. 1 (PDMT-1) | 3,481                         | 3,475                       | 1           | 440             |
| 125            | 441335103223202           | 3N6E15AAB                                             |                                | 3,414                         | 3,490                       | 4           | 110             |
| 126            | 441335103223201           | 3N6E15AB                                              |                                | 3,414                         | 3,490                       | 4           | 100             |
| 127            | 441333103222801           | 3N6E15AAAC                                            |                                | 3,457                         | 3,470                       | 4           | 640             |
| 128            | 441331103230701           | 3N6E15BA3                                             |                                | 3,454                         | 3,530                       | 4           | 160             |
| 129            | 441322103234202           | 3N6E16AD2                                             |                                | 3,547                         | 3,660                       | 4           | 260             |
| 130            | 441322103234201           | 3N6E16AD                                              |                                | 3,581                         | 3,660                       | 4           | 340             |
| 131            | 441315103224001           | 3N6E15DABBB                                           |                                | 3,489                         | 3,530                       | 4           | 365             |
| 132            | 441257103222501           | 3N6E15DAA                                             |                                | 3,458                         | 3,590                       | 4           | 263             |
| 133            | 441241103183401           | 3N7E20BB2                                             |                                | 3,268                         | 3,460                       | 4           | 340             |

#### Table 29. Water wells completed in the Minnelusa aquifer-Continued

| Site<br>number | Station<br>identification | Local number | Local number Name | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|--------------|-------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pl. 2)        | number                    |              |                   | (feet above                   | ove sea level)              |             |                 |
| 134            | 441219103204801           | 3N6E24CABB   |                   | 3,414                         | 3,570                       | 2           | 1,005           |
| 135            | 441242103215701           | 3N6E23CAB    |                   | 3,495                         | 3,730                       | 4           | 288             |
| 136            | 441216103215801           | 3N6E23CABD   |                   | 3,477                         | 3,700                       | 4           | 460             |
| 137            | 441210103215101           | 3N6E23CADA   |                   | 3,483                         | 3,570                       | 4           | 328             |
| 138            | 441212103201501           | 3N6E24DBDA   |                   | 3,366                         | 3,840                       | 2           | 1,542           |
| 139            | 441211103213701           | 3N6E23DBCA   |                   | 3,458                         | 3,560                       | 4           | 375             |
| 140            | 441202103211301           | 3N6E23DDAC   |                   | 3,476                         | 3,558                       | 4           | 860             |
| 141            | 441318103221301           | 3N6E24CADD   |                   | 3,449                         | 3,600                       | 4           | 824             |
| 142            | 442137103213801           | 3N6E23DCB 4  |                   | 3,444                         | 3,600                       | 4           | 300             |
