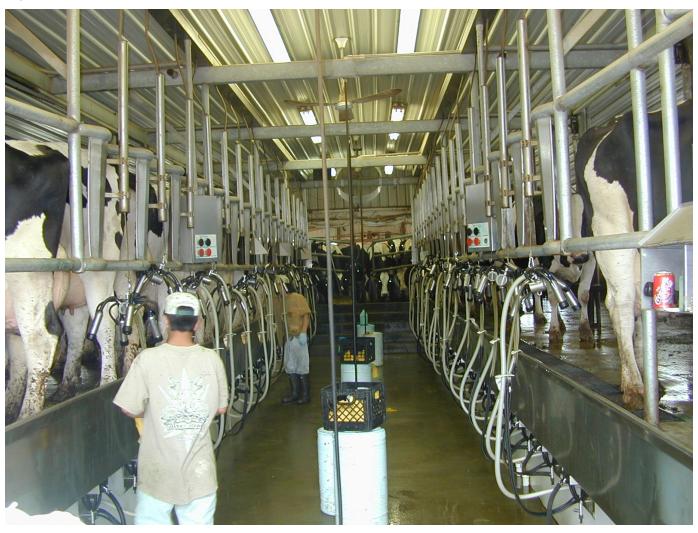
What MUN Tells Us About Protein Nutrition of the Dairy Cow

World Dairy Expo October 2006

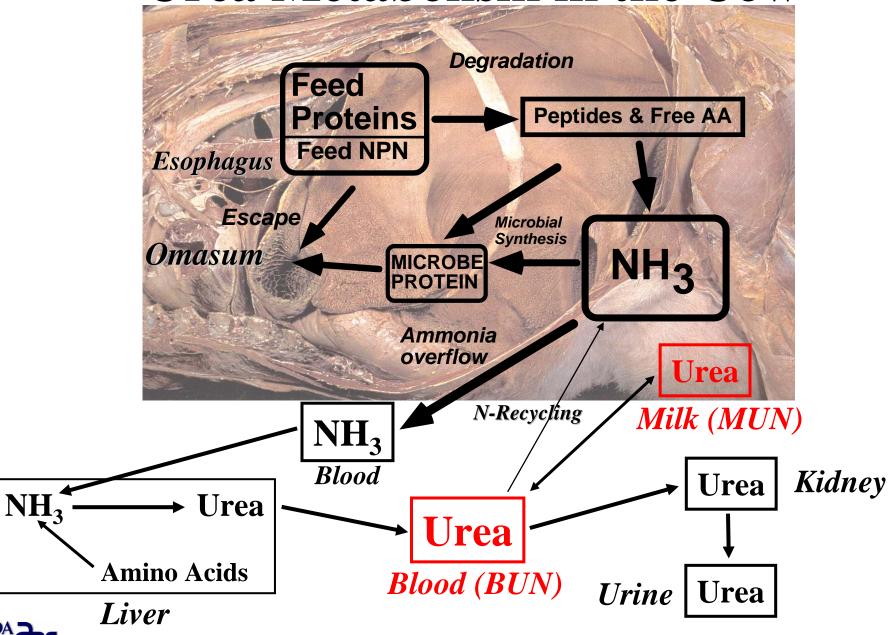
Glen Broderick
U.S. Dairy Forage Research Center
Madison, Wisconsin


Crude Protein (N) Utilization is the Net Result of:

- 1. How Much Protein the Cow Eats, &
- 2. How Much Protein the Cow Secretes in Milk.
- 3. The Rest of the N is Excreted in Manure.

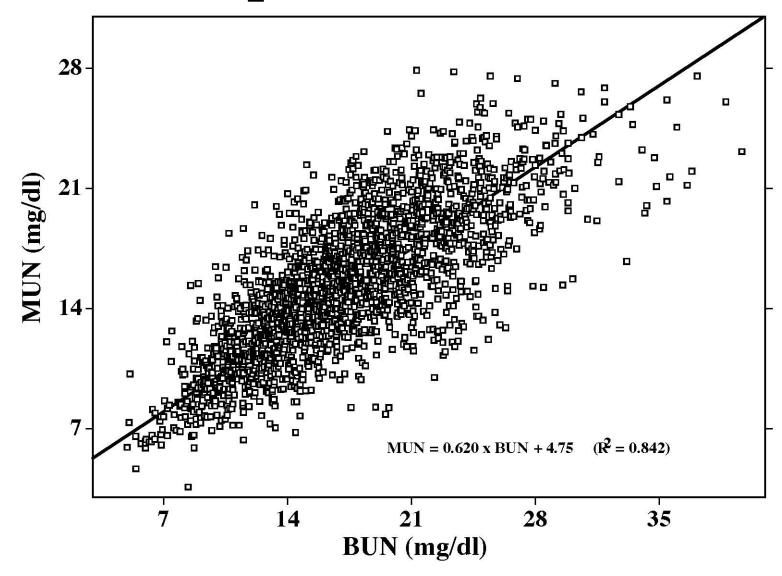
How Can We Use Milk Urea Nitrogen (MUN) to Make Better Use of Protein?

- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.



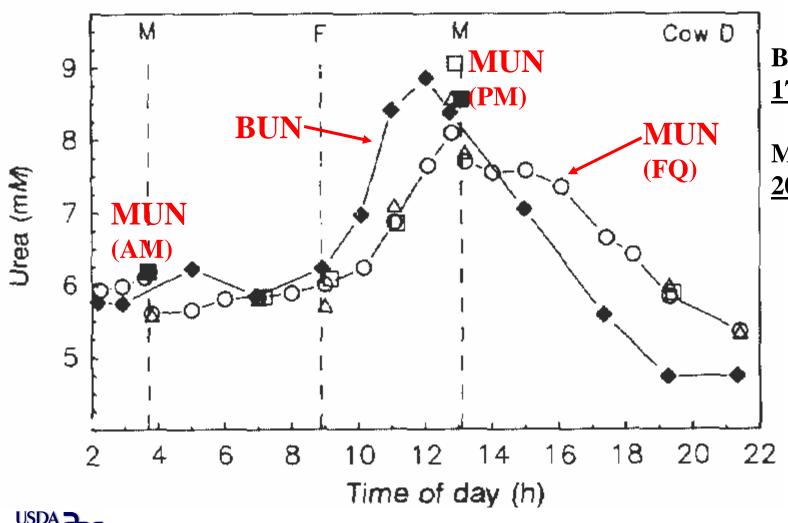
- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

Urea Metabolism in the Cow



- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

Relationship of Blood & Milk Urea

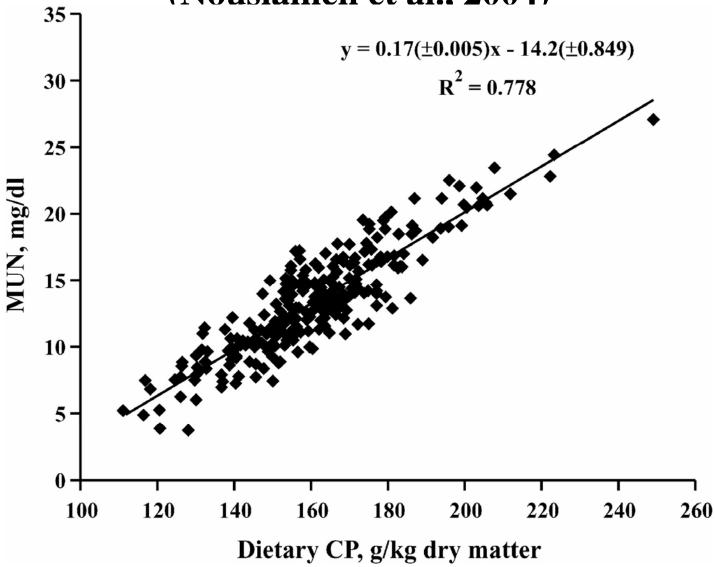


MUN Mirrors BUN

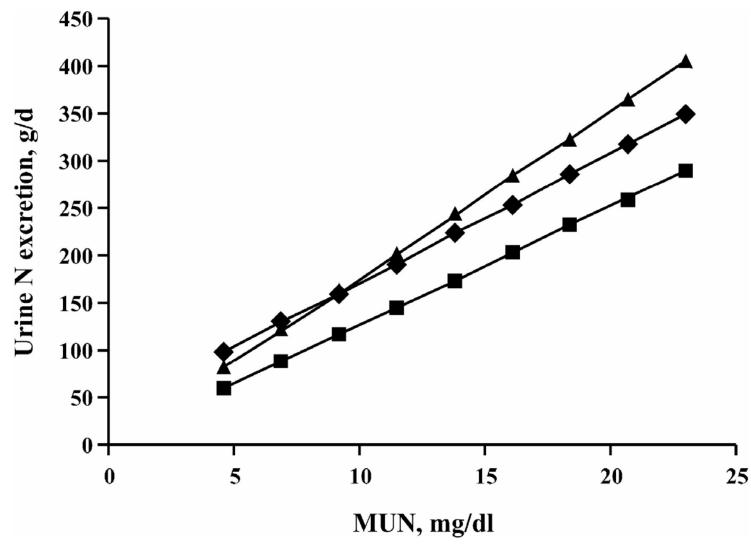
(Gustafsson & Palmquist, 1993)

