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Abstra
tThe population dynami
s underlying the di�usion of ideas hold many qualitativesimilarities to those involved in the spread of infe
tions. In spite of mu
h suggestiveeviden
e this analogy is hardly ever quanti�ed in useful ways. The standard bene�tof modeling epidemi
s is the ability to estimate quantitatively population average pa-rameters, su
h as interpersonal 
onta
t rates, in
ubation times, duration of infe
tiousperiods, et
. In most 
ases su
h quantities generalize naturally to the spread of ideasand provide a simple means of quantifying so
iologi
al and behavioral patterns. Herewe apply several paradigmati
 models of epidemi
s to empiri
al data on the advent andspread of Feynman diagrams through the theoreti
al physi
s 
ommunities of the USA,Japan, and the USSR in the period immediately after World War II. This test 
ase hasthe advantage of having been studied histori
ally in great detail, whi
h allows valida-tion of our results. We estimate the e�e
tiveness of adoption of the idea in the three
ommunities and �nd values for parameters re�e
ting both intentional so
ial organiza-tion and long lifetimes for the idea. These features are probably general 
hara
teristi
sof the spread of ideas, but not of 
ommon epidemi
s.
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1 Introdu
tionDynami
al population models are used to predi
t average behavior, generate hypothe-ses or explore me
hanisms a
ross many �elds of s
ien
e in
luding e
ology [1, 2, 3℄,epidemiology [4, 5, 6, 7℄ and immunology [8℄, to name but a few. Traditionally, epi-demiologi
al models fo
us on the dynami
s of �traits� transmitted between individuals,
ommunities, or regions (within spe
i�
 temporal or spatial s
ales). Traits may in
lude(i) a 
ommuni
able disease su
h as measles [1℄ or HIV [9℄; (ii) a 
ultural 
hara
teristi
su
h us a religious belief, a fad [10, 11, 12, 13℄, an innovation [14℄, or fanati
 behav-ior [15℄; (iii) an addi
tion su
h us drug use [16℄ or a disorder [17℄; or (iv) informationspread through, e.g., rumors [18, 19℄, email messages [22℄, weblogs [23℄, or peer-to-peer
omputer networks [24℄.The earliest and by now most thoroughly studied population models are those usedto map disease progression through a human population [25, 26, 27℄. These modelstypi
ally divide a population into 
lasses that re�e
t the epidemiologi
al status of in-dividuals (e.g. sus
eptible, exposed, infe
ted, et
), who in turn transit between 
lassesvia mutual 
onta
t at given average rates. In this way the models 
an 
apture averagedisease progression by tra
king the mean number of people who are infe
ted, who areprone to 
at
h the disease, and who have re
overed over time. In addition, these mod-els 
an be used to identify the role of spe
i�
 population 
hara
teristi
s su
h as age,variable infe
tivity, and variable infe
tious periods [26℄. The division of epidemiologi-
al 
lasses a

ording to su
h 
hara
teristi
s gives rise to more 
omplex models with so
alled heterogeneous mixing.In this paper we apply models similar to those used in epidemiology to the spread ofideas. By the term �idea� we refer generally to any 
on
ept that 
an be transmitted fromperson to person [28, 29, 30, 31℄. It may refer to a te
hnology, whi
h may require e�ortand apprenti
eship to be learned, but it may also be a more �
kle pie
e of informationsu
h as a 
olloquialism or a pie
e of news. What is important is that it is possible totell if someone has adopted the idea, understands and remembers it, and is 
apable ofand/or a
tive in spreading it to others.Pioneering 
ontributions to the modeling of so
ial 
ontagion pro
esses, based onepidemiologi
al models, date ba
k to 1953 [18℄. Nearly a de
ade later, models wereapplied to the spread of s
ienti�
 ideas [20, 21℄. Around the same time, a sto
hasti
model for the spread of rumors was proposed and analyzed [19℄. In this later model, a
losed population is divided into three �so
ial� states: ignorant, spreaders, and sti�ers.Transitions from the ignorant state to spreaders may result from 
onta
ts between thetwo 
lasses, whereas en
ounters between individuals who already know the rumor maylead to its 
essation. Various re
ent extensions of this model in
lude a general 
lassof Markov pro
esses for generating time-dependent evolution [32℄, and studies of thee�e
ts of so
ial lands
apes on the spread, either through Monte Carlo simulations oversmall-world [33℄ and s
ale-free [34℄ networks, or by derivation of mean-�eld equations fora population with heterogeneous ignorant and spreader 
lasses [35℄. Despite this revivalin the modeling of information spread, few of these models have been dire
tly applied toempiri
al data. In our opinion, this 
onstitutes a serious gap in the literature, be
auseonly the analysis of real data 
an ultimately validate model assumptions or point tonovel features of su
h a 
omplex pro
ess. The main obje
tive of this paper is to bridgethis gap.Beyond obvious qualitative parallels there are also important di�eren
es between3



