
Novel feeding opportunities with ethanol co-products

Randy Shaver Department of Dairy Science University of Wisconsin - Madison

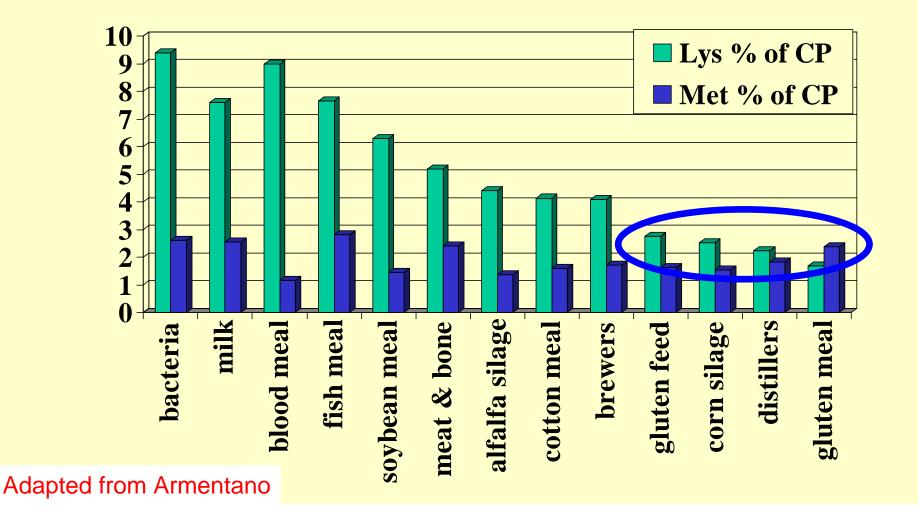
U.S. Ethanol Biorefinery Locations

Nutrient Composition of Distillers Dairy NRC, 2001

 $E \cap E \cap$

		<u>50:50</u>
	Distillers	Corn:SBM Mix
CP, % of DM	30 ± 3	30 ± 1
RUP, % of CP	45 - 55	30 - 40
NDF, % of DM	39 ± 8	12 ± 2
EE, % of DMB	10 ± 4	3 ± 1
P, % DMB	0.80 ± 0.15	0.50 ± 0.05

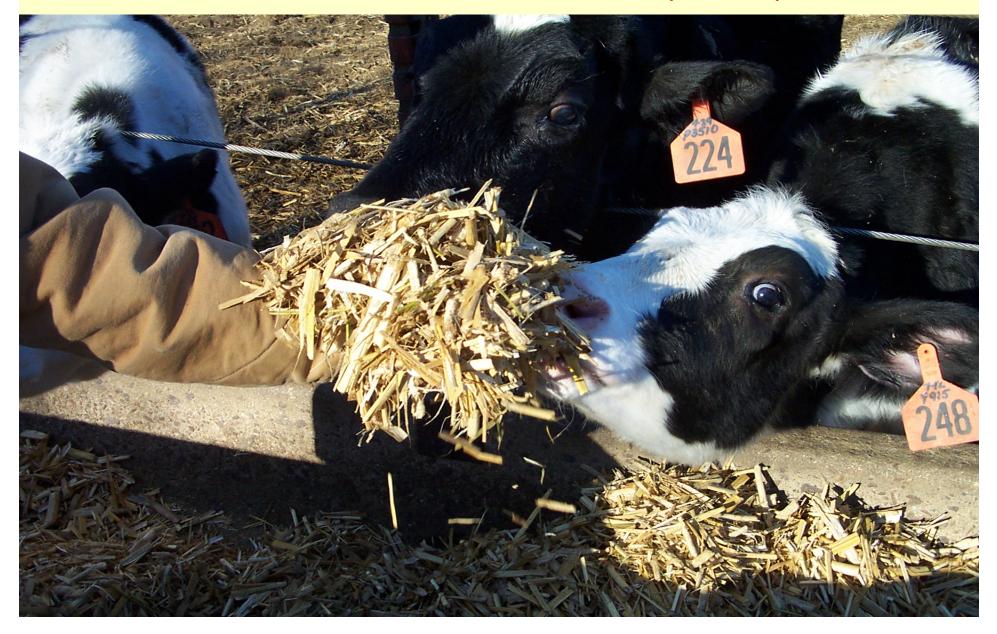
Fat Issues With Today's Distillers


- Fat content higher than traditional tabular values
- Fat analyses may not be accurate
- Fat high in C18:2 or linoleic acid
- Fat in free-oil form
- Trying to feed greater amounts of WDG or DDG
- Other sources of vegetable fat in diets
 - i.e. basal corn & CS, WCS, FFSB, etc.
- Low ruminal pH in dairy cows due to high DMI
- Potential for depression of BF test

Nutrient Composition of Distillers Dairy NRC, 2001

 $E \cap E \cap$

		<u>50:50</u>
	<u>Distillers</u>	Corn:SBM Mix
CP, % of DM	30 ± 3	30 ± 1
RUP, % of CP	45 - 55	30 - 40
NDF, % of DM	39 ± 8	12 ± 2
EE, % of DMB	10 ± 4	3 ± 1
P, % DMB	0.80 ± 0.15	0.50 ± 0.05


Lysine and Methionine Content of Feed Sources

General Conclusions

- > Lactation responses and current economics support the inclusion of distillers grains in diets for lactating dairy cows
- Inclusion at 10 to 20% of diet DM a reasonable target depending upon diet formulation constraints
- > Assess variation in nutrient composition
- > High Fat & P and Low Lysine concentrations an impediment to high inclusion rates

Ensiled Mixture of 56 % WDG and 44 % Dry Corn Stalks DM basis; Kalscheur & co-workers, 2004, SDSU

SDSU, 2004

Diet Composition.

