Challenges of utilization of High Protein Forages by Lactating Dairy Cows

Pekka Huhtanen¹, Glen A Broderick², James B. Russell³

¹MTT Agrifood Research Finland, ²USDA-ARS, Madison, Wi ³USDA-ARS, Ithaca, NY

Introduction

Forages are essential for cow health
High quality forages often have high concentrations of CP
Forage (silage) N is rapidly and extensively degraded in the rumen → High rumen ammonia concentrations and rumen N losses
N utilization can be low (20-25%) in cows fed

- high quality forages (silages)
- Increased risk of
 - Ammonia volatilization
 - Nitrate losses

Rumen ammonia concentration in cows fed diets based on grass silage (Kim et al., 1999)

 CP content 196 g/kg DM
In cows fed grass or legume silages rumen postprandial rumen ammonia N is very high
High peak values

Effects of dietary CP and rumen ammonia on rumen N losses in cows fed grass silage based diets (MTT data)

Rumen N losses increase with increasing Dietary CP content (70% of increased CP lost from the rumen)

Rumen N losses increase with rumen ammonia concentration

Effects of protein supplementation of grass silage based diets

- Substantial production responses are obtained to supplementary protein, but:
 - Marginal responses have been relatively low (Fish meal 0.15, Rapeseed (Canola) 0.15, Soybean 0.12)
 - N efficiency (Milk N / N intake) always decreases
 - Nearly all incremental manure N excreted as urinary N

Production economy and environment in conflict

Effects of increasing dietary CP concentration of grass silage based diets on protein yield and N efficiency

Effects of increased CP intake from earlier harvest to protein yield and N efficiency

- Protein yield responses to earlier harvest of grass silage as good as with the best protein supplements
- Increased ME supply
 - Intake
 - Digestibility
- Provided grass not harvested too early

Data from Rinne et al. 1999; Kuoppala et al. 2005

Effect of protein supplementation on protein yield & N utilization

Shingfield et al. (2001)

Strategies to improve efficiency of N utilization

Improve efficiency of microbial N synthesis

- Ratio between RDN and fermentable energy
- Synchronization of the rates of N and energy release
- Reduce extent of proteolysis in the silo and/or in the rumen
- Optimize energy and protein supplementation

Synchronization of energy and N release in the rumen

Asynchronous release of energy and N from silage has been suggested as one reason for low efficiency of MPS The studies testing this hypothesis have often been confounded by dietary ingredients (nutrient supply)

Effect of synchronization of energy and N release on microbial synthesis in sheep (Henning et al. 1993)

	EP-NP	EP-NG	EG-NP	EG-NG
Exp1				
N intake (g/d)	14.2	13.9	14.3	14.6
NAN flow (g/d)	13.8	14.6	18.2	17.9
Microbial N (g/kg OMADR)	15.0	17.3	18.7	20.3
E×p2				
N intake (g/d)	20.3	21.8	20.6	20.6
NAN flow (g/d)	24.5	26.6	26.5	27.5
Microbial N (g/kg OMADR)	22.1	23.3	24.7	29.7

E = Energy, N = Nitrogen, P = Pulse dose 2 x day, G = Continuous infusion

Effects of degree of synchrony of energy and N release on N metabolism (Kim et al., 1999)

	Control	Cont.	Synchr.	Asynchr.
Ammonia N (mg /L)	211	136	162	172
Urine N (g/d)	189	129	133	136
PD (mmol/d)	245	281	273	241
Microbial N (g/d)	173	204	197	169
Plasma urea N (mgL)	211	164	174	163

- Control diet grass silage + barley + groundnut meal (196 g CP/kg DM)
- Two kg of maltodextrin infused continuously (Cont.), 0-6 h (Synchr.) or 6-12 h after feeding (Asynchr.)

Effect of degree of synchrony of energy and N release on rumen pH and ammonia N (Kim et al., 1999)

Response to high moisture ear corn (HMEC) in cows fed alfalfa hay (AH) or silage (AS) (Vagnoni & Broderick, 1997)

HMEC, %	24		4		
Forage	AH	AS	AH	AS	Interaction
CP (g/kg DM)	170	173	162	164	
TDMI (kg/d)	22.8	21.9	24.2	23.5	
Protein (g/d)	960	900	1060	1070	0.09
N Efficiency	0.248	0.238	0.270	0.278	
Microbial CP (g/d)	1981	1925	2081	2262	0.02

Increased HMEC increased protein yield (170 vs. 100) and microbial CP (337 vs. 100) on AS versus AH

- AS was more limited in AA supply
- Increased CHO markedly improved N efficiency

Response to fishmeal (FM) in cows fed alfalfa hay (AH) or silage (AS) (Broderick, 1995; Vagnoni & Broderick, 1997)

Variable	AS	AH	AS+FM	AH+FM
Diet CP (g/kg DM)	168.5	153.8	185.5	170.8
DMI (kg/d)	23.0	24.7	23.8	24.7
Protein (g/d)	1093	1153	1193	1177
N efficiency	0.281	0.304	0.270	0.278