| 143            | 441202103213301           | 3N6E23DC     |                   | 3,474                         | 3,580                       | 4           | 360             |
| 144            | 441200103213001           | 3N6E23DCCB   |                   | 3,471                         | 3,605                       | 4           | 305             |
| 145            | 441157103213701           | 3N6E23DDDC   |                   | 3,445                         | 3,580                       | 4           | 440             |
| 146            | 441220103214001           | 3N6E23DCDC   |                   | 3,451                         | 3,608                       | 4           | 360             |
| 147            | 441151103213002           | 3N6E26AABB   |                   | 3,459                         | 3,600                       | 4           | 395             |
| 148            | 441147103270001           | 3N7E30BCAD   |                   | 3,413                         | 3,870                       | 2           | 1,600           |
| 149            | 441136103221301           | 3N6E26ACAD   |                   | 3,415                         | 3,680                       | 4           | 360             |
| 150            | 441134103211601           | 3N6E26ADBB   |                   | 3,460                         | 3,645                       | 4           | 300             |
| 151            | 441131103200101           | 3N6E25ADDA   |                   | 3,418                         | 3,615                       | 4           | 783             |
| 152            | 441130103205601           | 3N6E25BCDC   |                   | 3,466                         | 3,630                       | 4           | 400             |
| 153            | 441119103210301           | 3N6E25CBCB   |                   | 3,453                         | 3,680                       | 4           | 303             |
| 154            | 441105103192001           | 3N7E30CDD    |                   | 3,454                         | 3,650                       | 4           | 1,120           |
| 155            | 441125103203001           | 3N6E25DCCD   |                   | 3,413                         | 3,690                       | 4           | 500             |
| 156            | 441038103203001           | 3N6E36BADB   |                   | 3,403                         | 3,735                       | 4           | 420             |
| 157            | 441049103203701           | 3N6E36BADD   |                   | 3,423                         | 3,725                       | 4           | 400             |
| 158            | 441047103203301           | 3N6E36BDAA   |                   | 3,423                         | 3,720                       | 4           | 400             |
| 159            | 441323103232301           | 3N6E36BDCA   |                   | 3,496                         | 3,780                       | 4           | 520             |
| 160            | 441040103203201           | 3N6E36BDDA   |                   | 3,438                         | 3,740                       | 4           |                 |
| 161            | 441038103203002           | 3N6E36B      |                   | 3,492                         | 3,820                       | 4           | 400             |
| 162            | 441037103203502           | 3N6E36BDD2   |                   | 3,472                         | 3,760                       | 4           | 360             |
| 163            | 441037103203501           | 3N6E36BDD    |                   | 3,450                         | 3,760                       | 4           | 360             |
| 164            | 441033103193001           | 3N7E31CAA    |                   | 3,463                         | 3,630                       | 4           | 520             |
| 165            | 441031103195201           | 3N7E31CBBC   |                   | 3,443                         | 3,690                       | 4           | 462             |

