Options for Harvesting Corn Stover for Supplemental Feed

Kevin Shinners
University of Wisconsin

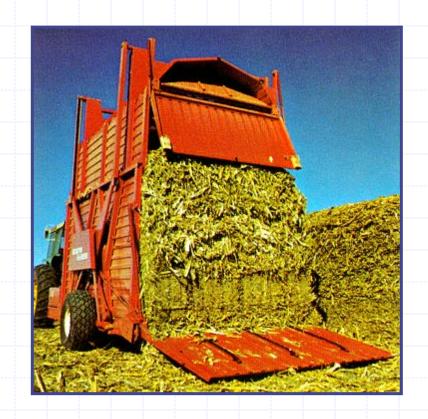
- Why consider corn stover:
 - ✓ High feed costs
 - ✓ Abundant 10 million tons in WI
 - ✓ Relatively low cost
 - ✓ High in effective fiber
 - ✓ Reduces residue

- Important issues with corn stover :
 - ✓ How to harvest, store and feed
 - ✓ Cost
 - ✓ Right feed additives

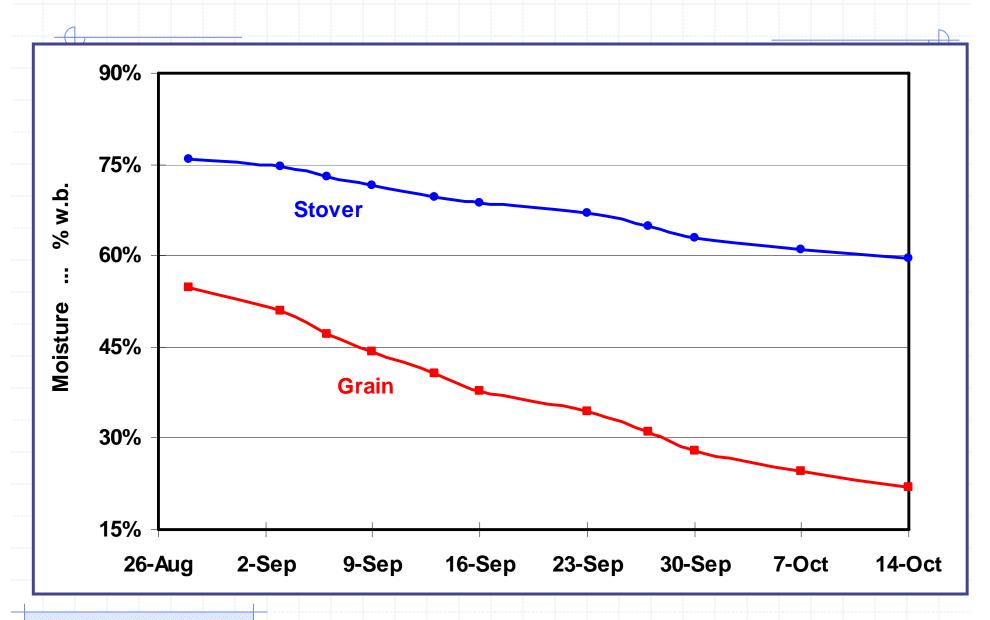
- How corn stover can be used:
 - ✓ Effective fiber source @ 2 5% of dietary DM
 - ✓ Feed for non-lactating and beef animals
 - Bedding
 - ✓ Biomass feedstock

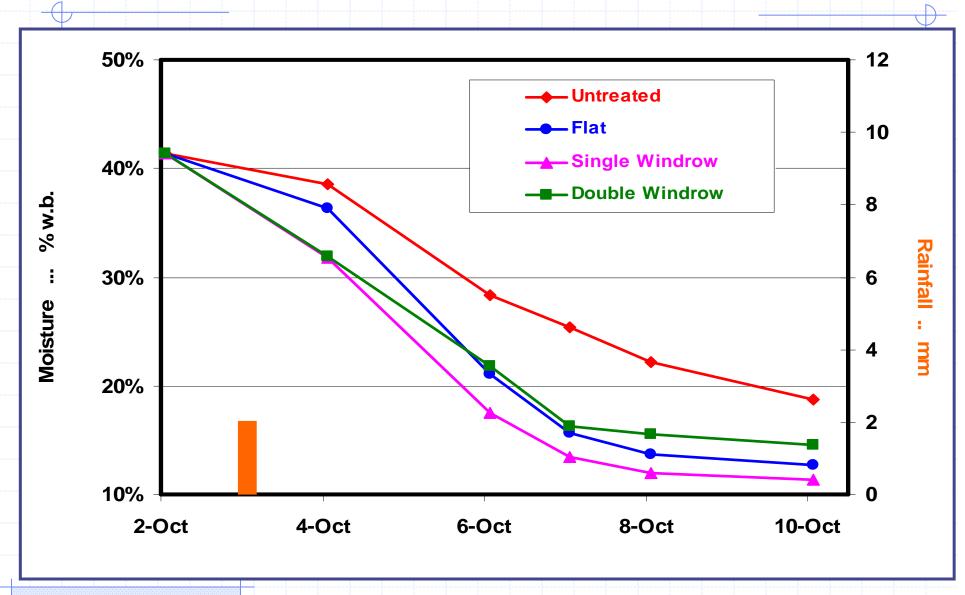
- What are stover yields?
 - ✓ Rough rule of thumb:
 - 1: 1 ratio with grain weight
 - Every 35 bu ~ 1 ton stover
 - 140 bu/ac ~ 4 ton/ac