BUN (Weighted avg.) = 17.0 mg/dl

MUN (AM/PM avg.) = 20.7 mg/dl


- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

Relationship of MUN to Dietary CP


(Nousiainen et al., 2004)

Relationship of Urinary N to MUN (Nousiainen et al., 2004)

MUN as Diagnostic Tool for N-Utilization

(Mixed Models)

Factor	Equation	\mathbb{R}^2	Ref.		
CP, % of DM	$= 0.27 \times MUN + 13.7$	0.84	Broderick & Clayton, 1997		
	$= 0.45 \times MUN + 10.0$	0.78	Nousiainen et al., 2004		
Urinary N, g/d	$= 14.1 \times MUN + 26$	0.92	Nousiainen et al., 2004		
	$= 0.01284 \times MUN \times BW$	• • •	Wattiaux & Karg, 2004		
Urine, liters/d	$= 0.563 \times MUN + 17.1$	• • •	Nennich et al., 2006		
N-Efficiency, %	$= -0.73 \times MUN + 38$	0.93	Nousiainen et al., 2004		
MUN, mg/dl	$= 0.22 \times PBV (g/d) + 11.8$	0.94	Nousiainen et al., 2004		
	= 11.8 (Rumen Prot. Balance = 0)				

(MUN = mg/dl; BW = lbs, H = 1400 lbs, J = 1000 lbs)

MUN as Diagnostic Tool for N-Utilization

(Mixed Models)

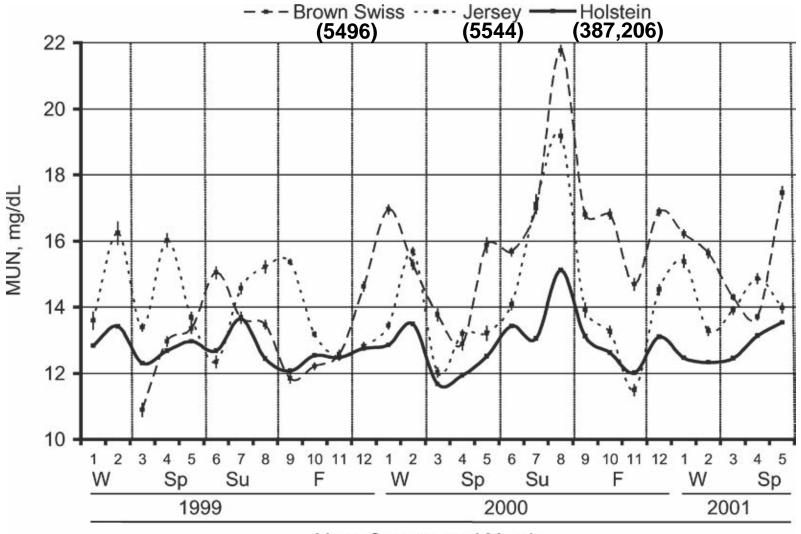
Factor	Equation	\mathbb{R}^2	Ref.		
CP, % of DM	$= 0.27 \times MUN + 13.7$	0.84	Broderick & Clayton, 1997		
	$= 0.45 \times MUN + 10.0$	0.78	Nousiainen et al., 2004		
Urinary N, g/d	= 14.1 x MUN + 26	0.92	Nousiainen et al., 2004		
	$= 0.01284 \times MUN \times BW$	• • •	Wattiaux & Karg, 2004		
Urine, liters/d	$= 0.563 \times MUN + 17.1$	• • •	Nennich et al., 2006		
N-Efficiency, %	$= -0.73 \times MUN + 38$	0.93	Nousiainen et al., 2004		
MUN, mg/dl	$= 0.22 \times PBV (g/d) + 11.8$	0.94	Nousiainen et al., 2004		
	= 11.8 (Rumen Prot. Balance $= 0$)				

(MUN = mg/dl; BW = lbs, H = 1400 lbs, J = 1000 lbs)

- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

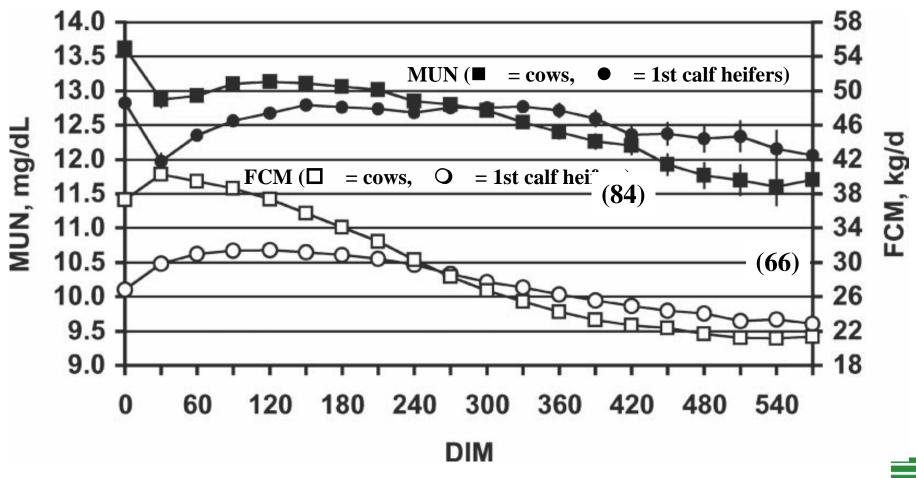
Factors Related to MUN

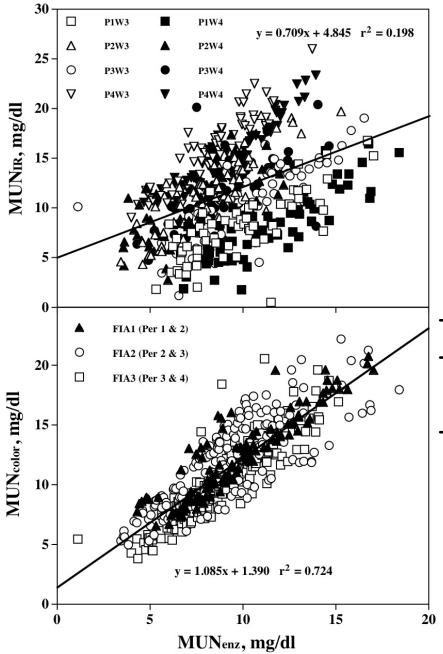
(Broderick & Clayton, 1997)


- 1. Dietary CP (Content; CP/Energy; Intake)
- 2. N-Efficiency (Nousiainen et al., 2004)
- 3. Dry Matter & Energy Intake
- 4. Parity
- 5. Body Weight
- 6. Milk & Fat Yield
- 7. Days-In-Milk
- 8. MUN is Heritable (Mitchell et al., 2005)

Seasonal Variation in MUN

(Wattiaux et al., 2005)



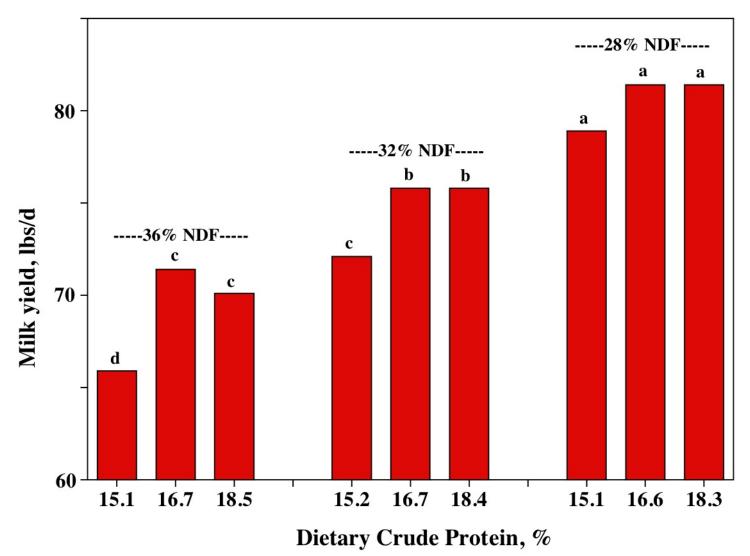

Variation in MUN Over the Lactation

(Wattiaux et al., 2005)