#### Table 29. Water wells completed in the Minnelusa aquifer–Continued

| Site<br>number | Station<br>identification | Local number | ber Name                        | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|--------------|---------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pi. 2)        | number                    |              |                                 | (feet above                   | (feet above sea level)      |             |                 |
| 166            | 441024103201301           | 3N6E36DBD    |                                 | 3,487                         | 3,720                       | 4           | 440             |
| 167            | 441023103204001           | 3N6E36CADD   |                                 | 3,474                         | 3,780                       | 4           | 565             |
| 168            | 441023103203101           | 3N6E36DBCC   |                                 | 3,440                         | 3,810                       | 4           | 540             |
| 169            | 441023103203001           | 3N6E36DBBD   |                                 | 3,423                         | 3,740                       | 4           | 312             |
| 170            | 441007103201101           | 2N6E 1AABB   |                                 | 3,432                         | 3,725                       | 4           | 340             |
| 171            | 440930103175201           | 2N7E 5DBDD   |                                 | 3,489                         | 3,460                       | 4           |                 |
| 172            | 440936103191801           | 2N7E 6CDAC   | Blackhawk Water Co. No. 3       | 3,447                         | 3,545                       | 2           | 340             |
| 173            | 440919103170501           | 2N7E 4CDCD   |                                 | 3,416                         | 3,405                       | 4           | 920             |
| 174            | 440929103163501           | 2N7E 4DDC    |                                 | 3,379                         | 3,435                       | 4           | 1,025           |
| 175            | 440916103163301           | 2N7E 9AABB   |                                 | 3,392                         | 3,420                       | 4           | 1,260           |
| 176            | 440907103183501           | 2N7E 8BBCD   | Blackhawk Water Co. No. 2       | 3,386                         | 3,510                       | 2           | 750             |
| 177            | 440908103193101           | 2N7E 7BACA   |                                 | 3,462                         | 3,720                       | 4           | 480             |
| 178            | 440901103184801           | 2N7E 7ADAB   | Blackhawk Water Co. No. 1       | 3,403                         | 3,580                       | 2           | 600             |
| 179            | 440829103183801           | 2N7E 8CCC    |                                 | 3,414                         | 3,560                       | 4           | 590             |
| 180            | 440826103174601           | 2N7E 8DDCC   |                                 | 3,410                         | 3,600                       | 4           | 815             |
| 181            | 440818103180801           | 2N7E17BAAD   | PE-84B Blackhawk No. 1 (BLHK-1) | 3,422                         | 3,500                       | 1           | 560             |
| 182            | 440818103174701           | 2N7E17BACA   |                                 | 3,449                         | 3,500                       | 4           | 650             |
| 183            | 440800103163001           | 2N7E16       |                                 | 3,313                         | 3,360                       | 4           | 320             |
| 184            | 440738103173901           | 2N7E17DDBD   |                                 | 3,409                         | 3,450                       | 4           | 371             |
| 185            | 440736103173701           | 2N7E17DDAA   |                                 | 3,412                         | 3,450                       | 2           | 400             |
| 186            | 440719103174801           | 2N7E20ABAD   |                                 | 3,434                         | 3,480                       | 4           | 263             |
| 187            | 440636103152001           | 2N7E27AABA   |                                 | 3,400                         | 3,435                       | 4           | 992             |
| 188            | 440635103161801           | 2N7E27BBCB   |                                 | 3,420                         | 3,450                       | 3           |                 |
| 189            | 440607103155901           | 2N7E27CAAB   |                                 | 3,383                         | 3,360                       | 3           | 615             |
| 190            | 440606103174701           | 2N7E29DACB   |                                 | 3,419                         | 3,600                       | 4           | 349             |
| 191            | 440605103174701           | 2N7E29DAC1   |                                 | 3,419                         | 3,600                       | 4           | 349             |
| 192            | 440552103173401           | 2N7E29DAC5   |                                 | 3,421                         | 3,570                       | 4           | 220             |
| 193            | 440603103174501           | 2N7E29DAC3   |                                 | 3,427                         | 3,600                       | 4           | 190             |
| 194            | 440552103162301           | 2N7E28DACD   |                                 | 3,336                         | 3,360                       | 3           | 300             |
| 195            | 440557103174401           | 2N7E29DDB    |                                 | 3,414                         | 3,600                       | 4           | 308             |
| 196            | 440556103174801           | 2N7E29DDBD2  |                                 | 3,449                         | 3,620                       | 4           | 320             |
| 197            | 440542103172501           | 2N7E28CC     |                                 | 3,410                         | 3,500                       | 4           | 320             |