Dry Bale Harvesting

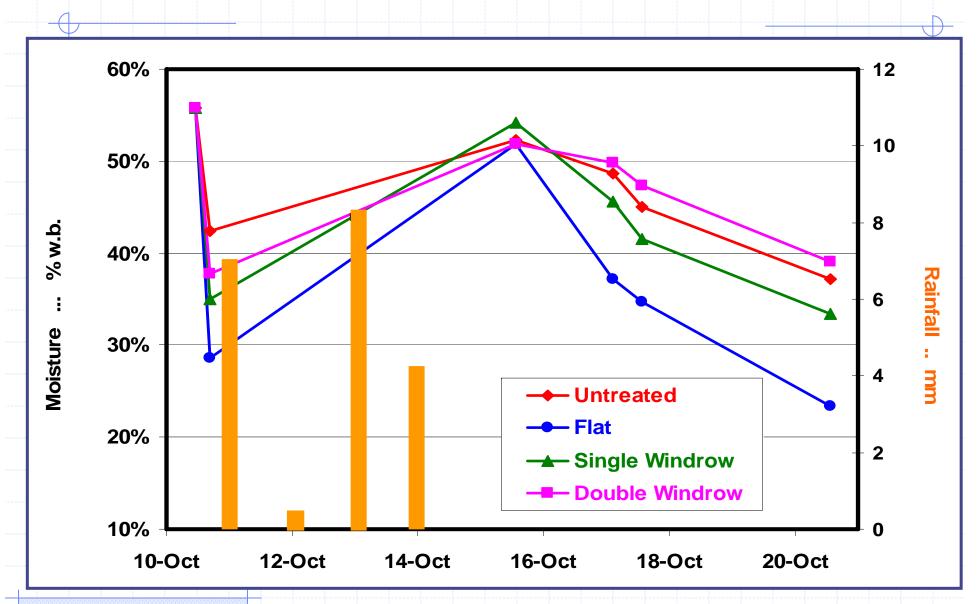


Dry Stack Harvesting




Dry Stover Issues

- Issues with bale and stacker systems:
 - ✓ Slow field drying:
 - Low ambient temps, short day length
 - ✓ Short harvesting window
 - ✓ Frequent weather delays


Stover Moisture

Stover Drying

Stover Drying

Dry Stover Issues

- Issues with bale and stacker systems:
 - ✓ Low productivity
 - ✓ Low density package
 - ✓ High ash content

Dry Stover Harvesting

	Stack	LRB	LSB
roductivity			
tons / h	~5	~10	~16
Density			
lb. / ft ³	~3	~6	~8

Dry Bale Harvesting

Ash .. % of DM

Standing 3.5

Baled 7.9

Dry Stover Issues

- Issues with bale and stacker systems:
 - ✓ High storage losses
 - ✓ Non-uniform product

Outdoor Storage of Bales

Storage Losses

	Wet Year	Dry Year
Indoors	2%	5%
Outdoors on Soil		
Net Wrap	11%	11%
Plastic Twine	20%	14%
Sisal Twine	37%	29%
Stacks		34%

Non-Uniformity of Bales

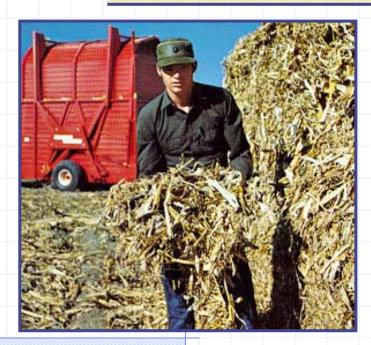
Harvesting Wet Stover

- Advantages of harvesting stover wet:
 - ✓ Eliminates field drying
 - ✓ Harvest right behind combine
 - ✓ Reduced soil contamination
 - ✓ Higher productivity
 - ✓ Easier to mix additives

		Typical WPCS	Corn Stover
Productivity	. tons / h	20 – 80	25 – 35
Silo Density	lb. / ft³	9 – 16	8 – 10

	Typical WPCS	Corn Stover	
Moisture	60 – 65%	55%	42%
DM Loss	6 – 10%	3.8%	1.4%
рН	3.8 - 4.2	4.1	4.5
Acids			
Acetic	1 – 3%	0.9%	0.6%
Lactic	5 – 10%	3.3%	1.7%

Stover Particle Size


Particle - Size .. in.

