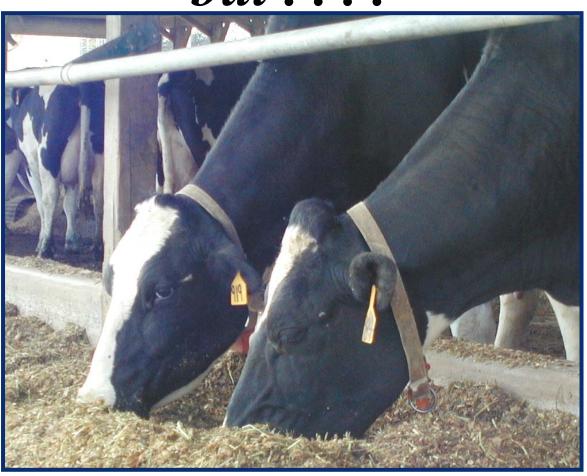

## **Formulating Protein in Dairy Diets to Meet Economic and Environmental Challenges**





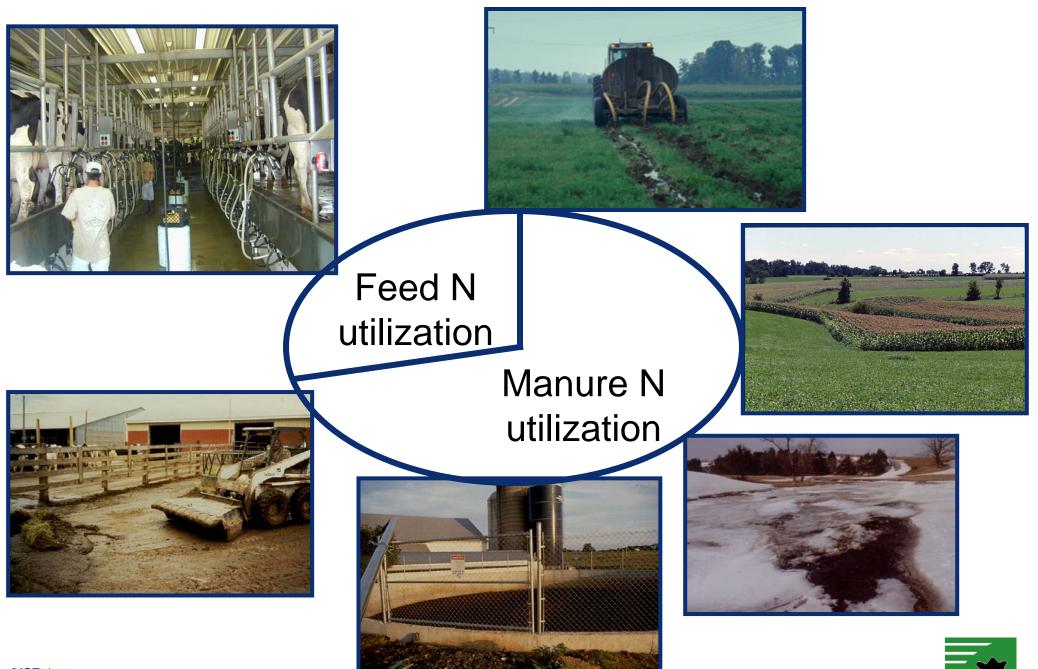
Intermountain Nutrition Conference January 23, 2007

Glen Broderick U.S. Dairy Forage Research Center Madison, Wisconsin Web site: http://ars.usda.gov/mwa/madison/dfrc





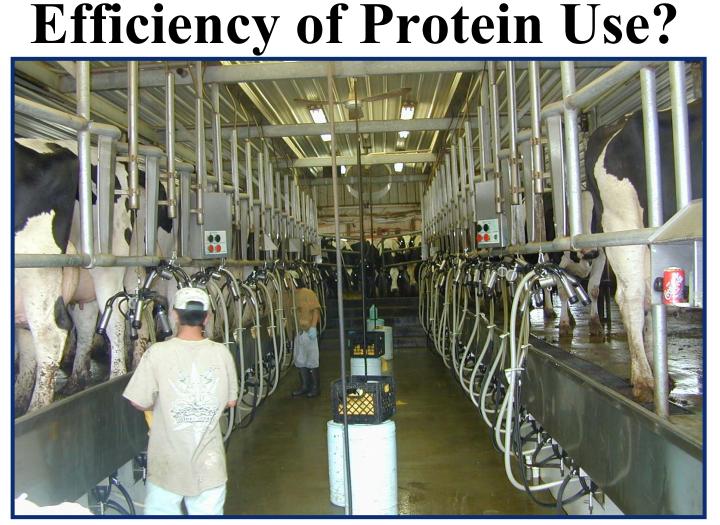



## Dairy Cows are Relatively Efficient Users of Dietary Crude Protein, *but*...












Formulating Protein in Dairy Diets to Meet Economic and Environmental Challenges

## How can Diets be Formulated for <u>Optimal Economic & Environmental</u>







## **Improving Protein Efficiency . . . An overview:**

- 1. Optimize Production of Microbial Protein
  - a. Optimize CHO Fermentation
  - **b.** Match RDP Supply with the Requirement
- 2. Don't Over-Feed Crude Protein
  - a. Accurately Track Dietary CP
  - b. Formulate to Meet RDP & RUP Requirements
- 3. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected AA