	Di	Diet		
Item	Control	WDGCS		
	% o	% of DM		
Control forage ¹	67.9	0		
Corn, earlage	18.7	0		
Dried distillers grains	11.9	0		
WDGCS blend	0	86		
Rye straw	0	12.8		
Mineral & vitamin mix	1.5	1.2		

¹Contained 24.4% alfalfa hay, 11.8% grass hay, 15.5% alfalfa haylage, and 16.2% corn silage.

SDSU, 2004

Nutrient Composition.

	Diet		
Item	Control	WDGCS	
	%	DM	
DM, %	54.1	59.7	
CP, %	18.6	18.3	
NDF, %	36.2	37.8	
Fat, %	5.1	10.5	
NFC, %	34.1	24.6	

SDSU, 2004

Growth Characteristics.

	Diet		
Item	Control	WDGCS	SEM
Initial age, d	159	171	4.4
Initial BW, Ibs	370	404	7.2
Final BW, Ibs	528	532	10.1
ADG, lbs/d	2.81 ^a	2.31 ^b	0.05

^{ab}Means in rows with unlike superscripts differ (P < 0.10).

Average daily gains excessive by feeding 48 % WDG. Diets were formulated excessive in energy

Distiller's & Stalks Diets for Heifers

 Long term data needed in regard to feeding high levels (> 25.0 %) of DDG or WDG to dairy heifers

- Amount of supplemental fat may be of concern
- Offers the opportunity to reduce feed cost when DDG or WDG is economical

Conservative action is to limit DDG or WDG
to 10 - 20 % in the diet

New Generation Ethanol Co-Products

DM basis	Dakota Gold® BPX™	Dakota Gold® HP	Dakota Bran™	Dakota Gold® Corn Germ Dehydrated
СР	30%	45%	15%	17%
Fat	11%	4%	10%	19%
NDF	26%	22%	21%	24%
Ρ	0.90%	0.40%	0.70%	1.4%

Source: www.poetenergy.com/; adapted from Jan.-March, 2007 spec. sheets.

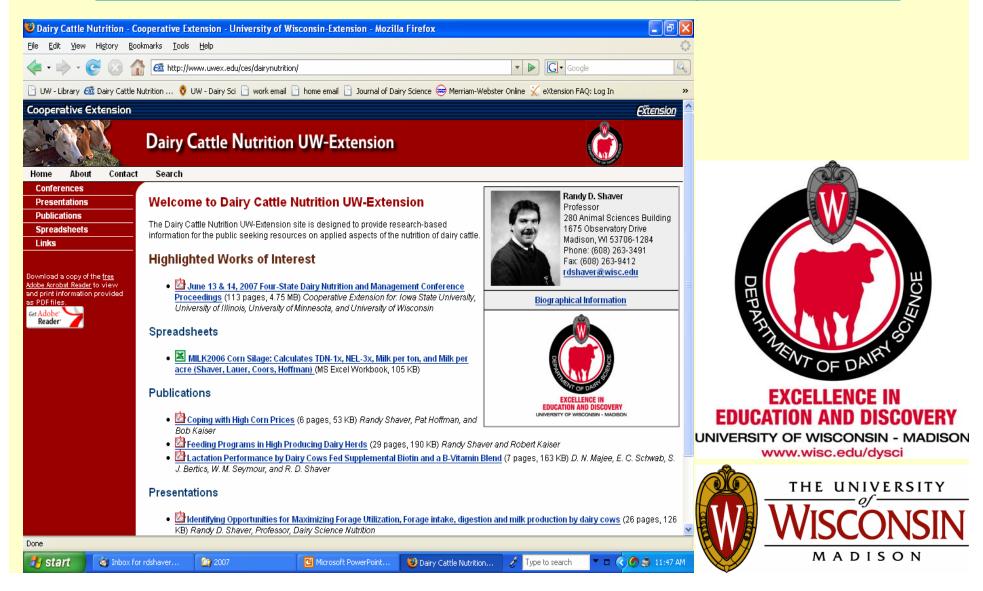
New Generation Ethanol Co-Products

DM basis	High Protein Distillers	Bran	Germ Meal
СР	min 45%	6%	17%
Fat	max 6%	2%	23%
NDF		72%	18%
Ρ			

Source: Renew Energy; Sept., 2007.

New Generation Ethanol Co-Products

	Nutra- fiber	Probran	Glutenol	Energia	DDGS
СР	8%	11%	50%	33%	29%
Fat	2%	2%	4%	3%	10%
NDF	43%	42%	25%	31%	31%
Ρ	Lower since germ removed				


Adapted from www.wisc.edu/dysci/uwex/nutritn/presentn/CornMillingForEthanol.pdf; Solaris-QTI initial estimates.

Areas for Research & Development

- Comparative feeding trials with new generation ethanol co-products in cows & replacement heifers
- Co-supplementation of alternative protein sources (i.e. BM, Heated Soy products, rumenprotected lysine, etc.) to improve lysine status
- > Use of preservatives to extend shelf-life of wet co-products
- Ensiling wet co-products with corn stalklage or corn silage
- > High level use of high-fiber, low-fat ethanol co-products as forage replacers & in low starch diets

Visit my website

http://www.uwex.edu/ces/dairynutrition/

