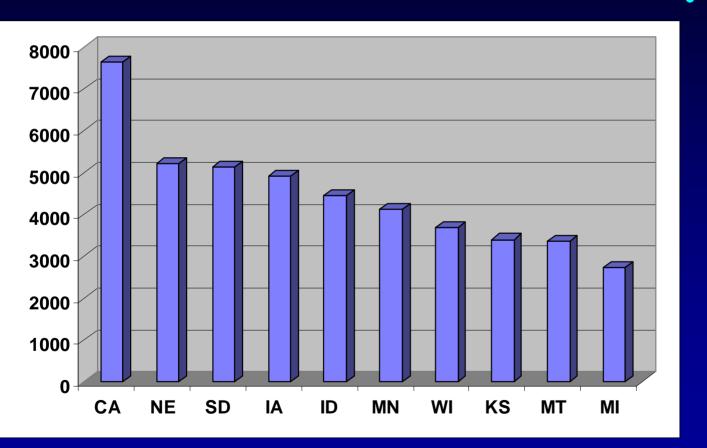
U.S. Dairy Forage Research Center USDA, Agricultural Research Service

Silage Density and Dry Matter Loss of Bag and Bunker Silos

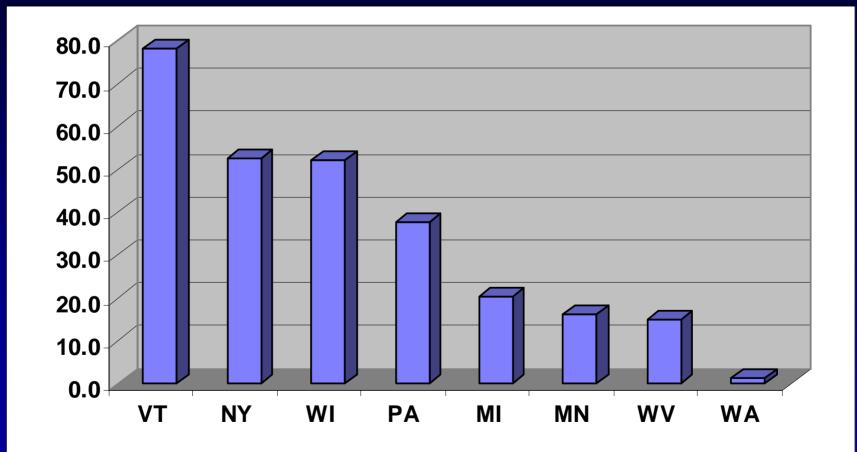
Idaho Alfalfa and Forage Conference 25 February 2004 Neal P. Martin, Richard E. Muck, and Brian J. Holmes

Research Lab, Madison, WI



Silage Density and Dry Matter Loss of Bag and Bunker Silos

- Introduction
- Silo bag study
- Bunker research and educatio


Leading Alfalfa Hay Production States, 1,000 tons, 2003

Top 10 States

-58 % of U. S.
-60 % of Acre
-4 states NC
-6 states West
-5 Lead Dairy

Percent of Total 2003 Alfalfa Production - Haylage

Why Density and Losses?

Important to:

- Determine true cost of storage
- Estimate feed inventory
- Determine critical management practices

However, little but sales literature is available

Monitor filling and emptying of pressed bag silos to:

- Measure densities and losses
- Determine factors affecting each

Methods

 3 research farms in area (Arlington, Prairie du Sac, West Madison) have used baggers for several years