## **Improving Protein Efficiency . . . Point by point:**

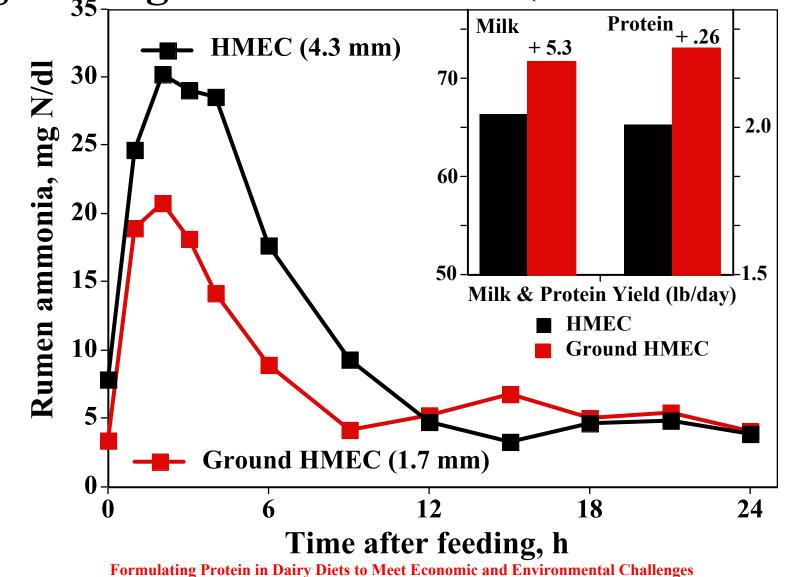
### **1. Optimize Production of Microbial Protein**

## a. Optimize CHO Fermentation

- **b.** Match RDP Supply with the Requirement
- 2. Don't Over-Feed Crude Protein
  - a. Accurately Track Dietary CP
  - b. Formulate to Meet RDP & RUP Requirements
- 3. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected AA






## Effect of Processing on Digestibility of Corn & Barley Starch (Owens et al., 1986)

|                      | <b>Proportion of Starch Digestion, %</b> |                    |                    |                |
|----------------------|------------------------------------------|--------------------|--------------------|----------------|
| Starch<br>Source     | Rumen                                    | Small<br>Intestine | Large<br>Intestine | Total<br>tract |
| <b>Cracked Corn</b>  | 69                                       | 13                 | 8                  | 89             |
| <b>Ground Corn</b>   | <b>78</b>                                | 14                 | 4                  | 94             |
| Steam-Flaked Corn    | 83                                       | 16                 | 1                  | <b>98</b>      |
| High Moisture Corr   | n <b>86</b>                              | 6                  | 1                  | 95             |
| <b>Ground Barley</b> | 94                                       | • • •              | • • •              | • • •          |