Round Bales and Stacks

8 - 10

Chopped

 $\frac{3}{4} - 1$

Baled Wet Stover

Baled Wet Stover

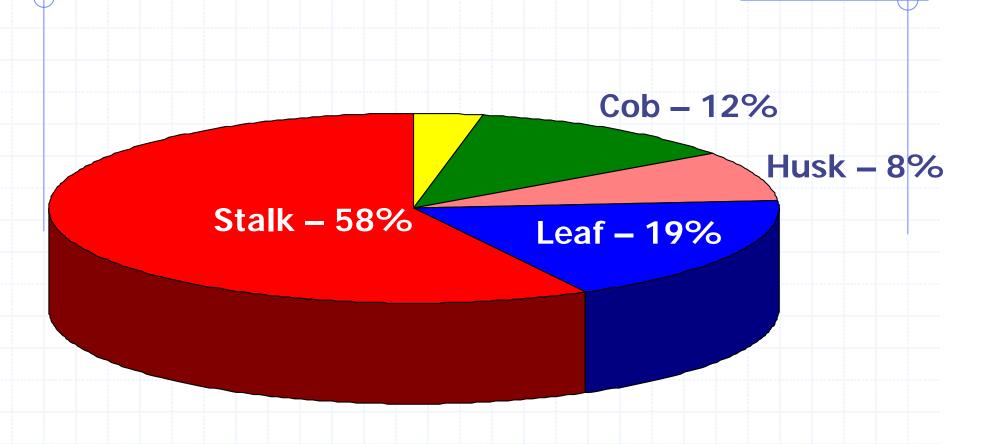
Baled Wet Stover

		Late	Early
	Moisture	29%	44%
	DM Loss	1.2%	2.9%
	рН	5.1	4.4
Acids			
	Acetic	0.5%	2.3%
	Lactic	0.4%	0.8%

Wet Stover Systems

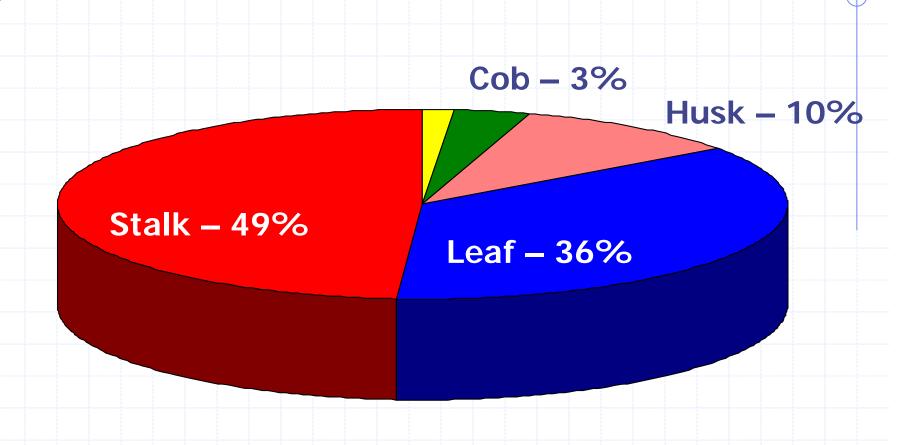
- Compared to dry systems, wet stover offers:
 - ✓ Less weather concerns
 - ✓ More uniform product
 - ✓ Easier mixing & feeding
 - ✓ Fewer storage losses
 - ✓ Potentially lower costs

Stover Costs


Approximate cost per dry ton		
Harvest		
Round Bales	\$28	
Chopped	\$14	
Storage		
Bales – Indoors	\$14	
Bales – Outdoors	\$9	
Chopped – Bag	\$14	

Feeding Stover

- How stover is fed:
 - ✓ Free-choice from bales or pasture
 - Sorting
 - ✓ Ground
 - ✓ TMR



After Grain Harvest / Before Stover Harvest

Dry Bale Harvesting

After Stover Harvest

After Storage Composition

	Baled	Chopped
Ash	7.7	_
СР	4.0	3.8
ADF	46.7	41.9
NDF	76.3	68.2

Stover Feed Additives

- To improve protein and digestible energy:
 - ✓ Wet and dry distillers grains
 - ✓ Grain
 - ✓ Whole-plant corn silage
 - ✓ Ammonia

Feeding Stover

	Stover	Stover + Corn*	Stover + DDG*
Ash	12.3	7.0	8.4
СР	8.3	8.3	14.4
ADF	45.0	25.2	30.0
NDF	70.2	43.0	57.5

* - 50% of diet After Summer and Trenkle - 1998

Feeding Stover

	Stover	Stover + Corn*	Stover + DDG*
Intake lb. / day	5.7	6.7	6.4
Digestibility %	39.1	53.7	59.4

* - 50% of diet After Summer and Trenkle - 1998

Grain

Ear Snapper Head

Whole-plant Head

Options for Harvesting Corn Stover for Supplemental Feed

Kevin Shinners
University of Wisconsin

