What's New with Microbial Inoculants and Ways to Decrease Losses in the Silo

R. E. Muck

U.S. Dairy Forage Research Center, Madison

Research Center

Overview

Inoculants

- Types
- How they work
- When to use them
- Bunker covers
 - New approaches to reduce losses

Inoculants

Silage additives whose main ingredients are lactic acid bacteria

Different Types of Inoculants

- Traditional homofermentative types:
 - Lactobacillus plantarum, Pediococcus species, Enterococcus faecium
- Lactobacillus buchneri, a heterofermenter
- Combination of homofermenters with L. buchneri

Homofermenter vs. Heterofermenter

Homofermenter

1 6-C Sugar \rightarrow 2 Lactic Acid

Heterofermenter

1 6-C Sugar \rightarrow 1 Lactic Acid + 1 Acetic Acid + CO₂

1 6-C Sugar \rightarrow 1 Lactic Acid + 1 Ethanol + CO₂

1 Lactic Acid \rightarrow 1 Acetic Acid + CO₂

End Product Comparison

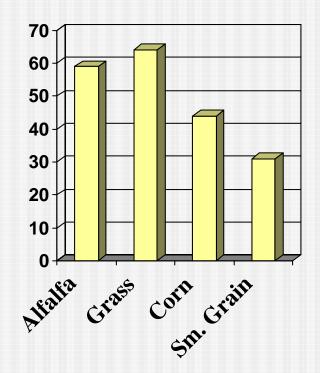
- Lactic acid strong acid; weak spoilage inhibitor; fermented in rumen
- Acetic acid weak acid; good spoilage inhibitor; not fermented in rumen
- Ethanol neutral; poor spoilage inhibitor; partially fermented in rumen
- Carbon dioxide lost dry matter

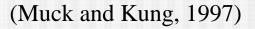
So...

If you want to preserve crop quality: Lactic acid

If you want a silage that doesn't heat: Acetic acid

Homofermentative Inoculants

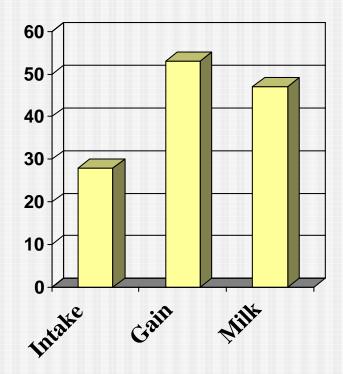



Research Center

pН

- Lower but not all the time
- Works more often in hay crop than wholegrain silages

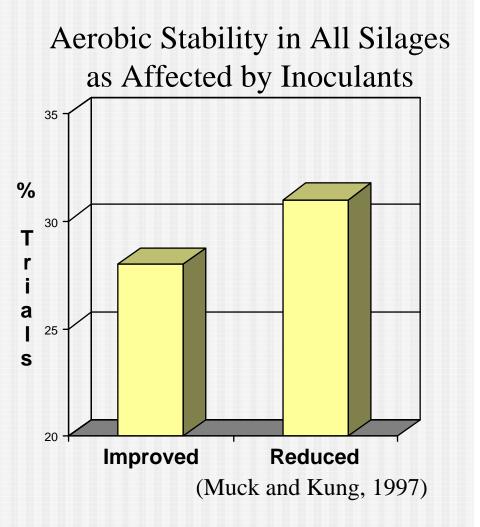
% Trials with lower pH


Dry Matter Recovery

- Improved 38% of trials (Muck and Kung, 1997)
- Improvement when successful: 6%
- On average, 2-3% improvement

Animal Performance

Typical improvements when worked: 3 to 5% % Positive Trials



(Muck and Kung, 1997)

Bunk Life/Aerobic Stability

- Positive in hay crop silages
- Reductions largely in corn and small grain silages

Lactobacillus buchneri

Research Center

L. buchneri Silage Inoculants -Results

pH and Fermentation

Treatment	pН	Lactic	Acetic	Ethanol
Untreated	3.64	7.3	1.8	0.9
Standard A	3.71	8.9	2.3	2.0
Standard B	3.65	8.1	2.0	1.3
Standard C	3.62	7.5	1.6	1.0
Enhanced A	3.64	8.2	1.8	0.9
L. buchneri A	4.01	3.8	7.0	1.1
L. buchneri B	3.84	6.5	5.5	1.2

(Muck, 2002)