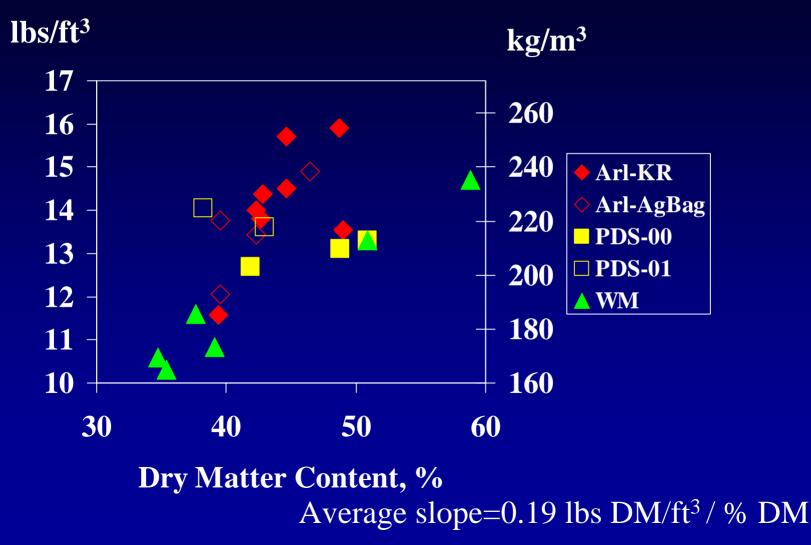
• 3 machines: 9 ft. Kelly-Ryan, 8 ft. Ag Bag, 9 ft. Ag Bag (rental)

Kelly-Ryan

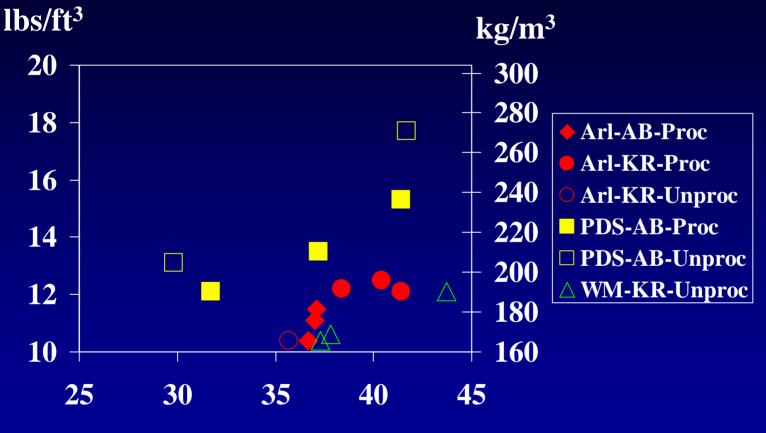
8 Foot Ag Bag

Filling

- All loads:
 - Weighed
 - Marked on bag and length measured
 - Sampled for moisture
 - Composited samples across loads for particle size, CP, NDF, ash

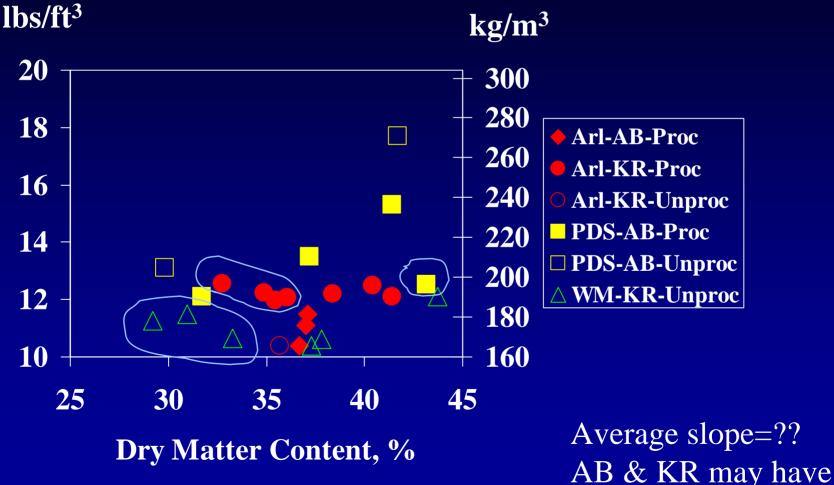

- All silage weighed (both good and spoiled)
- A sample per filling load: moisture and various quality characteristics

Number of Bags				
Losses Analyzed/Made				
	Research			
Bagger	Station	Hay	Corn	
8' Ag Bag	Prairie du Sac	2/5	5/6	
9' Ag Bag	Arlington	0/4	3/3	
9' Kelly Ryan	Arlington	4/8	4/8	
9' Kelly Ryan	W. Madison	3/7	3/6	
Total		9/24	15/23	