the spread of ideas and diseases. The spread of an idea, unlike a disease, is usually a
ons
ious a
t on the part of the transmitter and/or the adopter. Some ideas that taketime to mature, su
h as those requiring apprenti
eship or study, require a
tive e�ort toa
quire. There is also no simple automati
 me
hanism � su
h as an immune system � bymeans of whi
h an idea may be 
leared from an infe
ted individual. Most importantly,it is usually advantageous to a
quire new ideas, whereas this is manifestly not so fordiseases. This leads people to adopt di�erent, often opposite, behaviors when interestedin learning an idea 
ompared to what they may do during an epidemi
 outbreak. Thuswe should expe
t important qualitative and quantitative di�eren
es between ideas anddiseases when using epidemiologi
al models in a so
iologi
al 
ontext. We explore someof these points below in greater detail, in the 
ontext of spe
i�
 models and data.In spite of these di�eren
es, quantifying how ideas spread is very desirable as a meansof testing so
iologi
al hypotheses. For example, we 
an apply dynami
al populationmodels to the spread of an idea to validate statements about how e�e
tively it istransmitted, the size of the sus
eptible population, the speed of its spread, as well asits persisten
e. Estimating the population numbers and rates is useful in 
onstrainingexplanatory frameworks. It is also useful for studying how 
ultural environments maya�e
t adoption, as happens when the same idea is presented to 
ommunities in di�erentnations, or 
onversely when di�erent ideas are presented to the same 
ommunity.We pursue these goals in this paper by applying several generi
 models of epidemi-ology to the di�usion of a spe
i�
 s
ienti�
 idea in three di�erent 
ommunities. Ourtest 
ase is the spread of Feynman diagrams, sin
e the late 1940s the prin
ipal 
om-putational tool of theoreti
al high-energy physi
s, and later also used extensively inother areas of many-body theory su
h as atomi
 physi
s and 
ondensed-matter theory.The primary reason to 
hoose this example is that we have detailed histori
al informa-tion about the network of 
onta
ts, person by person, by means of whi
h the diagramsspread during the �rst six years after their introdu
tion [36, 37, 38℄.This example of the spread of an idea may not trans
end automati
ally to other 
asesof idea di�usion. Feynman diagrams are primarily a tool for 
omplex 
al
ulation. Assu
h their study and assimilation require a period of apprenti
eship and familiarization.Transmission of the te
hnique almost invariably pro
eeded, in the early years, throughpersonal 
onta
t, from informal tea
her to student and among peer groups of users.In later years the idea be
ame familiar and available in a

essible forms so that (inprin
iple) it 
ould more easily have been learned from books and le
ture notes. Thus,although our example will 
learly not 
over every 
lass of ideas it will point, we believe,to features of epidemi
 models that apply to idea di�usion. It will also reveal featuresof these models that require modi�
ation, thereby produ
ing more realisti
 