L. buchneri Silage Inoculants -Results

Relative aerobic stability, hours

Treatment	1999	2000	2001
Untreated	0	0	0
Standard A	16	-13	-39
Standard B	-4	-20	-6
Standard C	-25	-6	-9
Enhanced A	-24	-27	29
L. buchneri A	142	100	811
L. buchneri B	103	22	454

(Muck, 2002)

L. buchneri Silage Inoculants -Results

Dry Matter Losses

- Intermediate between untreated and standard inoculants
- Expect 1-2% DM recovery improvement over untreated

L. buchneri Lactation Trials

- Aerobic stability: consistently increased
- Acetic acid: consistently increased
 Even greater than 5.0% DM in several cases
- Dry matter intake: no effect
- Milk production: little or no effect

Combination Inoculants

L. buchneri + Homofermentative Lactic Acid Bacteria

Combination Silage Inoculants - Expectations

- Best of both worlds ideally
- Good fermentation except elevated acetic acid
- DM recovery and animal performance of a standard inoculant
- Bunk life/aerobic stability of *L. buchneri*

Combination Silage Inoculants - Reality

Too early to tell

- Several published small-scale studies
 - Combinations behaved more like L. buchneri treatment than homofermentative bacteria
 - Aerobic stability
 - Fermentation products, pH

Goals?

Choice of inoculants depends on goals:

- Make a good silage perform better
- Aerobic stability improvement

Make a Good Silage Better

Standard inoculants are the best route to improve DM recovery, animal performance

Good fit for hay crop silages

- Less likely to be successful on corn
 - Harder to get consistent improvements
 - Bunk life issues when they work

Aerobic Stability Problems

- Is the problem a management problem that can be solved without an additive?
- If not, L. buchneri looks like a good alternative to propionic acid or anhydrous ammonia
 - Safer to handle
 - Competitive cost
 - Similar effects on DM recovery, animal performance with all three additives

Issues with L. buchneri

- Effective 80-90% of the time on corn silage
- However, slow grower that takes 45-60 days storage time before having much effect
- So, not an answer to heating problems with immature silage

Final Issues with Using Any Inoculant

- These products work only if the bacteria go on the crop alive!
 - Store them properly: generally cool and dry
 - Don't use chlorinated water to dilute unless the chlorine level is less than 1 ppm
- These bacteria cannot move around; they depend on you to spread them uniformly

Final Issues with Using Any Inoculant

- Use products designated for the crop you are ensiling
- Don't be shy to ask for research data, especially independent results, to back claims

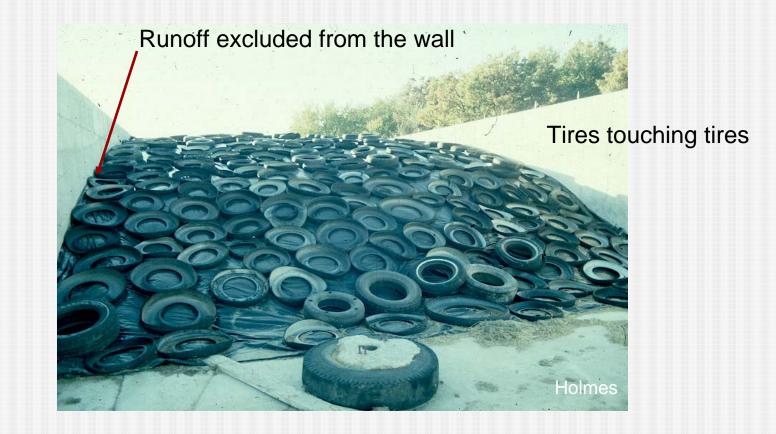
Questions?

Research Center

Bunker Covers

Research Center

Bunker Losses Between Filling And Opening Are Affected By:


1) Quality, integrity of the plastic

2) Securing of the plastic to the crop

3) Plastic-wall interface

Standard Solution to Bunker Covering: Polyethylene & Tires

Silostop Covering Systems

- Two step system
 - Original system that we have tested for three years
- One step system
 - Substitute for traditional films
 - Currently under trial

Two Step Covering System

Consists of:

- Plastic film with 1/40 permeability to oxygen of standard polyethylene
- Woven tarp for UV, animal protection
- Gravel bags to hold everything in place

