Cartographic Conventions for Symbology and Color - Applications to Health Statistics Mapping

Robert Edsall, PhD
Department of Geography
Arizona State University
robedsallf@asu.edu

Scope of webinar

- The nature of geographic data
- Data models, cartographic models, and connotations
- Color: Dimensions of color and physiology of color perception
- Applying color theory and data models to the mapping of health statistics

Thematic mapping: AIDS in Pennsylvania, 1988

Different mapping techniques lead to different impressions of the phenomenon

EPHT Webinar: Cartographic Conventions for Symbology and Color

Levels of measurement

- Qualitative: difference in kind of thing
- nominal: church types, race, gender, dog breeds, mortality causes
- Quantitative: difference in amount or intensity
- ordinal: ranking of hazards, college basketball rankings
- interval: temperature, time: " 45° is not 3 times as hot as 15°, but it is 30° warmer"; arbitrary zero point (J anuary 1; 0 Celsius)
- ratio: most quantitative data: mortality rates, numerousness of people affected, intensity

Spatial continuity

- What are the differences between the following data sets:
- Locations of Wal-Marts
- Dairy farms in Vermont

- Aggregated census-based demographics
- Temperature

Distribution of the EU Population in 2003

- geographic data can be discrete or continuous
- Does the data occur at points with undefined areas between the data points, or does a value exist at every location?

EPHT Webinar: Cartographic Conventions for

Spatial variation

- What is the primary difference between these data sets:
- Sales tax rates
- Electoral college results for 1992
- Raccoon density

- CO concentration near a factory
- Geographic data can vary abruptly or smoothly
- Are there boundaries (natural or cultural) that exist that govern the distribution of the data?

EPHT Webinar: Cartographic Conventions for

Color on maps

- advent of computer maps (GIS, Internet, etc.) affords use of color on maps like never before
- map interpretation and color perception intimately linked
- factors in color perception:
- medium of presentation
- color blindness
- psychophysical effects
- cultural factors and connotations
- cartographic conventions and mental models

EPHT Webinar: Cartographic Conventions for
February 27, 2006 Symbology and Color
robedsall@asu.edu - 8

2004 election:

Red $=$ Bush
Blue = Kerry
Choropleth map, discrete binary color scheme

Same data, different

 impression:Red $=$ strongly Bush
Purple $=$ close to even
Blue = strongly Kerry
Cartogram (size based on population), continuous diverging hue transition

Michael Gastner, M., C. Shalizi, and M. Newman (2004). "Maps and cartograms of the 2004 US presidential election results,"
http://www. cscs.umich.edu/~crshalizi/election/EPHT Webinar: Cartographic Conventions for

The dimensions of color

- color has three dimensions
- colors can be described numerically by a triple (a, b, c) of values
- different models use different "axes"
- RGB, CMY(K), HCV, Munsell, Pantone, ClE
- each uses slightly different definitions

- most common to describe mapping color techniques: HSB

HSB java applet: http://people.ucsc.edu/~miz/hue/

EPHT Webinar: Cartographic Conventions for Symbology and Color

Hue, saturation, brightness

- hue - colors of the rainbow ROYGBIV
- saturation - amount of other hues other than dominant hue
- gray is desaturated - electric blue is saturated
- a.k.a. chroma, intensity
- brightness - amount of white or black
- light green through forest green to dark green

- a.k.a. value, lightness

Psychophysical effects of color perception

- simultaneous contrast
- perceived brightness and color of area is influenced by surrounding color
- darker background makes colors look lighter
- implications for mapping
- chromostereopsis
- "advance-and-retreat"
- longer wavelength light appears closer than shorter wavelengh
- implications for mapping

Simultaneous contrast

Simultaneous contrast

Chromostereopsis

Most see the red as closer to the eye than the blue

Color use issues

- color blindness
- color variations among media types

Color blindness

- maps need to be designed with color deficiencies of users in mind

Simulate color blindness: http://colorlab.wickline.org/colorblind/colorlab/
EPHT Webinar: Cartographic Conventions for

Color schemes for the color blind

- certain color schemes not discernable for the color blind
- most color impairment is red-green; also blue-yellow

EPHT Webinar: Cartographic Conventions for Symbology and Color

Color schemes for the color blind

- from usability.gov :

Guideline: Do not rely on color alone to communicate a message.

Comments: Ensure that text and graphics are understandable when viewed without color. If designers depend on color to convey information, colorblind users and users with devices that have noncolor or nonvisual displays cannot receive the information.

- use vischeck to see how your map or graphic will look to the color blind

vischeck: http://www.vischeck.com/

EPHT Webinar: Cartographic Conventions for

Media issues

- graphics for b\&w photocopying

- is there enough of a lightness difference?
- graphics for LCD/RGB projectors
- projectors tend to wash out saturated colors, making bright colors look pastel and making pastel look white
- graphics for color printing
- color printers vary; use CMYK as color specs for color printing

Color Brewer

Learn much more and play with color schemes at

Color Brewer

Color Brewer: http://www.personal.psu.edu/faculty/c/a/cab38/ColorBrewerBeta.html
EPHT Webinar: Cartographic Conventions for

Color schemes for thematic mapping

- qualitative mapping
- if difference in kind, colors should vary by hue

Republican
Democrat
Independent

EPHT Webinar: Cartographic Conventions for
February 27, 2006

Land Cover

Republican
Democrat
I ndependent Symbology and Color
robedsall@asu.edu - 22

Hue scheme - quantitative data?

hue differences are confusing for quantitative data - which color is least / greatest?

possible exception: intensity/heat connotations of temperature symbols: red $=$ hot, blue $=$ cold

EPHT Webinar: Cartographic Conventions for Symbology and Color
robedsall@asu.edu - 23

Choropleth maps: traps

Appropriate match to data model (abrupt, continuous data), but color scheme is not logically ordered

EPHT Webinar: Cartographic Conventions for Symbology and Color

Choropleth maps: traps

Appropriate match to data model (abrupt, continuous data), but color scheme is not logically ordered

EPHT Webinar: Cartographic Conventions for

Color schemes for thematic mapping

- quantitative mapping
- if difference in count or degree, use sequential color scheme
- lightness variations: darker = more

Color schemes for thematic mapping

- quantitative mapping
- if there is a critical class or
critical class break, use diverging color scheme

EPHT Webinar: Cartographic Conventions for

Choropleth maps: traps

I nappropriate cartographic model for data model (abrupt, discrete) - data are not normalized to account for area, population differences

EPHT Webinar: Cartographic Conventions for Symbology and Color

Choropleth maps: traps

HEADCOUNT ENROLLMENT BY STATE \& US TERRITORY

I nappropriate match to data model (abrupt, discrete data), AND color scheme

 is not logically ordered

Fall 2005
EPHT Webinar: Cartographic Conventions for Symbology and Color