andidatemodels that we expe
t will prove useful beyond our present analysis.In Se
tion 2 we give some histori
al ba
kground on the spread of Feynman diagramsin the United States, Japan, and the Soviet Union. We dis
uss our data sour
es and theorganization of the datasets. Se
tion 3 presents several 
lasses of models of epidemi-ology (or dire
tly inspired by them), some of their mathemati
al properties, and the
ir
umstan
es under whi
h we expe
t them to apply to the spread of ideas. We applyea
h model to the histori
al data in Se
tion 4, and dis
uss the estimated values forthe model parameters in the light of our independent knowledge of how the diagramsspread. Finally in Se
tion 5 we present our 
on
lusions and give some outlook on thegeneral population modeling of the spread of ideas. Appendix A 
ontains details about4



our parameter estimation pro
edure.2 Data sour
es, time series re
onstru
tion, andstate determinationFeynman diagrams o

upy a 
entral role in modern theoreti
al physi
s. Realisti
 mod-els of high-energy physi
s, as well as in 
ondensed-matter, atomi
, and nu
lear physi
s
annot be solved exa
tly to generate predi
tions that 
an be 
onfronted with experi-ments. In spe
ial 
ir
umstan
es, however, su
h as when intera
tions are weak, seriesexpansions in a small parameter permit very good systemati
 approximations.In models of parti
le physi
s, su
h as the relativisti
 quantum theory of ele
tro-magnetism � quantum ele
trodynami
s � most terms of this series beyond zeroth order(tree level) are formally in�nite. The pro
edure of removing unphysi
al in�nities togenerate predi
tions is 
alled �renormalization.� It is vital for renormalization to workthat 
ommensurate terms be grouped together. This is a relatively simple pro
edure forthe lowest orders in the expansion series but be
omes absolutely 
onfounding at higherorders, in whi
h many terms 
ontribute and in�nities must 
an
el pre
isely betweenthem. For example, in quantum ele
trodynami
s, se
ond-order 
al
ulations (involvingthe �rst non-trivial 
orre
tions within the perturbative expansion) typi
ally involve tenor so distin
t terms to be delimited, 
al
ulated, and added together, while eighth-order
al
ulations involve nearly one thousand su
h terms. Both 
hallenges to making 
al-
ulations in quantum ele
trodynami
s � the presen
e of in�nities and the a

ountingdi�
ulties of perturbative 
al
ulations � were well known to physi
ists during the 1930s,and the problems remained unsolved after World War II. Throughout 1947 and 1948several approa
hes to rendering quantum ele
trodynami
s well-de�ned were being at-tempted in the USA and Japan, but it remained un
lear if any renormalization program
ould su

eed systemati
ally [40℄.It was then that Freeman Dyson, following up on an idea by Ri
hard Feynman, wasable to show how a diagrammati
 representation of parti
le intera
tions 
ould be usedto organize the series expansion. Using the diagrams, Dyson further demonstrated thatthe in�nities 
ould be systemati
ally identi�ed and 
an
elled to any perturbative order.This 
on
eptual breakthrough uni�ed Feynman's approa
h (then at Cornell University)with that of Julian S
hwinger (at Harvard University) and Sin-Itiro Tomonaga (at TokyoEdu
ation University). For their 
ontributions Feynman, S
hwinger, and Tomonagawere awarded the Nobel Prize in 1965 [40℄. Feynman diagrams opened the �oodgatesfor 
omputation (and predi
tion) in quantum ele
trodynami
s and beyond, 
reatingenormous resear
h opportunities for a new generation of theoreti
al physi
ists. Testsof quantum ele
trodynami
s and later quantum �eld theories of the weak and strongnu
lear intera
tions 
ontinue today in multibillion-dollar parti
le a

elerators at CERNand Fermilab, as well as at smaller installations. These quantum �eld theories takentogether 
onstitute the �standard model of parti
le physi
s,� whi
h summarizes ourmost fundamental (and most exa
t) understanding of matter and radiation to date.Almost all quantitative predi
tions of the standard model, on whi
h modern parti
lephysi
s and 
osmology are based, are 
omputed using series of Feynman diagrams.Be
ause of their extraordinary importan
e in enabling a good part of modern the-oreti
al physi
s, the advent of quantum ele
trodynami
s and of Feynman diagrams in5