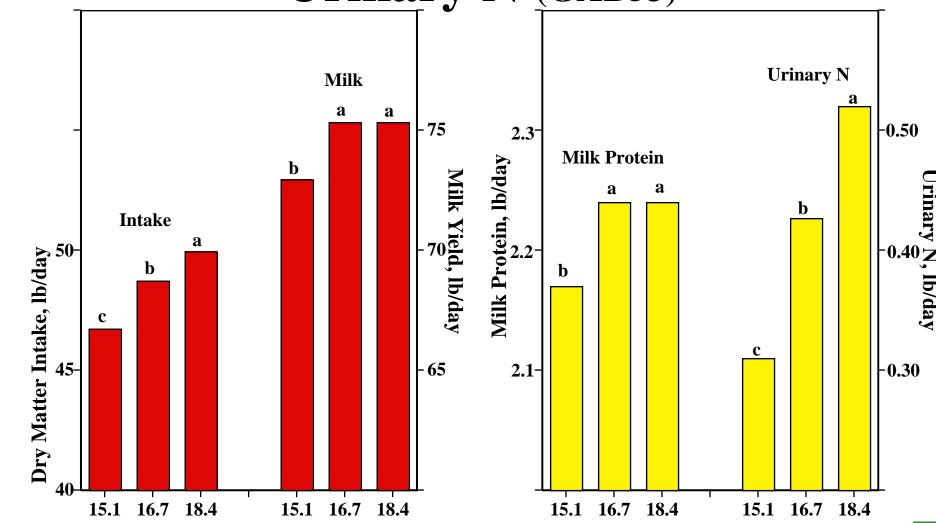
MUN Varies by Analysis (GAB53)

R-squares Relating MUN by "Color" & IR to Dietary CP (%) & CP-Intake (lbs/day)

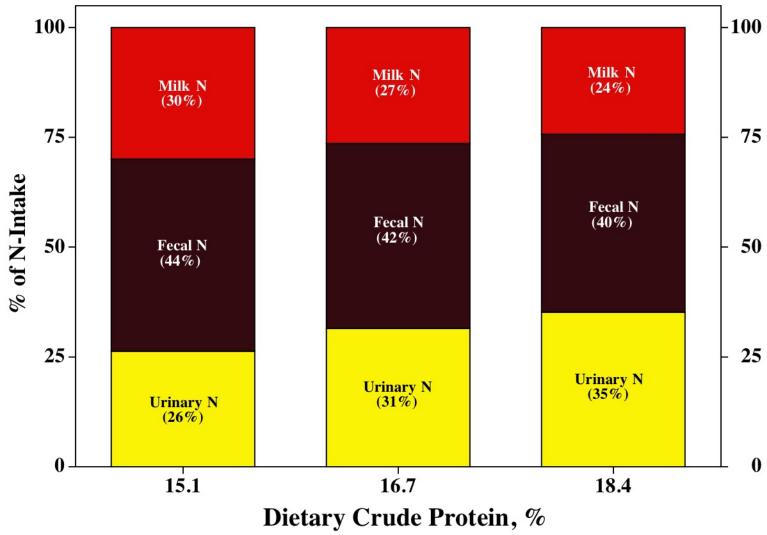
MUN Assay	CP	CP-Intake
IR	79%	84%
Color	79%	85%


- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

Effect of Dietary CP or Energy on Milk Yield


(GAB53)

Effect of Dietary CP on Intake, Yield & Urinary N (GAB53)

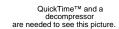


N-Utilization Falls when CP Increases

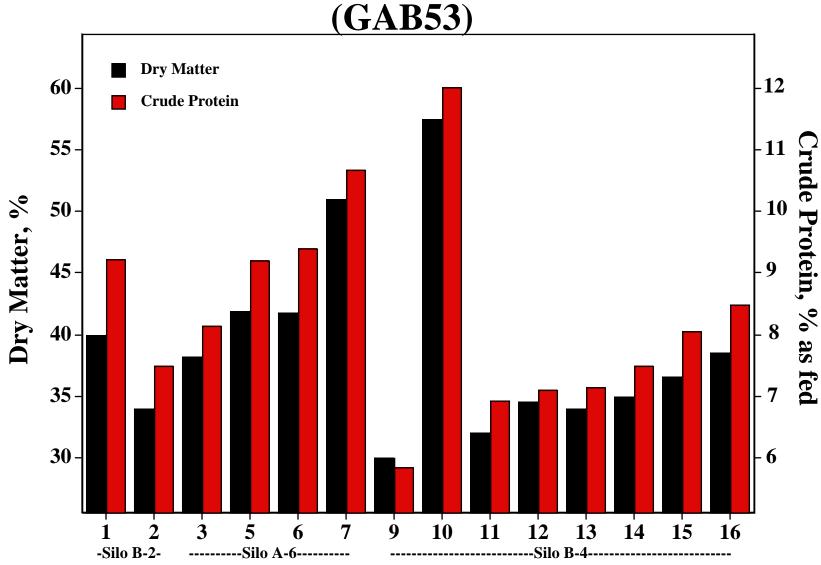
(GAB53)