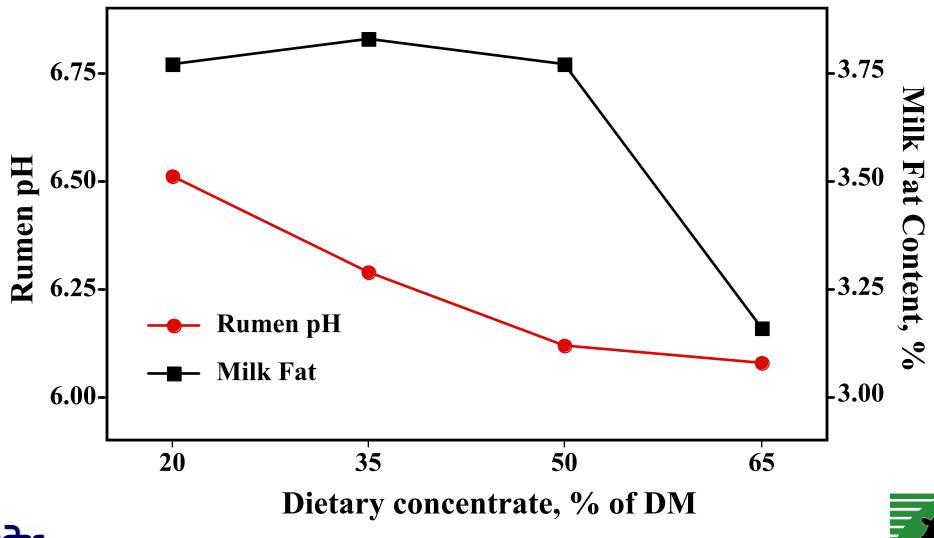


## Rumen NH<sub>3</sub> & Production of Cows fed Alfalfa Silage & High Moisture Corn (Ekinci & Broderick, 1997)





#### **CHO Source--Production** (Charbonneau et al., 2006)


| Item                           | Cracked                  | Ground                   | GC                       | GC                       | Prob.  |
|--------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------|
|                                | corn                     | corn                     | + Starch                 | + Whey                   |        |
| DMI, lb/d                      | <b>50.0</b> <sup>c</sup> | <b>53.6</b> <sup>b</sup> | <b>53.8</b> <sup>b</sup> | <b>56.7</b> <sup>a</sup> | < 0.01 |
| Milk, lb/d                     | 75.0 <sup>c</sup>        | 82.5 <sup>ab</sup>       | <b>82.9</b> <sup>a</sup> | <b>78.9</b> <sup>b</sup> | < 0.01 |
| Fat, lb/d                      | 2.82                     | 2.89                     | 2.82                     | 3.02                     | 0.45   |
| Protein, lb/d                  | 2.38 <sup>c</sup>        | <b>2.71</b> <sup>a</sup> | <b>2.73</b> <sup>a</sup> | <b>2.60</b> <sup>b</sup> | < 0.01 |
| MUN, mg/dl                     | <b>13.4</b> <sup>a</sup> | <b>10.7</b> <sup>b</sup> | <b>9.9</b> <sup>b</sup>  | <b>9.8</b> <sup>b</sup>  | < 0.01 |
| Milk N/N-Intake, %             | ∕₀ 25 <sup>b</sup>       | <b>28</b> <sup>a</sup>   | <b>28</b> <sup>a</sup>   | 25 <sup>b</sup>          | < 0.01 |
| Rumen NH <sub>3</sub> , mg N/d | 1 14.1 <sup>a</sup>      | 12.2 <sup>ab</sup>       | <b>6.9</b> <sup>b</sup>  | <b>7.6</b> <sup>b</sup>  | 0.07   |

(Diets averaged 18% CP & 27% NDF)





## Forage Helps Maintain Rumen pH & Milk Fat (Valadares et al., 2000)

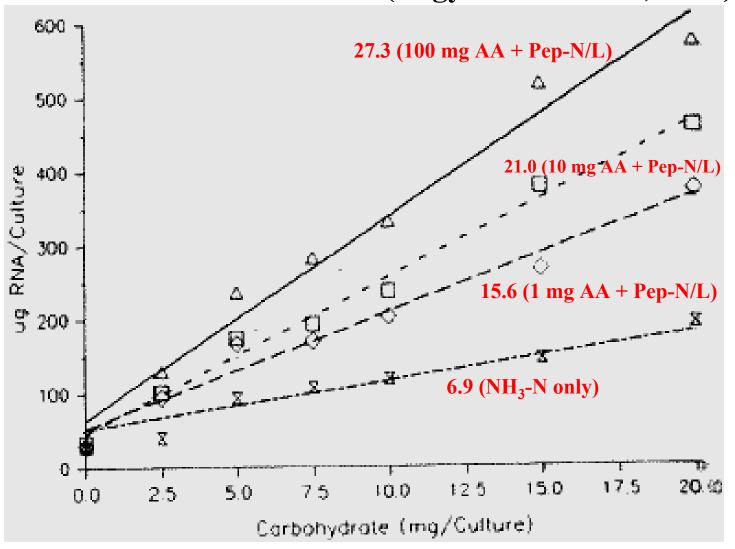




## **Improving Protein Efficiency**

### **1. Optimize Production of Microbial Protein**

a. Optimize CHO Fermentation


## **b. Match RDP Supply with the Requirement**

- 2. Don't Over-Feed Crude Protein
  - a. Accurately Track Dietary CP
  - b. Formulate to Meet RDP & RUP Requirements
- 3. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected AA