Two Step Silostop System

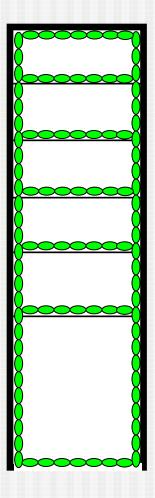
- Side-wall plastic
- Top sheet

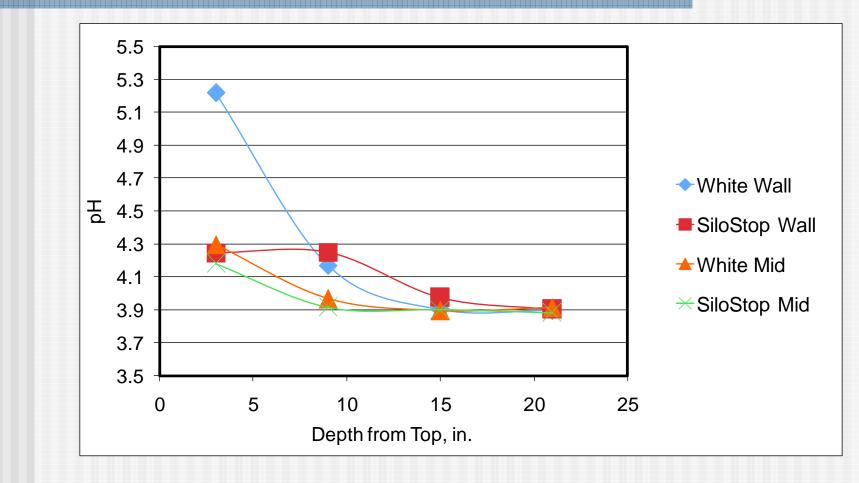
Silostop film

229

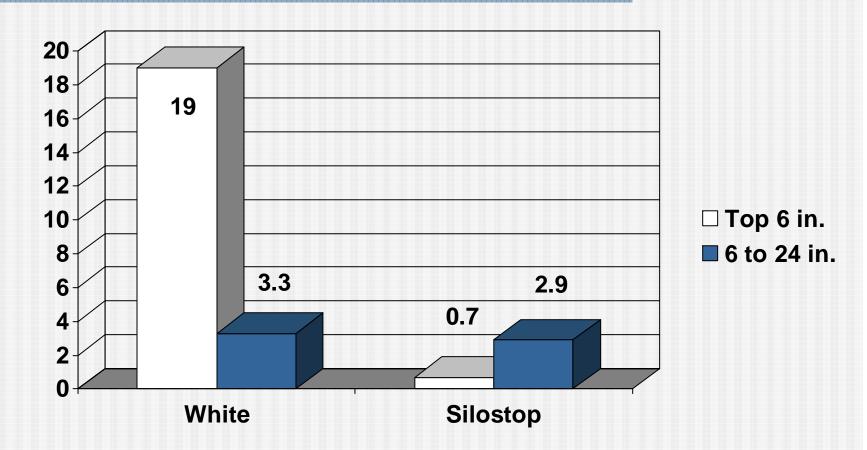
Two Step Silostop System

Kuna


- A woven tarp is placed over top
- Tarp and plastic are secured with gravel bags at the walls, seams

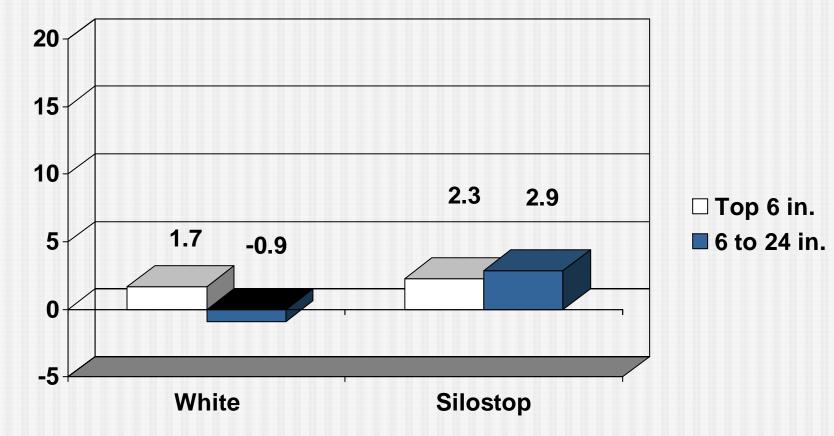

Two Step Silostop System

 Typical top view when done



Average pH in Corn Silage 3 Bunkers

Reduced spoilage near the wall on the Silostop half.