Dietary CP & Production, N-Excretion (GAB53)

Variable


15.1% CP 16.7% CP 18.4% CP *Prob*.

Milk, lbs/d	73.2 ^b	75.2a	75.4 ^a	< 0.01
Protein, lbs/d	2.18^{b}	2.25 ^a	2.25 ^a	0.04
Milk-N/NI, %	<u>30</u> a	27 ^b	24 ^c	< 0.01
Fecal-N, g/d	236 ^c	264 ^b	273 ^a	0.01
Urine-N, g/d	141 ^c	192 ^b	236 ^a	< 0.01
MUN, mg/dl	9.2 ^c	12.4 ^b	15.9a	< 0.01

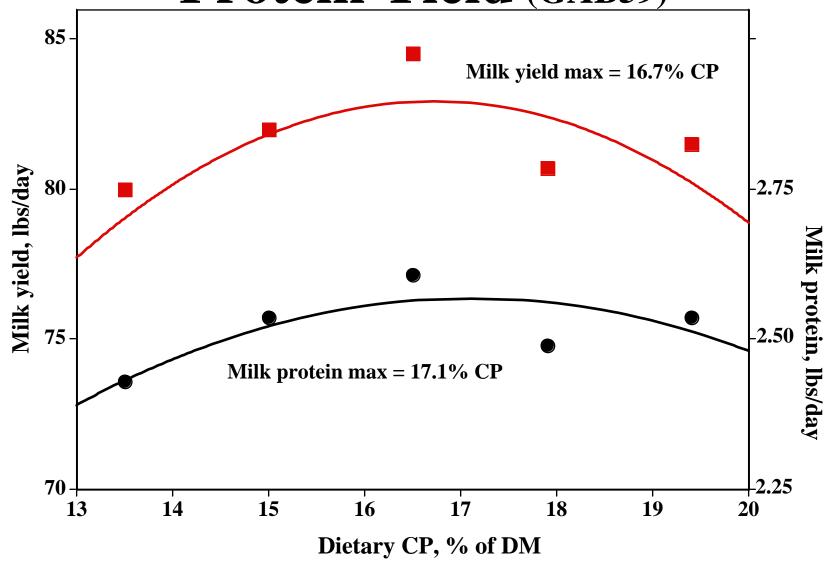

Changes in CP Over a 17-Week Trial (GAB53)

Variation of DM & CP in Alfalfa Silage

Effect of Forage Source & CP on Production (Wattiaux & Karg, 2004)

Forage/CP (%)							
	Alfalfa	a silage	Corn	silage	Prob. ¹		
Item	16.5	18.0	16.2	17.1	For.	Prot.	
DMI, lb/d	54	56	53	54	0.41	0.30	
Milk, lb/d	102	103	109	107	0.03	0.97	
3.5% FCM, lb/d	102	102	101	101	0.84	0.95	
Fat, lb/d	3.8	3.5	3.4	3.3	<u>0.08</u>	0.35	
True protein, lb/d	2.8	2.8	2.9	2.9	0.20	0.88	
MUN, mg/dl	11.7	12.2	11.5	12.8	0.35	< 0.01	

¹No Forage*Protein interactions were observed (P > 0.60). Alfalfa Silage Diets = 41% AS + 14% CS; Corn Silage Diets = 41% CS + 14% AS


Diet Composition (GAB59)