#### Microbial Protein Yield Increases with RDP from True Protein (Argyle & Baldwin, 1989)

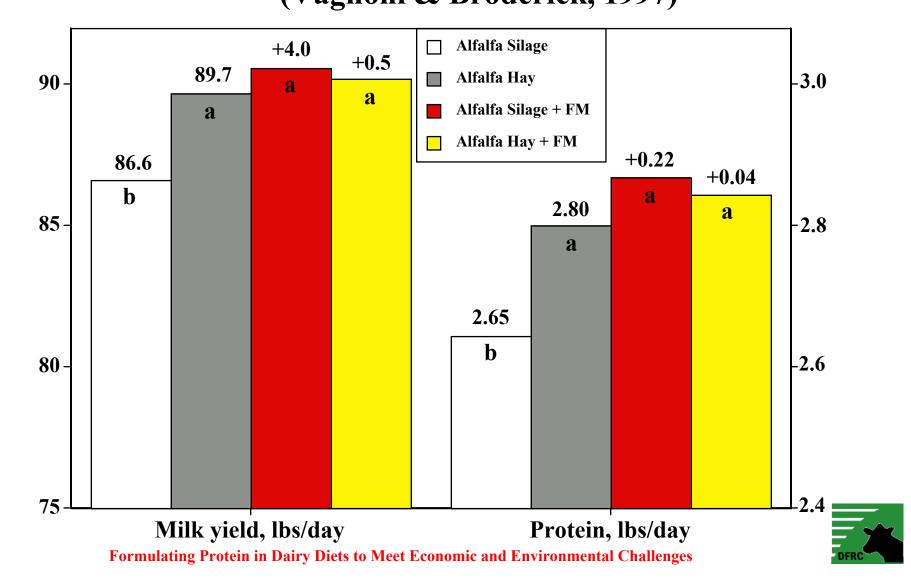








## Mean Composition of Alfalfa Silage & Hay




| Item                | Silage    | Hay       | Change, % |
|---------------------|-----------|-----------|-----------|
|                     | A 1       | 96        |           |
| DM, %               | 41        | 86        |           |
| CP, % DM            | 20.6      | 18.1      | -12       |
| NPN, % CP           | 52        | 8         | -85       |
| <u>IV-RDP, % CP</u> | <u>71</u> | <u>73</u> | <u>NS</u> |
| NDF, % DM           | 38        | 38        | NS        |





#### Cows Fed Alfalfa Silage Respond More to Fish Meal (FM) than Cows Fed Alfalfa Hay (Vagnoni & Broderick, 1997)



#### In Vitro Protein Degradation & Synthesis Determined with <sup>15</sup>NH<sub>3</sub> (Peltekova & Broderick, 1996)

| Protein       | Est. RDP               | <b>Microbial Protein</b> |
|---------------|------------------------|--------------------------|
|               | (%)                    | (mg/100 ml)              |
| Casein        | <b>93</b> <sup>a</sup> | <b>5.9</b> <sup>b</sup>  |
| Alfalfa Forag | es                     |                          |
| Silage        | <b>71</b> <sup>b</sup> | <b>5.4</b> <sup>b</sup>  |
| Hay           | <b>73</b> <sup>b</sup> | <b>7.2</b> <sup>a</sup>  |





## CP Supplement & Protein Supply from the Rumen (Brito & Broderick, 2007)

|                                          | Protein Supplement       |                          |                          |                          |              |
|------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| Item                                     | Urea                     | Soybean<br>meal          | Cottonseed<br>meal       | Canola<br>meal           | <i>P</i> > F |
| Total RDP                                | <b>3148</b> <sup>a</sup> | 3062 <sup>ab</sup>       | 2845 <sup>b</sup>        | <b>3192</b> <sup>a</sup> | 0.05         |
| "Protein" RDP, g/d                       | 1905                     | 3062                     | 2845                     | 3192                     |              |
| Microbial protein, g/d                   | <b>2344</b> <sup>b</sup> | 2706 <sup>a</sup>        | <b>2706</b> <sup>a</sup> | 2775 <sup>a</sup>        | 0.04         |
| Microbial efficiency,<br>g N/kg of OMTDR | <b>26.3</b> <sup>b</sup> | <b>29.0</b> <sup>a</sup> | <b>29.7</b> <sup>a</sup> | <b>29.5</b> <sup>a</sup> | < 0.01       |

Diets Formulated from AS, CS & HMSC with <u>16.5% CP</u>; a-c(P < 0.05)

This table shows the omasal flow of N fractions.

•Omasal flow of NAN was 27% lower on the urea diet compared to the average of SSBM, CSM, and CM diets that did not differ significantly.

RDP supply was 10% lower on the CSM diet than the average of urea, SSBM, and CM diets that were similar.
On the other hand, RUP flow was significantly lower on diet A compared to the true protein supplements.
Among the true protein diets, cows fed CSM had the highest RUP flow, those fed CM were intermediate, and

cows fed SSBM were the lowest.

•Omasal flow of both NDIN and ADIN did not differ between urea and SSBM diets but were higher on CSM and CM diets, reflecting the NDIN and ADIN contents of the diets.

•Microbial efficiency did not differ among the true protein sources but was 11% lower on the urea diet.

•The reason for the lowest RDP supply and the highest RUP flow on CSM was related to the escape of the protein supplements.

## **Urea Supplementation & Production**

(Corn Silage & Grain; Gressley, 2005)

| Item                            | Low RDP | High RDP | Prob. |
|---------------------------------|---------|----------|-------|
| Dietary CP, %                   | 13.5    | 16.1     | • • • |
| Dietary urea, %                 | 0       | 1.0      | • • • |
| <b>Response</b>                 |         |          |       |
| Milk, kg/d                      | 30.5    | 29.9     | 0.25  |
| Protein, kg/d                   | 0.98    | 0.96     | 0.25  |
| Fat, kg/d                       | 1.09    | 1.07     | 0.29  |
| Rumen NH <sub>3</sub> , mg N/dl | 3.2     | 7.9      | 0.001 |
| In situ NDF, %                  | 25.0    | 27.5     | 0.02  |





## **Improving Protein Efficiency**

- 1. Optimize Production of Microbial Protein
  - a. Optimize CHO Fermentation
  - b. Match RDP Supply with the Requirement