Average Hay Crop DM Densities

Bagger	Research Station	lbs/ft ³	kg/m ³
8' Ag Bag	Prairie du Sa	c 13.1	210
9' Ag Bag 9' Kelly Ryan	Arlington	13.5 14.2	217 227
9' Kelly Ryan	W. Madison	11.6	186

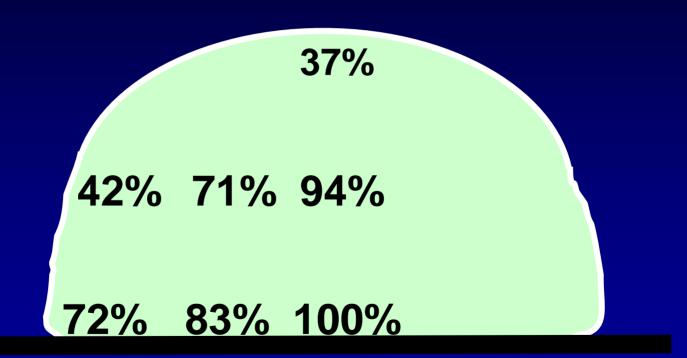
Dry Matter Densities in Hay Crop Silages


Dry Matter Densities in Corn Silages - 2000

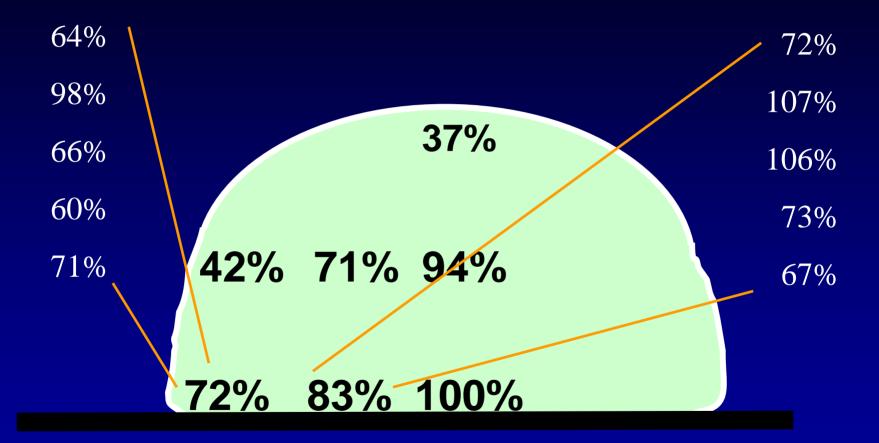
Dry Matter Content, %

Average slope=0.33 lbs DM/ft³ / % DM

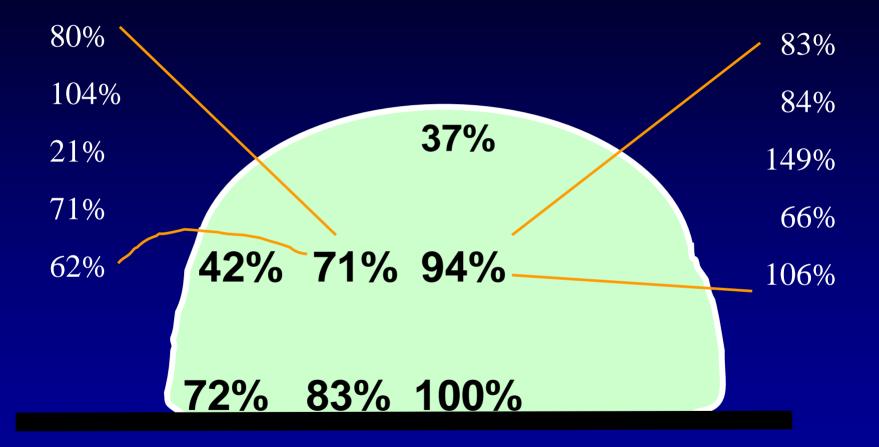
Dry Matter Densities in Corn Silages - 2000, 2001



different slopes


Average Corn DM Densities				
Bagger	Station	Processed	lbs/ft ³	kg/m ³
8' Ag Bag	PDS	Yes No	13.3 15.4	214 246
9' Ag Bag 9' K R 9' K R	Arl	Yes Yes No	11.0 12.2 10.4	176 196 167
9' K R	WM	No	11.1	178