#### Table 29. Water wells completed in the Minnelusa aquifer-Continued

| Site<br>number | Station<br>r identification Local number<br>number | Name        | Adjusted<br>hydraulic<br>head   | Use<br>code | Depth<br>(feet) |   |      |
|----------------|----------------------------------------------------|-------------|---------------------------------|-------------|-----------------|---|------|
| (pl. 2)        |                                                    |             |                                 | (feet above | sea level)      | - | ( ), |
| 198            | 440639103173701                                    | 2N7E29DDCA  |                                 | 3,443       | 3,620           | 4 | 340  |
| 199            | 440545103173501                                    | 2N7E32AAAC  |                                 | 3,438       | 3,610           | 4 | 300  |
| 200            | 440544103180001                                    | 2N7E32ABBD  | PE-89D City Quarry No. 1 (CQ-1) | 3,450       | 3,492           | 1 |      |
| 201            | 440544103174301                                    | 2N7E32AABD  |                                 | 3,444       | 3,640           | 4 | 302  |
| 202            | 440544103173601                                    | 2N7E32AAA   |                                 | 3,468       | 3,640           | 4 | 340  |
| 203            | 440540103194601                                    | 2N7E31BBCD  |                                 | 3,553       | 3,810           | 4 | 270  |
| 204            | 440539103205401                                    | 2N6E36BBD   |                                 | 3,769       | 4,080           | 4 | 390  |
| 205            | 440538103161001                                    | 2N7E34B     |                                 | 3,328       | 3,340           | 4 | 220  |
| 206            | 440534103174801                                    | 2N7E32AACD  |                                 | 3,467       | 3,640           | 4 | 195  |
| 207            | 440534103171401                                    | 2N7E33BCAA  |                                 | 3,450       | 3,460           | 4 | 200  |
| 208            | 440533103193801                                    | 2N7E31BCAA  |                                 | 3,416       | 3,720           | 4 | 440  |
| 209            | 440528103161001                                    | 2N7E34BCCA  | PE-64A Cement Plant (CP)        | 3,412       | 3,331           | 1 | 400  |
| 210            | 440528103155201                                    | 2N7E34BDAD  |                                 | 3,406       | 3,350           | 4 | 585  |
| 211            | 440521103184401                                    | 2N7E32BCCC  |                                 | 3,471       | 3,602           | 4 |      |
| 212            | 440532103182001                                    | 2N7E32CADA  |                                 | 3,462       | 3,510           | 4 | 310  |
| 213            | 440514103161401                                    | 2N7E34CBCD  |                                 | 3,403       | 3,340           | 3 | 371  |
| 214            | 450512103182101                                    | 2N7E32CAC   |                                 | 3,434       | 3,520           | 4 | 230  |
| 215            | 440516103194001                                    | 2N7E31CDCB  | Westberry Trails No. 1 (WT-1)   | 3,406       | 3,860           | 2 | 565  |
| 216            | 440501103181501                                    | 2N7E32CDAD  |                                 | 3,475       | 3,520           | 4 | 200  |
| 217            | 440459103181001                                    | 2N7E32CDDD  |                                 | 3,450       | 3,480           | 4 | 180  |
| 218            | 440458103181101                                    | 2N7E32CDDDB |                                 | 3,450       | 3,480           | 4 | 180  |
| 219            | 440452103155301                                    | 1N7E 3BABD  | South Dakota ARNG               | 3,396       | 3,340           | 4 | 600  |
| 220            | 440449103181501                                    | 1N7E 5ABCA  |                                 | 3,435       | 3,490           | 4 | 207  |
| 221            | 440446103181801                                    | 1N7E 5BAC   |                                 | 3,415       | 3,700           | 4 | 430  |
| 222            | 440445103181601                                    | 1N7E 5BACA  |                                 | 3,470       | 3,700           | 4 | 360  |
| 223            | 440430103160201                                    | 1N7E 3CBAA  | PE 64B Sioux Park No. 1 (SP-1)  | 3,392       | 3,300           | 1 | 570  |
| 224            | 440423103180501                                    | 1N7E 5DBCA  | West Camp Rapid No. 3 (WCR-3)   | 3,400       | 3,580           | 1 | 224  |
| 225            | 440403103183701                                    | 1N7E 5CDD   |                                 | 3,382       | 3,580           | 4 | 330  |
| 226            | 440347103190501                                    | 1N7E 7ACA   |                                 | 3,435       | 3,497           | 4 |      |
| 227            | 440344103190801                                    | 1N7E 7AC    |                                 | 3,456       | 3,506           | 4 | 152  |
| 228            | 440344103173701                                    | 1N7E 8AC    |                                 | 3,360       | 3,460           | 4 | 140  |
| 229            | 440338103173301                                    | 1N7E 8ADDD  | PE-89B Canyon Lake No. 1 (CL-1) | 3,360       | 3,371           | 1 |      |