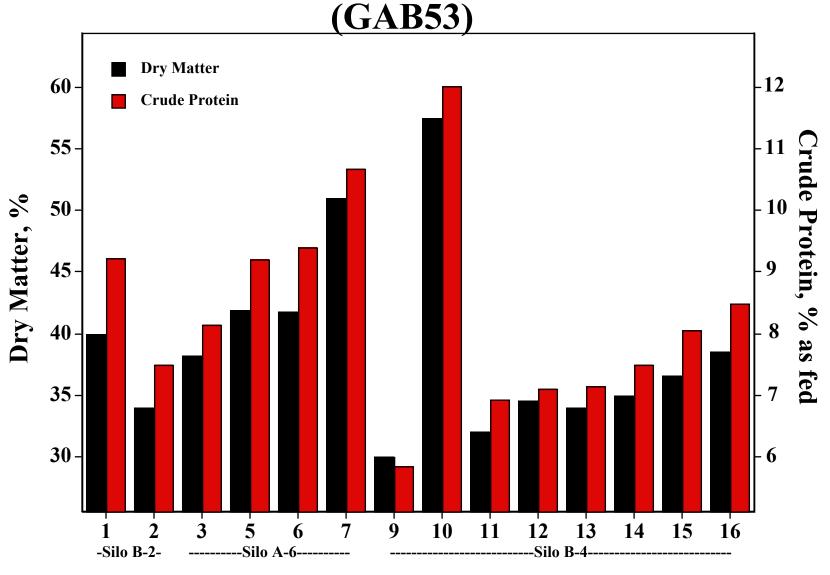
#### 2. Don't Over-Feed Crude Protein

#### a. Accurately Track Dietary CP

- b. Formulate to Meet RDP & RUP Requirements
- 3. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected AA






## **Sampling Forage is Very Important**







## Variation of DM & CP in Alfalfa Silage





Week of Experiment Formulating Protein in Dairy Diets to Meet Economic and Environmental Challenges



## **Improving Protein Efficiency**

- 1. Optimize Production of Microbial Protein
  - a. Optimize CHO Fermentation
  - b. Match RDP Supply with the Requirement