Average DM Densities (lb/ft³)				
Bagger S	Station	Processed	Hay	Corn
8' Ag Bag	PDS	Yes		13.3
		No	13.1	15.4
9' Ag Bag	Arl	No/Yes	13.5	11.0
9' K R		Yes		12.2
9' K R		No	14.1	10.4
9' K R	WM	No	11.6	11.1


Density Variation on the Face

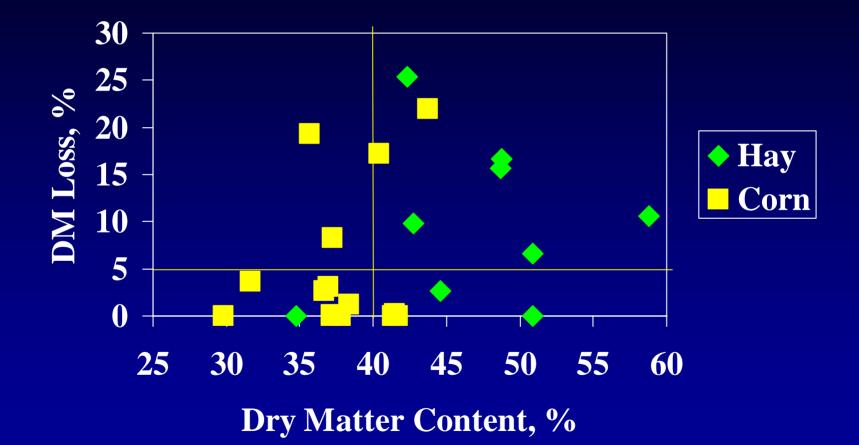
Density Variation on the Face

Density Variation on the Face

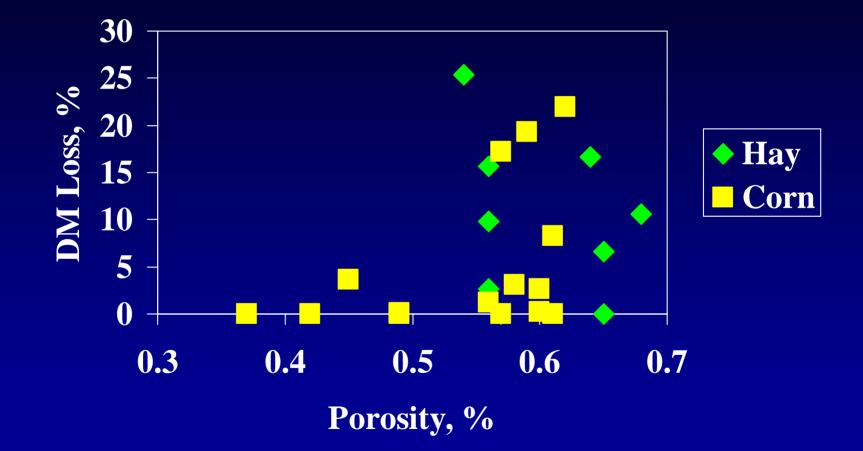
 Invisible & Uncollected = Filling + Removal + Gaseous + Seepage (Not Collected) = Total DM in - Total DM removed