Without FM, AH increased milk protein 70g/d

- Response to FM higher with AS than AH (100 vs. 24)
- High marginal response to supplementary protein with AS (0.185) suggests the diet was limited by AA supply

Effects of forage conservation method and proportion concentrate on rumen N metabolism in growing cattle

Forage	Silage				Hay		
Concentrate (g/kg DM)	250	500	750	250	500	750	
CP (g/kg DM)	168	165	161	148	152	155	
Rumen ammonia N (mmol/l)	13.9	12.8	12.0	11.3	11.7	12.0	
N intake (g/d)	178	181	174	161	165	173	
Duodenal flow (g/d)							
Non-ammonia N	142	152	150	132	146	150	
Microbial N	77	89	85	64	76	79	
Feed N	53	52	54	56	59	59	
N degradability	0.71	0.72	0.68	0.65	0.65	0.65	

(Jaakkola & Huhtanen, 1993)

Reducing proteolysis

- NPN in red clover is markedly lower compared with grass or alfalfa silages
- Reduced proteolysis is associated with polyphenol oxidase (PPO) activity in red clover
- Comparisons of red clover vs. alfalfa and red clover vs. grass silages can be used as a model to describe potential benefits of reducing proteolysis

Efficiency of N utilization of red clover (RC) and grass silages in the rumen (Data from MTT omasal sampling studies)

- N utilization in the rumen much better with RC than with grass silages (zero N balance at 136 vs. 168 g CP/kg DM)
- Lower rumen ammonia at same CP concentration
 - Reduced protein degradation
 - Improved microbial synthesis

Effect of replacing grass silage with red clover silage on NAN flow and protein yield

Increased N intake from gradual or total replacement of grass with RC increased NAN Flow

 BUT increased protein flow did not increase milk protein yield
WHY?

Effect of red clover versus alfalfa silages on rumen N efficiency and milk protein yield (data from Brito et el. 2006; Dewhurst et al., 2003)

Fecal CP higher for red clover (RC) (data from MTT)

 Negative intercept in Lucas test higher for RC vs. primary growth grass
Fecal CP per kg DMI 16 g higher for RC

Apparent CP digestibility lower for RC

Does PPO inhibit protein digestion in the small intestine???

AA composition of forage RUP

- Forage protein is especially low in Met and His Compared to milk protein
- Met (+Lys) likely to be the first limiting AA on typical US dairy cow diets
- His is likely to be the first limiting AA on grass silage based diets
- Due to non-ideal AA composition of forage RUP, its utilization is likely to be lower than that protein supplements

Monitoring N efficiency on the farm

Milk and plasma urea are closely correlated

- Milk urea concentration is closely associated with RDP excess and ammonia absorption from the rumen
- Tissue AA catabolism is another source of plasma and milk urea
- High milk urea concentrations are associated with excesses of RDP and MP

Prediction of urine N (Feed N - Fecal N - Milk N) from dietary CP concentration and milk urea <u>output</u>

Modification of forage plants to improve N efficiency Increase microbial protein synthesis - Increase rate of dNDF digestion - Decrease concentration of iNDF Decrease RDP excess - Decrease CP concentration - Reduce NPN fraction (proteolysis) - Decrease rate of insoluble N degradation Decrease the rate of deamination of AA - Suppression of AA catabolizing microbes

Model simulations

Nordic Dairy Cow Model (Karoline)
Dynamic mechanistic model (Danfær et al. 2006)
Only one parameter changed; others constant
Forage:Concentrate 55:45
Concentrate CP 180 g/kg DM

Simulated responses in N utilization to changes in rate of digestion of grass pdNDF (fixed intake)

Simulated responses in N utilization to changes in CP concentration in grass

Simulated responses in N utilization to changes in pdNDF (fixed intake)

Simulated responses in N utilization to changes in soluble N in grass

Simulated responses in N utilization to changes in rate of degradation of insoluble N

Simulated responses in N utilization to changes in rate of AA deamination

Responses to increased MP partly related to increased ME supply

N	Intercept	ME (MJ/d)	MP (g/d)	RMSE	Adj R2
364	199		0.378	25.1	0.939
364	94	1.29	0.287	24.3	0.947
37	228		0.349	30.6	0.944
37	53	2.09	0.216	26.1	0.957

When ME intake was in the model, marginal response to ME decreased both in data from production trials (n=364) and omasal flow studies (n=37)
MP (g) = NAN * 0.80 * 0.85; ME = 16 * DOM (kg)

Conclusions (1)

Meeting ME requirements of high producing dairy cows without overfeeding RDP is a challenge

N fertilization of grass should be optimized on the basis of plant requirements

Good ensiling management required to avoid unnecessary proteolysis and losses of WSC

Conclusions (2)

Red clover improves N utilization in the rumen compared to both grass and alfalfa but overall protein utilization has been poor

Modifying forages for improved N utilization:

- Improve digestibility (less iNDF, faster kd for dNDF)
- Reduce CP concentration
- Reduce proteolysis in the silo (less NPN) and rate of degradation of insoluble protein

Simulated responses in N utilization to changes in rate of digestion of grass pdNDF (ad libitum intake)

Simulated responses in N utilization to changes in pdNDF (ad libitum intake)