#### Table 29. Water wells completed in the Minnelusa aquifer–Continued

| Site<br>number | Station<br>identification | Local number | Adjusted<br>hydraulic<br>number Name head | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|--------------|-------------------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pl. 2)        | number                    |              |                                           | (feet above                   | sea level)                  | -           | . ,             |
| 230            | 440331103155101           | 1N7E10CADD   |                                           | 3,396                         | 3,410                       | 4           | 700             |
| 231            | 440326103180703           | 1N7E 8DBCC2  | Jackson Springs Well 1B (JS-1B)           | 3,395                         | 3,380                       | 1           |                 |
| 232            | 440321103181001           | 1N7E 8CDAA   |                                           | 3,365                         | 3,460                       | 4           | 135             |
| 233            | 440310103173801           | 1N7E 8DDCD   | Chapel Lane No. 1 (CHLN-1)                | 3,383                         | 3,410                       | 1           | 360             |
| 234            | 440309103170101           | 1N7E16BAAB   |                                           | 3,360                         | 3,430                       | 4           | 183             |
| 235            | 440308103183001           | 1N7E17BBA    |                                           | 3,435                         | 3,480                       | 4           |                 |
| 236            | 440308103172501           | 1N7E16BBB    |                                           | 3,378                         | 3,580                       | 4           | 312             |
| 237            | 440308103144301           | 1N7E14BABD   |                                           | 3,353                         | 3,833                       | 4           | 1,817           |
| 238            | 440336103165301           | 1N7E16BBBB   |                                           | 3,353                         | 3,575                       | 4           | 250             |
| 239            | 440307103181501           | 1N7E17BABD   |                                           | 3,399                         | 3,724                       | 4           |                 |
| 240            | 440305103164501           | 1N7E16BADA2  |                                           | 3,364                         | 3,440                       | 4           | 250             |
| 241            | 440211103165601           | 1N7E16BADA   |                                           | 3,370                         | 3,440                       | 4           | 207             |
| 242            | 440301103165701           | 1N7E16BAD    |                                           | 3,350                         | 3,440                       | 4           | 300             |
| 243            | 440300103170901           | 1N7E16BAC    |                                           | 3,380                         | 3,500                       | 4           | 220             |
| 244            | 440257103171101           | 1N7E16BACC   |                                           | 3,355                         | 3,520                       | 4           | 240             |
| 245            | 440252103172201           | 1N7E16BC     |                                           | 3,336                         | 3,540                       | 4           | 280             |
| 246            | 440249103182101           | 1N7E17BDC    |                                           | 3,450                         | 3,480                       | 4           | 115             |
| 247            | 440247103165401           | 1N7E16BDBB   |                                           | 3,342                         | 3,500                       | 4           | 235             |
| 248            | 440242103170801           | 1N7E16CAB    |                                           | 3,386                         | 3,500                       | 4           | 260             |
| 249            | 440244103154102           | 1N7E15CBBD2  |                                           | 3,374                         | 3,475                       | 4           | 460             |
| 250            | 440236103145801           | 1N7E14CBCA   |                                           | 3,351                         | 3,880                       | 4           | 1,650           |
| 251            | 440233103170501           | 1N7E16CACD   |                                           | 3,387                         | 3,580                       | 4           | 258             |
| 252            | 440223103161701           | 1N7E15CCBC   |                                           | 3,381                         | 3,440                       | 2           | 360             |
| 253            | 440224103172601           | 1N7E16CCCA   | Carriage Hills No. 2                      | 3,372                         | 3,840                       | 2           | 612             |
| 254            | 440214103153501           | 1N7E15DCCA   |                                           | 3,388                         | 3,600                       | 2           | 780             |
| 255            | 440211103165201           | 1N7E21BADA   |                                           | 3,401                         | 3,650                       | 4           | 422             |
| 256            | 440211103164301           | 1N7E21ABDB   |                                           | 3,409                         | 3,570                       | 4           | 200             |
| 257            | 440204103150001           | 1N7E23BCB    |                                           | 3,392                         | 3,858                       | 4           | 1,680           |
| 258            | 440203103143601           | 1N7E23BDAB   |                                           | 3,390                         | 3,840                       | 4           | 1,870           |
| 259            | 440158103160401           | 1N7E22BDCC   | Spring Brook South No. 3                  | 3,429                         | 3,565                       | 2           | 445             |
| 260            | 440149103164901           | 1N7E21DBBD   | Wildwood North                            | 3,412                         | 3,675                       | 1           |                 |
| 261            | 440130103163401           | 1N7E21DDCD   | Wildwood South                            | 3,429                         | 3,720                       | 1           | 400             |