Estimated % DM Losses at the Wall - 2 Alfalfa Bunkers

Reduced spoilage near the wall in top 6 in. with Silostop.

Estimated % DM Losses under the Middle of a Sheet - 2 Alfalfa Bunkers

No significant difference in the middle of sheets, but...

Fermentation Products at Middle of Top in Two Bunkers

	Depth, in.	рН	Lactic Acid	Acetic Acid	L:A	
Haylage		% DM				
White	3	4.89	2.5	4.0	0.6	
Silostop	3	4.82	4.5	2.2	2.1	
White	9	4.82	4.5	1.7	2.6	
Silostop	9	4.75	3.8	1.4	2.7	
Corn						
White	3	4.02	3.2	1.6	2.0	
Silostop	3	3.98	3.0	1.2	2.6	
White	9	4.00	4.1	1.4	2.9	
Silostop	9	3.97	3.9	1.2	3.1	

Consistently better fermentation quality under Silostop.

30 h NDF-D, %

	Top 6" Silage				
To Wall	4"	12"	20"	5'	
Control	43	53	58	57	
Silostop	57	58	58	60	

McDonell and Kung, 2006

Summary of Two Step Silostop Trials

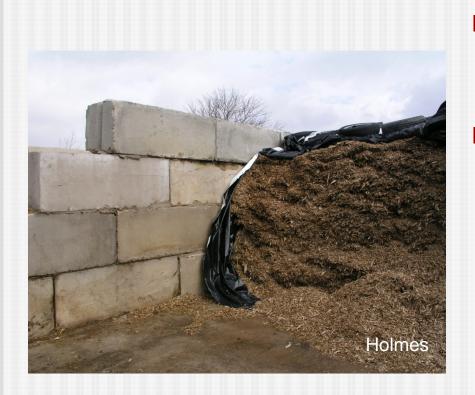
- Virtual elimination of visible spoilage
 Biggest difference at the shoulders (wall)
- More homofermentative fermentation across the top, indicating a better seal.
- Evidence of better dry matter recovery, especially near the wall.

Silostop One Step

- Reduced permeability white plastic
- Sealed with gravel bags
- Results later this year

Thoughts on Using Silostop

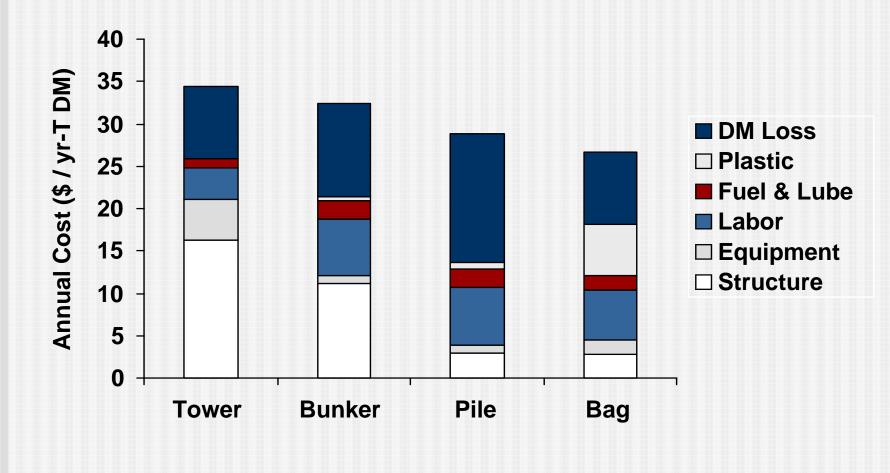
- Make sure side sheets go at least 3 ft. onto the top.
- Use pea gravel instead of sand in the bags so that rain drains out better.
- Make sure bags are butted up against each other.
- Sand bags can get frozen into low spots; slope the sides to drain rainwater forward.


Thoughts on Using Silostop

- If you use tarps, get narrow ones. They're easier to remove as you feed out.
- System is about twice as expensive as traditional white plastic and tires. Worth it??
- A polyethylene sheet instead of a tarp? Yes, but you may need more bags across the width to prevent billowing of the plastic in the wind.

What About Regular Polyethylene On The Walls?

- Certainly will reduce shoulder spoilage.
- Performance may not be quite as good as Silostop.


Questions?

Research Center

Annual Costs 3072 T DM Stored - Good Management

Holmes, 1998

Bunker or Pile Covers - No Good Alternative to Plastic

220