#### 2. Don't Over-Feed Crude Protein

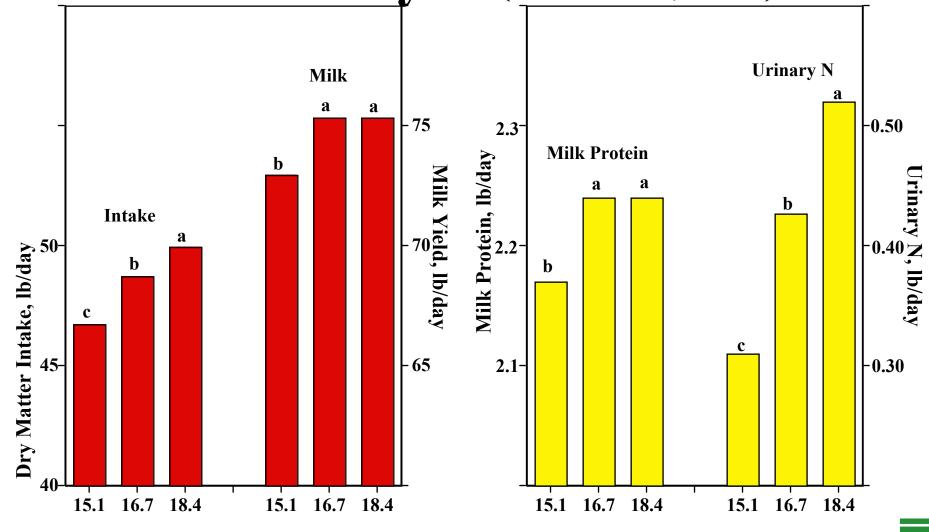
a. Accurately Track Dietary CP

## b. Formulate to Meet RDP & RUP Requirements

3. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected AA



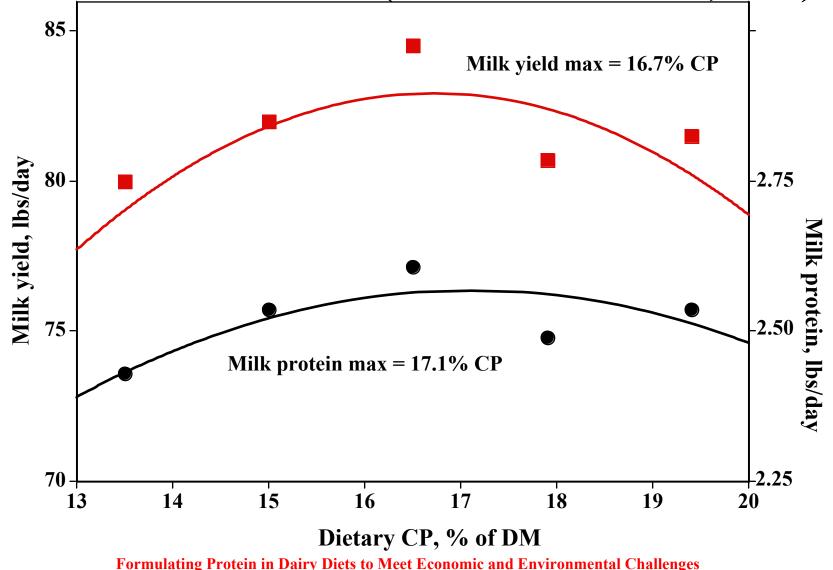



#### **Production & Feeding--Top Wisconsin Herds**

| Date          | RHA        | Fat          | Protein        | <b>Dietary CP</b> |
|---------------|------------|--------------|----------------|-------------------|
|               | (ll        | bs/lactation | )              |                   |
| 12/31/97      | 31,300     | 1109         | 933            | 19.4%             |
| (7 top herds) | (119 cows) | (3.55%)      | (3.2%)         | (18.5-21.5%)      |
|               |            |              |                | (28% NDF)         |
| 2/1/04        | 30,900     | 1144         | 915            | 17.7%             |
| (6 top free-  | (396 cows) | (3.75%)      | (3.0%)         | (16.7-18.4%)      |
| stall herds)  |            |              | (true protein) | (29% NDF)         |

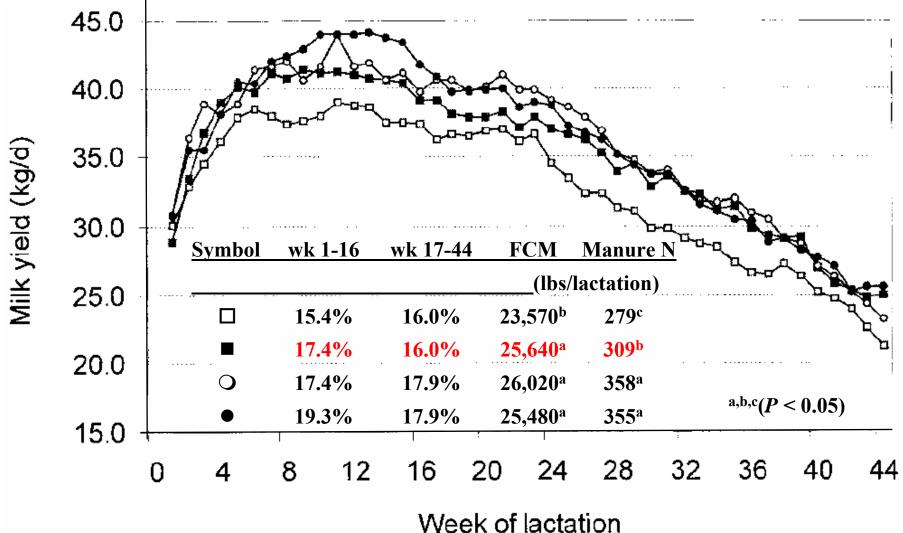





## Effect of Dietary CP on Intake, Yield & Urinary N (Broderick, 2003)








# Effect of CP (Solvent SBM) on Milk & Protein Yield (Olmos & Broderick, 2006)



DFRC

## Effect of Dietary CP on the Lactation Curve (Wu & Satter, 2000)





## **Improving Protein Efficiency**

- 1. Optimize Production of Microbial Protein
  - a. Optimize CHO Fermentation
  - b. Match RDP Supply with the Requirement
- 2. Don't Over-Feed Crude Protein
  - a. Accurately Track Dietary CP
  - b. Formulate to Meet RDP & RUP Requirements

## 3. Feed "Complementary" Rumen-Undegraded Protein & Rumen-Protected AA





## **CP** Supplements & Production

(Brito & Broderick, 2007)

|                    |                          | <b>Protei</b>            | n <u>S</u> upplemer     | nt                       |        |
|--------------------|--------------------------|--------------------------|-------------------------|--------------------------|--------|
| Item               | a. Urea                  | 0. Soybean<br>meal       | C. Cottonseed meal      | d. Canola<br>meal        | P > F  |
|                    |                          |                          | (lbs/d)                 |                          |        |
| DM intake          | <b>49</b> <sup>c</sup>   | 53 <sup>b</sup>          | 55 <sup>ab</sup>        | 55 <sup>a</sup>          | < 0.01 |
| Milk yield         | 73 <sup>b</sup>          | <b>88</b> <sup>a</sup>   | <b>89</b> <sup>a</sup>  | <b>91</b> <sup>a</sup>   | < 0.01 |
| Protein yield      | <b>2.0</b> <sup>c</sup>  | 2.7 <sup>ab</sup>        | <b>2.6</b> <sup>b</sup> | <b>2.8</b> <sup>a</sup>  | < 0.01 |
| Fat yield          | <b>2.2</b> <sup>c</sup>  | 2.7 <sup>ab</sup>        | <b>2.6</b> <sup>b</sup> | <b>2.8</b> <sup>a</sup>  | < 0.01 |
| Total protein, g/d | <b>2882</b> °            | 3693 <sup>b</sup>        | <b>405</b> 4ª           | 3925 <sup>ab</sup>       | < 0.01 |
| MUN, mg/dl         | <b>16.9</b> <sup>a</sup> | <b>12.0</b> <sup>b</sup> | 10.0 <sup>c</sup>       | <b>11.6</b> <sup>b</sup> | < 0.01 |

Diets Formulated from AS, CS & HMSC & had <u>16.5% CP</u>; a-c(P < 0.05)

•Cows fed diet A had lower DMI than cows supplemented with the true protein sources.