#### Table 29. Water wells completed in the Minnelusa aquifer-Continued

| Site<br>number | Station<br>identification | Local number | Name                                         | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |  |
|----------------|---------------------------|--------------|----------------------------------------------|-------------------------------|-----------------------------|-------------|-----------------|--|
| (pi. 2)        | number                    |              | -                                            | (feet above sea level)        |                             |             |                 |  |
| 262            | 440103103144801           | 1N7E26BCDA   |                                              | 3,376                         | 3,720                       | 4           | 1545            |  |
| 263            | 440059103154101           | 1N7E27DADB   |                                              | 3,456                         | 3,815                       | 4           | 1,430           |  |
| 264            | 440048103145001           | 1N7E26CCAA   |                                              | 3,455                         | 3,820                       | 4           | 1,460           |  |
| 265            | 440038103172601           | 1N7E28CCC    |                                              | 3,475                         | 3,840                       | 4           | 600             |  |
| 266            | 440031103162701           | 1N7E33AAA    |                                              | 3,459                         | 3,830                       | 4           | 560             |  |
| 267            | 440028103160801           | 1N7E34BAC    |                                              | 3,412                         | 3,815                       | 4           | 660             |  |
| 268            | 440027103161001           | 1N7E34BBCA   |                                              | 3,499                         | 3,840                       | 4           | 516             |  |
| 269            | 440022103163401           | 1N7E33AABC   |                                              | 3,494                         | 3,850                       | 4           | 623             |  |
| 270            | 440007103165301           | 1N7E33ADBB   |                                              | 3,455                         | 3,840                       | 4           | 540             |  |
| 271            | 440010103154201           | 1N7E34       |                                              | 3,404                         | 3,820                       | 4           | 700             |  |
| 272            | 435916103161802           | 1S7E 3CDBD2  | PE-94A Reptile Gardens No. 2 (RG-2)          | 3,493                         | 3,519                       | 1           | 660             |  |
| 273            | 435858103155701           | 1S7E10ABBD   |                                              | 3,476                         | 3,518                       | 4           | 515             |  |
| 274            | 435803103160301           | 1S7E15ABC    |                                              | 3,539                         | 3,680                       | 4           | 245             |  |
| 275            | 445809103162201           | 1S7E15CABA   |                                              | 3,548                         | 3,765                       | 4           | 430             |  |
| 276            | 435720103141601           | 1S7E13CBCA   | Hart Ranch No. 3                             | 3,547                         | 3,780                       | 2           | 1,525           |  |
| 277            | 435352103170801           | 2S7E 4ACDB   |                                              | 3,558                         | 3,800                       | 4           | 358             |  |
| 278            | 435325103171701           | 2S7E 9CBDA   |                                              | 3,527                         | 3,960                       | 4           | 580             |  |
| 279            | 435225103172801           | 2S7E16CACA   |                                              | 3,551                         | 3,700                       | 4           | 240             |  |
| 280            | 435119103175001           | 2S7E21CCC    |                                              | 3,536                         | 3,865                       | 4           | 500             |  |
| 281            | 435115103170501           | 2S7E21DDC    |                                              | 3,511                         | 3,750                       | 4           | 350             |  |
|                |                           | Wells N      | ot Shown on Plate 2 (unreliable hydraulic he | eads)                         |                             |             |                 |  |
| 282            | 442213103283101           | 5N5E26ABD    |                                              | 3,124                         | 3,620                       | 4           | 1,375           |  |
| 283            | 442158103284701           | 5N5E26       |                                              | 3,248                         | 3,800                       | 4           | 1,140           |  |
| 284            | 442146103272001           | 5N5E25CADB   |                                              | 3,113                         | 3,710                       | 2           | 1,000           |  |
| 285            | 442108103270301           | 5N5E36ADD    |                                              | 3,164                         | 3,690                       | 2           | 1,120           |  |
| 286            | 441903103261601           | 4N6E7DDBB    |                                              | 3,464                         | 3,710                       | 4           | 700             |  |
| 287            | 441641103252001           | 4N6E29BCAD   |                                              | 3,627                         | 3,700                       | 4           | 176             |  |
| 288            | 441648103264001           | 4N6E30BDA    |                                              | 3,743                         | 4,000                       | 4           | 540             |  |
| 289            | 441640103245901           | 4N6E29DAB    |                                              | 3,612                         | 3,620                       | 4           | 220             |  |
| 290            | 441549103252002           | 4N6E32(2)    |                                              | 3,480                         | 3,618                       | 4           | 220             |  |
| 291            | 441544103253001           | 4N6E32CA     |                                              | 3,628                         | 3,640                       | 4           | 260             |  |
| 292            | 441538103255601           | 4N6E32CCB    |                                              | 3,770                         | 3,800                       | 4           | 300             |  |