• **Spoilage** = **Silage not fed (moldy)**

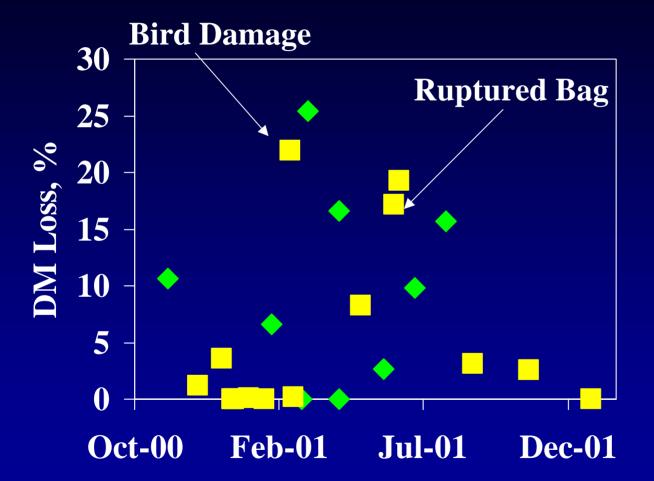
• Total Loss = Invisible & Uncollected + Spoilage


Range of Losses (% DM) 24 Bags				
			Loss	
Loss Loss Average w/o				
Туре	Range	Average	Worst 6*	
Inv. & Unc	col0.3 to 22.8	9.5	8.7	
Spoilage	0.0 to 25.4	6.9	2.7	
Total	-0.3 to 39.9	16.4	11.4	

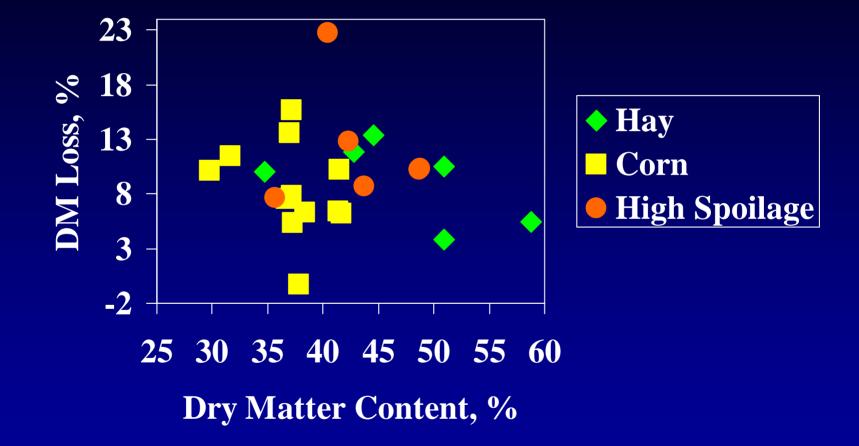
* 25% loss or more


Issues With The Worst Six Bags

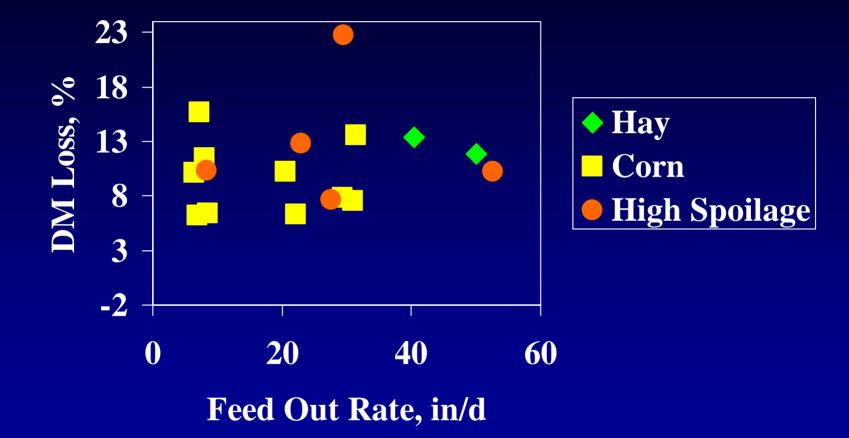
				Remov	
Total % Loss	Spoiled (% Loss)	% DM	When Fed	Rate (in./da	ay) Comments
39.9	17.2	40.4	27 June	29	Bag burst
38.2	25.4	42.3	30 March	23	?
30.6	21.9	43.7	12 March		Bird damage
27.1	19.3	35.7	3 July	28	?
26.9	16.6	48.8	1 May	8	Similar bag
					Total = 11%
25.9	15.7	48.7	20 Aug	53	?