•Among diets B, C, and D, cows fed CM had the highest intake; CSM intermediate; and SSBM lowest.

•Milk yield paralleled DMI and was on average 19% lower on diet A compared to diets B, C, and D.

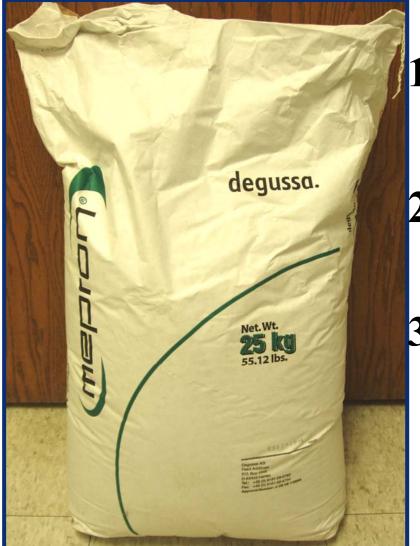
•No significant difference was observed among diets supplemented with true protein sources.

•Milk protein content was significantly lower on diets A and C compared to diets B and D.

•Milk protein yield also was significantly lower on diet A compared to the true protein sources.

Among diets B, C, and D, cows fed CM had the highest milk protein yield; SSBM intermediate; and CSM lowest.
No significant difference was observed for milk fat content and averaged 3.11% among diets. However, milk fat yield was significantly lower on diet A than on the remaining diets.
When cows were supplemented with the true protein sources, diet D resulted in the highest yield of milk fat; diet B intermediate; and diet C lowest.

## Essential Amino Acid (EAA) Compositions


| Item    | Cow's | Bacterial | Solvent    | Cottonseed | Canola |
|---------|-------|-----------|------------|------------|--------|
|         | Milk  | Protein   | SBM        | meal       | meal   |
|         |       |           | (% of EAA  | ()         |        |
| LYS     | 15.0  | 16.7      | 13.9       | <u>9.7</u> | 13.2   |
| MET     | 5.4   | 5.4       | <u>3.2</u> | 3.7        | 4.4    |
| Lys:Met | 2.8   | 3.1       | 4.3        | 2.6        | 3.0    |







## **Studies on Rumen-Protected Methionine**



**1. Rumen-Protected Methionine** (**RP-Met**) from Mepron. 2. Assumed to Supply 0.6 g absorbed Met/g Mepron). 3. 2 "Reversal" & 1 "Continuous" Feeding Trials (1st & ≥2nd Lact; 100-125 DIM; 92-100/d).





## **Composition of Diets (28% NDF)**

|                                 |           | Trial                 |           |
|---------------------------------|-----------|-----------------------|-----------|
| Ingredient                      | 1         | 2                     | 3         |
|                                 |           | (% of DM)             |           |
| <b>Crude Protein</b>            | 14.8-18.6 | 15.7 or 17.0          | 16.6      |
| <b>RUP Supplement</b>           |           | 0 or 2.4              |           |
| Alfalfa Silage                  | 21        | 21                    | <b>40</b> |
| Corn Silage                     | 28        | 34                    | 25        |
| High Moisture Corn              | 28-36     | 25-33                 | 24        |
| Solvent Soybean Meal            | 4-12      | 3-13                  | 3.5       |
| <b>Expeller Soybean Meal</b>    |           | 0 or 5.0              | 0         |
| Mepron (g/d)                    | 0-25      | <b>0</b> or <b>15</b> | 0 or 15   |
| <b>Roasted Soybeans</b>         | 4.5       | 0                     | 4.0       |
| Soy Hulls                       | 5.8       | 4.0                   | 0         |
| <b>Bicarb/Dical/Salt/TM/Vit</b> | 1.1       | 1.2                   | 1.0       |





| <b>Replacing SBM-CP with RP-Met:<br/>Intake &amp; Milk YieldTrial 1</b> |                           |                          |                          |                          |                     |
|-------------------------------------------------------------------------|---------------------------|--------------------------|--------------------------|--------------------------|---------------------|
| Item CP, %                                                              | 18.6                      | 17.3                     | 16.1                     | 14.8                     |                     |
| Mepron, g/d                                                             | 0                         | 8                        | 17                       | 25                       | <b>P</b> > <b>F</b> |
| Milk, lb/d                                                              | 87.6 <sup>ab</sup>        | <b>91.7</b> <sup>a</sup> | <b>91.9</b> <sup>a</sup> | <b>87.4</b> <sup>b</sup> | 0.06                |
| Milk/DMI                                                                | 1.72 <sup>ab</sup>        | <b>1.80</b> <sup>a</sup> | 1.77 <sup>ab</sup>       | <b>1.69</b> <sup>b</sup> | 0.06                |
| Fat Yield, lb/d                                                         | <b>3.01</b> <sup>ab</sup> | <b>3.28</b> <sup>a</sup> | 3.15 <sup>ab</sup>       | <b>2.90<sup>b</sup></b>  | 0.08                |
| MUN, mg/dl                                                              | <b>14.5</b> <sup>a</sup>  | <b>11.8</b> <sup>b</sup> | <b>9.4</b> <sup>c</sup>  | <b>7.9</b> <sup>d</sup>  | < 0.01              |
| Milk-N/NI, %                                                            | <b>26</b> <sup>c</sup>    | <b>30</b> <sup>b</sup>   | <b>32</b> <sup>b</sup>   | <b>34</b> <sup>a</sup>   | < 0.01              |
| Urinary-N, g/d                                                          | <b>260</b> <sup>a</sup>   | <b>207</b> <sup>b</sup>  | <b>188</b> °             | 150 <sup>d</sup>         | < 0.01              |