#### Table 29. Water wells completed in the Minnelusa aquifer–Continued

| Site<br>number | Station<br>identification | Station<br>identification Local number<br>number | Name                                    | Adjusted<br>hydraulic<br>head | Adjusted Land<br>hydraulic surface<br>head altitude |   | Depth<br>(feet) |
|----------------|---------------------------|--------------------------------------------------|-----------------------------------------|-------------------------------|-----------------------------------------------------|---|-----------------|
| (pi. 2)        | number                    |                                                  |                                         | (feet above                   | sea level)                                          | • |                 |
|                |                           | Wells Not Sho                                    | wn on Plate 2 (unreliable hydraulic hea | ds)—Continued                 |                                                     |   |                 |
| 293            | 441522103252501           | 3N6E 5BAB                                        |                                         | 3,430                         | 3,700                                               | 4 | 558             |
| 294            | 441443103223701           | 3N6E 3DD                                         |                                         | 3,305                         | 3,420                                               | 4 | 1260            |
| 295            | 441441103252301           | 3N6E 5CD                                         |                                         | 3,620                         | 3,650                                               | 4 | 140             |
| 296            | 441228103185301           | 3N7E19ADCA                                       |                                         | 3,429                         | 3,540                                               | 4 | 1,200           |
| 297            | 441108103205701           | 3N6E25CC                                         |                                         | 3,383                         | 3,670                                               | 4 |                 |
| 298            | 441118103210001           | 3N6E25CCDD                                       |                                         | 3,400                         | 3,720                                               | 4 | 370             |
| 299            | 441051103205901           | 3N6E36BBCA                                       |                                         | 3,363                         | 3,760                                               | 4 | 570             |
| 300            | 441029103202201           | 3N6E36DB                                         |                                         | 3,547                         | 3,722                                               | 4 | 338             |
| 301            | 440930103190501           | 2N7E 6DCD                                        |                                         | 3,426                         | 3,520                                               | 4 |                 |
| 302            | 440927103173501           | 2N7E 5DDA                                        |                                         | 3,380                         | 3,440                                               | 4 | 885             |
| 303            | 440913103194001           | 2N7E 7BB                                         |                                         |                               | 3,520                                               | 4 | 380             |
| 304            | 440820103164701           | 2N7E16ABBD                                       |                                         | 3,267                         | 3,400                                               | 4 | 445             |
| 305            | 440747103174901           | 2N7E17D                                          |                                         | 3,399                         | 3,460                                               | 4 | 440             |
| 306            | 440702103181401           | 2N7E20CAAC                                       |                                         | 3,300                         | 3,580                                               | 4 | 380             |
| 307            | 440605103182801           | 2N7E29DBD                                        |                                         | 3,505                         | 3,685                                               | 4 | 330             |
| 308            | 440525103171701           | 2N7E33BCD                                        |                                         | 3,340                         | 3,430                                               | 4 | 240             |
| 309            | 440522103185301           | 2N7E31ADCD                                       |                                         | 3,534                         | 3,680                                               | 4 | 247             |
| 310            | 440518103163604           | 2N7E33DAB4                                       |                                         | 3,388                         | 3,400                                               | 4 | 220             |
| 311            | 440517103194801           | 2N7E31CBBD                                       |                                         | 3,672                         | 3,800                                               | 4 | 260             |
| 312            | 440508103221001           | 2N6E35CCBA                                       |                                         | 3,827                         | 4,180                                               | 4 | 582             |
| 313            | 440458103180101           | 2N7E32CCDC                                       |                                         | 3,400                         | 3,640                                               | 4 |                 |
| 314            | 440447103183101           | 1N7E 5BBDB                                       |                                         | 3,394                         | 3,770                                               | 4 | 500             |
| 315            | 440414103164601           | 1N7E 4DCB                                        | Rapid City No. 4 (RC-4)                 |                               | 3,350                                               | 2 | 1,080           |
| 316            | 441351103171301           | 1N7E 9BBCA                                       | Rapid City No. 3 (RC-3)                 |                               | 3,376                                               | 2 | 902             |
| 317            | 440338103171601           | 1N7E 9BCDC                                       | Rapid City No. 1 (RC-1)                 |                               | 3,360                                               | 2 | 1,460           |
| 318            | 440331103200301           | 1N6E12DAAC                                       |                                         | 3,560                         | 3,860                                               | 4 | 415             |
| 319            | 440328103191001           | 1N7E7DBC                                         |                                         | 3,640                         | 3,700                                               | 4 | 155             |
| 320            | 440302103172601           | 1N7E16BAD2                                       |                                         | 3,415                         | 3,440                                               | 4 | 222             |
| 321            | 440255103172601           | 1N7E16BCB                                        |                                         | 3,432                         | 3,560                                               | 4 | 200             |
| 322            | 440249103172701           | 1N7E16BCC                                        |                                         | 3,404                         | 3,580                                               | 4 | 317             |
| 323            | 440246103180801           | 1N7E17                                           |                                         | 3,683                         | 3,700                                               | 4 | 78              |