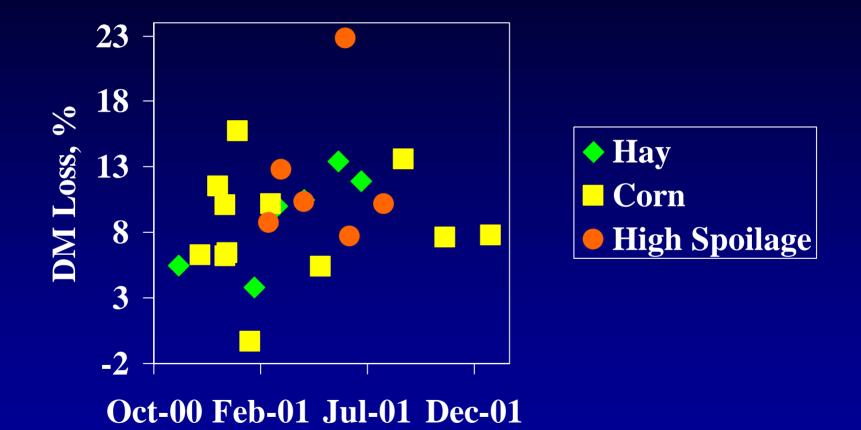

Spoilage Losses vs. DM Content

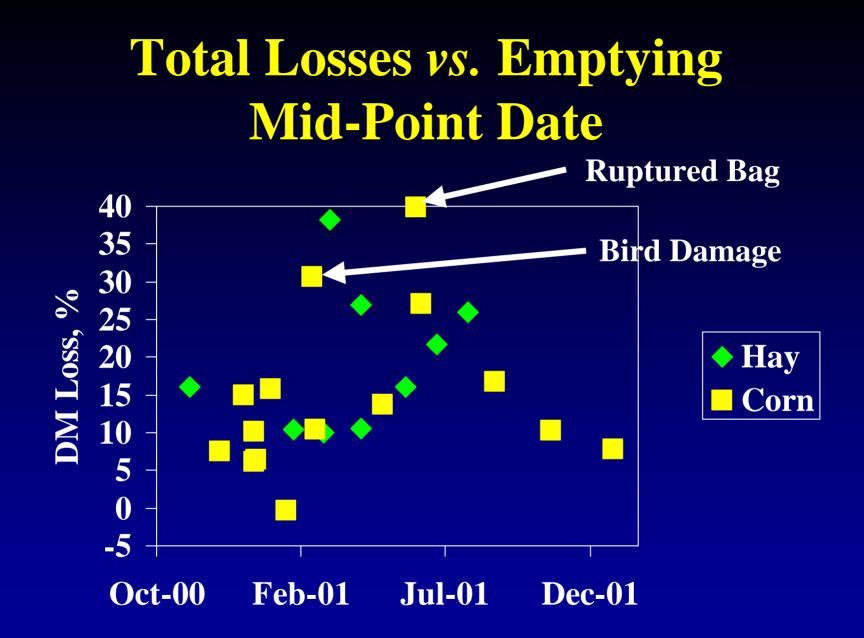
Spoilage Losses vs. Porosity



Spoilage Losses vs. Emptying Mid-Point Date



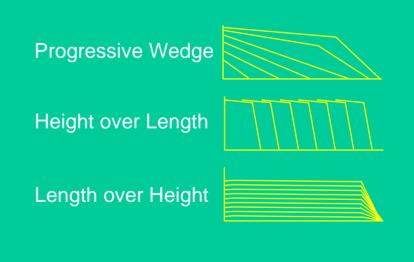

Invisible & Uncollected Loss vs DM Content



Invisible & Uncollected Loss vs Feed Out Rate

Invisible & Uncollected Loss vs Emptying Mid-Point Date

Summary

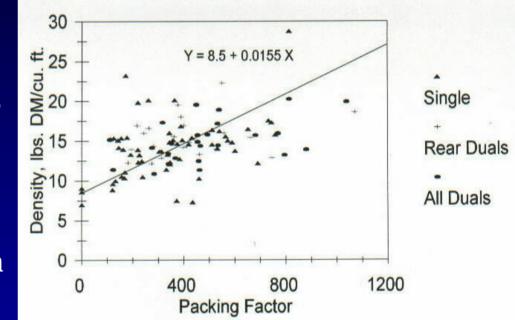

- Density in hay crop silage: 12.5 lbs DM/ft³
- Density in corn silage: higher with one bagger, lower in other relative to hay crop
- DM density lower the wetter the hay crop; less certain relationship in corn