<u> Dietary CP</u>					
13.5	15.0	16.5	17.9	19.4	
		(% of DM			
25	25	25	25	25	
25	25	25	25	25	
44	41	37	34	30	
2.4	5.8	9.2	12.6	16.0	
2.5	2.5	2.5	2.5	2.5	
0.6	0.6	0.6	0.6	0.6	
0.5	0.5	0.5	0.5	0.5	
13.5	15.0	16.5	17.9	19.4	
25	25	25	25	25	
	25 25 44 2.4 2.5 0.6 0.5	25 25 25 25 44 41 2.4 5.8 2.5 2.5 0.6 0.6 0.5 0.5	13.5 15.0 16.5 (% of DM) 25 25 25 25 25 25 44 41 37 2.4 5.8 9.2 2.5 2.5 2.5 0.6 0.6 0.6 0.5 0.5 0.5 13.5 15.0 16.5	(% of DM) 25 25 25 25 25 25 25 25 44 41 37 34 2.4 5.8 9.2 12.6 2.5 2.5 2.5 2.5 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5 13.5 15.0 16.5 17.9	

Effect of CP (Solvent SBM) on Milk & Protein Yield (GAB59)

Effect of CP on Production (GAB59)

			Diet			
Trait	13.5	15.0	16.5	17.9	19.4	prob.
Milk, lbs/d	80	82	84	81	82	0.10
Protein, lbs/d	2.4	2.5	2.6	2.5	2.5	0.09
MUN _R , mg/dL	7.7 ¹	8.5 ^{tl}	11.2	13.0	15.6 °	< 0.01
MUN mg/dL	7.5 °	9.8 ¹	13.6	16.7 ^a	19.6	< 0.01
Urinary excretion						
Urine volume, L/d	17.3°c	15.4	17.9	19.4 ^b	21.7	< 0.01
Urine-N, g/d	113	140 ¹	180	213	257 ^a	< 0.01
Calc. volumeL/d	21.4	21.9	23.4	24.4	25.9	
Calc. Urine-Ng/d	129	142	187	217	260	

a-e(P < 0.05)

 $^{^{1}}$ Equation of Nennich et al. (2006) & MUN $_{IR}$.

²Equation of Wattiaux & Karg (2004) & MUN_{IR}.

CHO Source--Diet Composition (Charbonneau et al., 2006)

	Diet					
Ingredient	Control	\mathbf{GC}	GC+S	GC+W		
		(% of	DM)	_		
Alfalfa Silage	45	45	45	45		
Cracked corn	47					
Ground Corn		47	35	35		
Wheat Starch			11			
Dried Whey				11		
Treated SBM	7.4	7.4	8.4	8.4		
Vit-Min.	1.0	1.0	1.0	1.0		
Analysis						
Crude protein	18.7	17.9	17.4	18.0		
RDP	13.7	12.8	12.7	13.0		
NDF	28	27	25	25		

CHO Source--Production

(Charbonneau et al., 2006)

Ingredient	Control	GC	GC+S	GC+W	Prob.
DMI	50 ^a	54 ^b	54 ^b	57 ^a	< 0.01
Milk	75.0 ^c	82.5ab	82.9a	78.9 ^b	< 0.01
Protein	2.4 ^c	2.7 ^a	2.7 ^a	2.6 ^b	< 0.01
Fat	2.8	2.9	2.8	3.0	0.45
MUN, mg/dl	13.4a	10.7 ^b	9.9 b	9.8 ^b	< 0.01
Milk-N/N-I, %	24.8 ^b	27.9a	28.4 ^a	24.9 ^b	< 0.01
Calc. Milk-N/N-I, % (Nousiainen et al., 20)		30	31	31	

Supplementing Rumen Protected-Met While Decreasing CP (GAB67)

Item Cl	P, %	18.6	17.3	16.1	14.8	P > F
RP-Met	, g/d	0	8	17	25	
Milk, lbs/d		88 ^b	92 ^a	92 ^a	88 ^b	0.05
Milk/DMI		1.72 ^{ab}	1.80 ^a	1.77 ^{ab}	1.69^{b}	0.06
Protein, lbs/d		2.54	2.71	2.71	2.65	0.19
Milk-N/NI, %	0	26 ^c	30^{b}	32 ^b	34 ^a	< 0.01
MUN, mg/dl		14.5 ^a	11.8 ^b	9.4 ^c	7.9 ^d	< 0.01
Calc. Urine-N, (Wattiaux & Karg,		245	200	159	137	
Urine-N, lbs/30	0 d		30	57	74	

CP Supplements & Production

(Brito & Broderick, 2007)

Item	Urea	SSBM	CSM	CM	$P > \mathbf{F}$			
(lbs/d)								
DM intake	49 ^c	53 ^b	55 ^{ab}	55 ^a	< 0.01			
Milk yield	73 ^b	88 ^a	89a	91 ^a	< 0.01			
Protein yield	2.0 ^c	2.7 ^{ab}	2.6 ^b	2.8 ^a	< 0.01			
Fat yield	2.2 ^c	2.7 ^{ab}	2.6 ^b	2.8 ^a	< 0.01			
MUN, mg/dl	16.9a	12.0 ^b	10.0°	11.6 ^b	< 0.01			
Calc. Urine-N, g/d	286	203	169	196				