DMI = 52 lbs/d; a-d(P < 0.05)



Formulating Protein in Dairy Diets to Meet Economic and Environmental Challenges

DFRC

## **Effect of Adding RP-Met--Trial 2**

|                 | Mepron I    |       |                     |
|-----------------|-------------|-------|---------------------|
| Item            | 0           | 15    | <b>P</b> > <b>F</b> |
| DM intake, lb/d | 54.2        | 55.6  | 0.04                |
| Milk, lb/d      | 89.2        | 90.8  | 0.26                |
| Milk/DMI        | 1.65        | 1.64  | 0.60                |
| 3.5% FCM, lb/d  | <b>99.5</b> | 103.5 | 0.04                |
| Fat, lb/d       | 3.17        | 3.34  | 0.02                |
| Protein, lb/d   | 2.83        | 2.91  | 0.05                |
| SNF, lb/d       | 7.91        | 8.09  | 0.17                |
| MUN, mg/dl      | 10.6        | 10.8  | 0.36                |

#### (Over all CP & RUP Levels)





DFRC

#### Can We Reduce CP with RP-Met? (Trial 2)

| <b>CP/Mepron</b> | DMI       | Milk      | FCM | Fat | Protein |
|------------------|-----------|-----------|-----|-----|---------|
|                  | (lbs/day) |           |     |     |         |
| 17.0%/0          | 56        | <b>92</b> | 102 | 3.3 | 2.9     |
| 17.0%/15 g/d     | 57        | 92        | 105 | 3.4 | 3.0     |
| 15.7%/0          | 53        | 87        | 96  | 3.0 | 2.8     |
| 15.7%/15 g/d     | 55        | 90        | 101 | 3.3 | 2.9     |





## **Effect of RP-Met Supplementation without Diet Reversal (Trial 3)**

| Variable      | Control | <b>RP-Met</b> | Prob. |
|---------------|---------|---------------|-------|
| DMI, lb/d     | 49.0    | 48.2          | 0.41  |
| Milk, lb/d    | 80.5    | 82.5          | 0.25  |
| Milk/DMI      | 1.66    | 1.72          | 0.08  |
| Fat, lb/d     | 2.91    | 2.95          | 0.72  |
| Protein, lb/d | 2.31    | 2.40          | 0.09  |
| MUN, mg/dl    | 11.0    | 11.1          | 0.83  |

#### (12-Week Trial; 18 Cows/Diet)





| <b>RP-Met Supplementation &amp;</b> |            |               |  |  |  |
|-------------------------------------|------------|---------------|--|--|--|
| Supply of MP & MAA (Trial 3)        |            |               |  |  |  |
| Component                           | Control    | <b>RP-Met</b> |  |  |  |
| CP, % of DM                         | 16.6       | 16.6          |  |  |  |
| RDP, % of DM                        | 11.8       | 11.8          |  |  |  |
| RUP, % of DM                        | <b>4.8</b> | <b>4.8</b>    |  |  |  |
| MP, g/d                             | 2450       | 2460          |  |  |  |
| Met, g/d                            | <b>46</b>  | 55            |  |  |  |
| Lys, g/d                            | 161        | 161           |  |  |  |
| Lys/Met                             | 3.50       | 2.93          |  |  |  |

(NRC Model; Assuming 60% Absorbable Met in Mepron)





## **Pay-Back on Feeding RP-Met**

| Increased Milk Yield         |        |
|------------------------------|--------|
| 3 lb Milk/day @ \$14/cwt =   | \$0.42 |
| 15 g Mepron/day @ \$0.01/g = | \$0.15 |
| Net return/cow/day           | \$0.27 |

# Reduced Soybean Meal Cost 0.72 lb less CP/day (55\*0.013) = 1.5 lb SBM (0.72/0.48) 1.5 lb less SBM/day @ \$210/ton = \$0.16 15 g Mepron/day @ \$0.01/g = \$0.15 Net return/cow/day \$0.01





## **Summary & Conclusions**

- 1. Optimize Carbohydrate Digestion in Rumen (Grain Processing & Level).
- 2. RDP from True Protein Stimulates Microbial Protein Formation.
- 3. Dietary CP Can be Reduced if Accurately Tracked (16.5% of DM; 17.4 / 16.0% over lactation).
- 4. Feed "Complementary" RUP (Good AA Pattern).
- 5. RP-Methionine Improved Production & Allowed ≥1% Less Dietary CP.