| Site<br>number | Station<br>identification | Local number  | Name                                       | Adjusted<br>hydraulic<br>head | Land<br>surface<br>altitude | Use<br>code | Depth<br>(feet) |
|----------------|---------------------------|---------------|--------------------------------------------|-------------------------------|-----------------------------|-------------|-----------------|
| (pi. 2)        | number                    |               | (feet above                                | e sea level)                  | •                           |             |                 |
|                |                           | Wells Not Sho | wn on Plate 2 (unreliable hydraulic heads) | -Continued                    |                             |             |                 |
| 324            | 440331103142701           | 1N7E11DBAD    |                                            | 3,164                         | 3,560                       | 4           | 1,755           |
| 325            | 440234103171201           | 1N7E16CACC    |                                            | 3,415                         | 3,600                       | 4           | 300             |
| 326            | 440202103165801           | 1N7E21BDA     |                                            | 3,384                         | 3,760                       | 4           | 565             |
| 327            | 440158103165601           | 1N7E21(2)     |                                            | 3,622                         | 3,740                       | 4           | 240             |
| 328            | 440155103165001           | 1N7E21ACC     |                                            | 3,574                         | 3,660                       | 4           |                 |
| 329            | 440149103144301           | 1N7E23CAB     |                                            | 3,425                         | 3,810                       | 4           | 1,563           |
| 330            | 440148103164101           | 1N7E21DBA     |                                            | 3,388                         | 3,620                       | 4           | 602             |
| 331            | 440130103153901           | 1N7E22DCC     |                                            | 3,365                         | 3,780                       | 4           | 875             |
| 332            | 440129103161301           | 1N7E22CCC     |                                            | 3,591                         | 3,650                       | 4           | 315             |
| 333            | 440022103171301           | 1N7E33(3)     |                                            | 3,693                         | 3,860                       | 4           | 430             |
| 334            | 435845103163401           | 1S7E10BCAC    |                                            | 3,476                         | 3,700                       | 4           | 300             |
| 335            | 435340103161001           | 2S7E10BAD     |                                            | 3,366                         | 3,660                       | 4           | 675             |
| 336            | 435053103170001           | 2S7E28ADCB    |                                            | 3,492                         | 3,760                       | 4           | 300             |
| 337            | 435052103182801           | 2S7E29        |                                            | 3,661                         | 3,800                       | 4           |                 |
| 338            | 435052103172901           | 2S7E28BDCA    |                                            | 3,459                         | 3,825                       | 4           | 425             |
| 339            | 435050103170501           | 2S7E28ACDC    |                                            | 3,608                         | 3,700                       | 4           | 167             |
| 340            | 435050103165301           | 2S7E28ADD     |                                            | 3,571                         | 3,740                       | 4           | 320             |
| 341            | 435042103180301           | 2S7E29DACA    |                                            | 3,527                         | 3,590                       | 4           | 75              |
| 342            | 435048103171301           | 2S7E28CABA    |                                            | 3,439                         | 3,545                       | 4           | 320             |
| 343            | 435031103173401           | 2S7E28CDBC    |                                            | 3,488                         | 3,560                       | 4           | 77              |
| 344            | 435028103240601           | 2S7E28DDCB    |                                            | 3,477                         | 3,760                       | 4           | 309             |
| 345            | 435018103155801           | 2S7E34ABBA    | CU-83A West Hermosa (WH)                   | 3,554                         | 3,478                       | 1           | 510             |
| 346            | 435019103173101           | 2S7E33BABA    |                                            | 3,533                         | 3,820                       | 4           | 468             |
| 347            | 435010103173001           | 2S7E33BAC     |                                            | 3,500                         | 3,760                       | 4           | 292             |
| 348            | 435008103162501           | 2S7E34BDBC    |                                            | 3,477                         | 3,500                       | 4           | 225             |
| 349            | 435006103163801           | 2S7E34BCB     |                                            | 3,590                         | 3,560                       | 4           | 240             |

#### Table 29. Water wells completed in the Minnelusa aquifer–Continued

Some wells were monitored discontinuously or were monitored continuously for brief periods (figs. 37-39). Although very few hydraulic-head measurements have been made at the Hart Ranch wells, the measurements indicate that a continuous hydrograph at these locations probably would be very similar to that of well RG (fig. 37).



**Figure 37**. Hydraulic head in Hart Ranch No. 1 and 2 wells plotted with the Reptile Gardens (RG) Madison well. The three wells were completed in the Madison aquifer. The plot shows the similarity of hydraulic head in the Hart Ranch wells to that of the Reptile Gardens well.



**Figure 38**. Hydraulic head in well RC-11 (site 62, table 28 and plate 1) completed in the Madison aquifer. The well is influenced by pumping during the summer months.



Figure 39. Hydraulic head in the Wildwood North and South wells completed in the Minnelusa aquifer.