Summary

- Average total losses were 16.4%, but 11.4% without 6 bags with major losses (>25%)
- Spoilage in dry (>40% DM), porous silages
- More problems with spoilage in summer
- Evidence that good management necessary for low losses

Harvest

- maturity, moisture, chop length, rapid chop
- Filling
 - fill rapidly, pack tight, cover
 completely and quickly



- Harvest
- Filling
- Packing
 - Spread in thin layers
 - Average tractor weight
 - Silage height
 - Packing time/wet ton

Dry matter loss as influenced by silage density.		
DM Loss, 180 days (%)		
20.2		
16.8		
15.9		
15.1		
13.4		
10.0		

SOURCE: Ruppel, K. A. 1992. MS thesis Cornell University, Ithaca, NY

- Harvest
- Filling
- Packing
 - Spread in thin layers
 - Average tractor weight
 - Silage height
 - Packing time/wet ton
- Interaction of fill & pack

http://www.uwex.edu/ces/crops/uwforage/storage.htm

Silo Management

- High packing density needed
 - − Density & dry matter content → porosity
 - Porosity set rate of air movement into silo
 - Higher the density, greater silo capacity

Silo Management

Characteristic	Hay crop silage (87 silos)		
	Average	Range	SD*
Dry matter (%)	42	24-67	9.50
Wet density (lbs/ft ³)	37	13-61	10.90
Dry density (lbs/ft ³)	14.8	6.6-27.1	3.80
Avg. particle size(in)	0.46	0.27-1.23	0.15

*SD=standard deviation

SOURCE: Holmes and Muck, 1999.

Silo Management

Characteristic	Corn silage (81 silos)			
	Average	Range	SD*	
Dry matter (%)	34	25-46	4.80	
Wet density (lbs/ft ³)	43	23-60	8.30	
Dry density (lbs/ft ³)	14.5	7.8-23.6	2.90	
Avg. particle size(in)	0.43	0.2868	0.08	

*SD=standard deviation

SOURCE: Holmes and Muck, 1999.

Dry Matter Density Variation

DMD (lbs/ft³) = $(8.5 + PF \times 0.0155) \times (0.818 + 0.0136 \times D)$

Where average depth (D) and packing factor (PF) are calculated as:

- **D** = avg. silage depth (ft) = height at wall + height at center) /2
- $\mathbf{PF} = (\mathbf{W}/\mathbf{L}) \mathbf{x} \mathbf{N} \mathbf{X} \mathbf{DM}/\mathbf{C}$
- **W** = **Proportioned** average tractor weight (lbs) for all tractors
- **L** = Layer thickness (inches) of the spread but unpacked
- N = Number of tractor-packing equivalents, where N = 1 one
- **DM** = **Dry matter content** (**decimal**)
- **C** = **Crop delivery rate** (**T AF/hr**) to the silo

Forage Harvester Average Capacity

	Capacity (T AF/hr)		
Forage harvester type	Hay	Corn	
Pull, 250 HP	60	110	
Self-propelled, 450 HP	100	180	

SOURCE: Shinners, 2001

Improving Silage Density*

Variables changed	DMD(lbs/ft ³)
No change	12.3
+20,000-lb tractor 50% time	12.7
+20,000-lb tractor 100% time	13.1
+5,000 weight to 30,000-lb tractor	13.0
+5,000 weight to both tractors 100% time	14.1
Reduce layer thickness 6 to 4-inches	14.5
Both tractors 100% time & reduce layer to 4	15.6
+5,000 lb to 30,000-lb & reduce layer to 4	15.5
+5,000 lb to tractors 100% time & reduce *Forage delivery rate increased from 50 to 100 T AF/hr	17.1