SSBM = Solvent Soybean Meal; CSM = Cottonseed Meal; CM = Canola Meal Diets Formulated from AS, CS & HMSC & had $\underline{16.5\% CP}$ $\underline{^{a-c}(P < 0.05)}$

Supplementing RUP or CP on Intake & Yield

(Olmos & Broderick, 2006)

Item Solvent SBM, % DM Expeller SBM, % DM	15.6% _{RUP} 3.6 4.5	16.6% 9.6 0.0	16.6% _{RUP} 4.6 5.9	17.6% 11.7 0.0	Stats
DMI, lb/d	56	56	56	58	B vs. D
Milk, lb/d	85	88	89	88	A vs. B
Protein, lb/d	2.7	2.8	2.8	2.8	A vs. B(.11)
MUN _{IR} , mg/dl	11.0	11.5	12.1	13.5	B vs. D
Milk N/NI, %	30	29	29	27	B vs. D

(Diets Contained 20% Alfalfa Silage, 35% Corn Silage & 29-33% High Moisture Corn)

- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

What is the "Optimum" MUN?

Source	Optimum (mg/dl)	Criteria	
AgSource	10-14	Safety margin	
GAB53	12.4	Yield & N-eff.	
Wattiaux & Karg (2004) 11.6	Yield	
GAB59	11.2	Yield & Urine N	
Charbonneau et al. (200	10.3	Yield & N-eff.	
Mepron study (GAB67)	10.6	Yield & N-eff.	
Olmos (2006)	11.8	Yield & N-eff.	
Brito (2007)	11.8	Yield & Urine N	
Kohn (2002)	10-12 (12-14=Jerseys)	Field Study	
Nousiainen et al. (2004)	11.8	Rumen N-Equil.	
Overall	11.3	Average	

What About Bulk Tank MUN?

(USDFRC, March 1 - 25, 2006)

Source	Mean	CV	Range	
			low	high
Fat, %	3.77	2.1%	3.53	3.90
Protein, %	2.93	2.3%	2.85	3.20
SCC, thousand	370	8.7%	309	453
MUN, mg/dl	10.5	11.2%	8.8	12.7
	(MUN r	ose 9.5 to 12	2.7 in 1-day)	

- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

MUN Thumb Rules for the Farm

(AgSource)

- 1. Establish Your MUN Baseline.
- 2. Get Your MUN's Under Standard Conditions (Same Milking; Group Means; etc.).
- 3. Exclude Cows with Mastitis & < 30 DIM.
- 4. Number of Cows to Test for MUN:
 - a. > 50% of Each Group or Herd (AgSource)
 - b. 4 Cows, \pm 2 Units; 16 Cows, \pm 1 Unit (B & C, 1997)
- 5. Follow MUN Trends in Archived Data.

- 1. N-Metabolism in the Cow.
- 2. MUN Reflects Blood Urea N & Wastage of Protein.
- 3. Relationships of MUN to Protein Utilization.
- 4. Factors Affecting MUN Values.
- 5. Testing & Using the MUN Predictions.
- 6. Optimum MUN (?); Bulk Tank MUN.
- 7. MUN Thumb Rules.
- 8. The Future of MUN.

Current Limitations of MUN

- 1. Timeliness--Data Can Come Too Late to be Useful (DHIC = 3-5 d).
- 2. Accuracy & Standardization.
- 3. Integration with Other Information.

Measurement of MUN Concentrations & Secretion Rates in Parlor

Experimental Real-Time MUN Determinations

Jenkins et al. (2000)--Enzymatic Assay for MUN

In-Line NIRS Milk Analysis (MUN, Milk Composition):

Tsenkova (2001)

Kawamura et al. (2005)

Are These Assays Robust Enough for Practical Parlors?

Summary

- 1. MUN Tells Us About N Inefficiency.
- 2. Timely MUN Values Useful for:
 - a. Detecting Diet Problems.
 - b. Estimating Urine N & N Efficiency.
- 3. Standardize MUN Values.
- 4. Optimum (?) MUN Range:
 - a. 10 to 14 mg/dl (AgSource)
 - b. 10 to 12 mg/dl (Broderick; +2 = Jerseys)