parti
ular has been very well do
umented. Our data was 
olle
ted in large part fora new book by one of the authors [36℄. For the United States and Britain one of us(Kaiser) re
onstru
ted the network of 
onta
ts � author by author � for the spread ofthe diagrams during the �rst six years after their introdu
tion, between 1949 and 1954.For this he relied upon unpublished 
orresponden
e, preprints, le
ture notes, and publi-
ations from the period, along with more re
ent interviews and published re
olle
tions.With the aid of two 
olleagues, he used similar materials to study how the diagramsspread to young physi
ists in Japan and the Soviet Union. Although less information isreadily available about these 
ommunities of physi
ists, a reasonably 
omplete pi
tureof 
onta
ts and spread 
an also be inferred [36, 37℄.Based on this information we identify adopters of the idea (or members of the�infe
ted� 
lass) based on published uses of (or dis
ussion of) Feynman diagrams in themain physi
s resear
h journals of ea
h 
ountry: Physi
al Review in the USA, Progressin Theoreti
al Physi
s in Japan, and Zhurnal Eksperimental'noi i Teoreti
heskoi Fiziki(Journal of Experimental and Theoreti
al Physi
s) in the USSR. The identi�
ation ofadopters with published authors 
an 
learly lead to underestimation. Similarly theidenti�
ation of national 
ommunities with spe
i�
 journal publi
ation is imperfe
t,although we �nd almost no 
ross-national publi
ations apart from a few British authorswho were in a
tive 
onta
t with developments in the USA and published in the Physi
alReview. As su
h they are 
ounted as part of the diagram-using 
ommunity in the USA.With these 
hoi
es the evolution of 
umulative numbers of Feynman-diagram authorsis shown in Fig. 1.Analogies for the remaining states 
ommonly used in epidemiologi
al models arealso natural but must be properly quali�ed. The identi�
ation of sus
eptibles is usuallyproblemati
 both for diseases and ideas. For simpli
ity one may 
onsider the entirepopulation that is not infe
ted (or re
overed), but if the spreading pro
ess requiressu
h features as dire
t 
onta
t with those already infe
ted this may turn out to bea gross overestimate. With the bene�t of hindsight we 
an see what fra
tion of thepopulation a
tually be
ame infe
ted, but su
h estimates 
an 
learly underestimate the
lass of sus
eptibles.Finally it is interesting to dis
uss the re
overed state. For some 
ommuni
ablediseases su
h a state does not exist; su
h is the 
ase for HIV and tuber
ulosis, forwhi
h infe
ted individuals remain latent for extensively long periods. On the otherhand, there are infe
tious diseases in whi
h an individual a
quires immunity right afterre
overy and will not get re-infe
ted. This is not true with ideas, a 
ase in whi
h 
ultureis manifestly di�erent from biology. An idea 
an re
ur again and again, whenever itbe
omes useful, on
e it be
omes part of an individual's repertoire. In many 
ases (andthis is 
lear in our data for several authors), an individual might publish in areas whereFeynman diagrams are used, only to later leave the area for good or to return to it later.For very proli�
 authors, publi
ation in several areas simultaneously o

urs frequently.With these 
aveats in mind we pro
eed in the next se
tions to apply epidemi
 modelsto our data. Model parameters will be estimated on the basis of how well they �t theevolution of adopters. Furthermore, the results of these estimates will be subje
tedto broad bounds imposed by the solutions' plausibility, given our knowledge of thehistori
al fa
ts.
6
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Figure 1: The time evolution of the 
umulative number of authors using Feynman diagramsin the USA, Japan, and the USSR. The method was �rst dis
overed in the USA and qui
klyspread both there and in Japan. Adoption was parti
ularly fast in Japan where resear
hershad already developed similar methods. At the same time, new institutions were developedthroughout Japan after World War II that helped the nation's physi
ists share informationfrom the international s
ienti�
 
ommunity that might otherwise have been di�
ult to a

ess.Adoption in the USSR o

urred later be
ause of s
ienti�
 isolation from physi
ists in theWest with the onset of the Cold War, and pro
eeded more slowly be
ause of institutionalresistan
e. For details of these institutional and pedagogi
al fa
tors, see [36, 37℄.
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exitFigure 2: The basi
 s
heme of population dynami
s models for the spread of ideas, inspiredby similar models in epidemi
s. An individual 
an be re
ruited into the sus
eptible (S)
lass, then be exposed (E) to the idea, in
ubate it, and eventually manifest it, be
ominga member of the adopter or infe
ted 
lass (I). An indivdual might instead move into a
ompeting infe
tive 
lass (e.g., skepti
s, Z). It is possible that part of the population mayeventually re
over (R), meaning that it will not manifest the idea again. Individuals 
analso exit any 
lass, thus redu
ing the total population.3 Population models: drawing parallels betweenepidemi
s and idea di�usionBelow we shall 
on
entrate on the 
lassi
al, simplest epidemiologi
al models, based on�homogeneous mixing� in whi
h state variables are only fun
tions of time. In a reviewof epidemiologi
al models Heth
ote [26℄ introdu
ed their 
ompartmental 
hara
teriza-tion (e.g. SIR, SIS, SEIR, et
.) within a global analysis of the �eld. Su
h surveyalso dis
usses how more 
omplex models 
an be used to asses the impa
t of populationstru
ture (age, risk, gender, et
.), epidemiologi
al variability (age of infe
tion, variableinfe
tivity, distributed in
ubation periods, et
.), and s
ale (spatial, temporal, et
.) ondisease dynami
s and 
ontrol. Although we have knowledge of some population 
hara
-teristi
s (e.g. a
ademi
 level, institutional lo
ation) in our data set we feel it may notbe large enough to make su
h distin
tions in a way that will lead to useful quantitativedis
rimination.As su
h we explore below a large 
lass of "mean-�eld" models, illustrated by Fig. 2.At the onset of the spread of the idea most of the population will be in the sus
eptible
lass (S), with a few individuals in the in
ubator 
lass (E) � having been in 
onta
t withthe idea � and a small number of adopters (I) manifesting it. These are the prin
ipal
lasses in the models below. In addition, inspired by the approa
hes of Daley andKendall [19℄, we also explore models in whi
h there may be 
ompeting and mutuallyex
lusive ideas (e.g. where sus
eptibles are turned o� from the idea and be
ome skepti
sor idea sti�ers, represented by the 
lass Z). Furthermore, individuals may re
over orbe
ome immune (R), and not manifest the idea again. Di�erent models 
ombine subsetsof these states and admit di�erent 
ouplings between them.8



Variable De�nition
S Sus
eptible
E Idea In
ubators
I Idea Adopters
Z Skepti
s
R Re
overed
N Total Population: N = S + E + I + Z + RTable 1: Nomen
lature for the state variables of the several population models used todes
ribe the spread of ideas.The total population is denoted by N(t), where N = S + E + I + Z + R. Inthe epidemi
 models used in this study, the demographi
 dynami
s are modeled by

dN/dt = B(N) − µN , where B(N) is referred to as the re
ruitment fun
tion. In our
ase, this denotes the arrival rate of new individuals sus
eptible to the idea, su
h asnew graduate students starting in the �eld as well as other s
ientists who �nd the idearelevant for their resear
h. The parameter µ > 0 denotes the rate at whi
h physi
istsstop using Feynman diagrams (the exit terms in Fig. 2). Thus, the maximum valuethat 1/µ 
an take is the average lifespan of the idea within a generation of resear
hersin the relevant 
ommunity.Whenever B(N) > 0 and µ > 0, then the system in Fig. 2 is said to have vitaldynami
s. If B(N) ≡ Λ > 0, then N(t) varies over time and approa
hes a stable�xed point, Λ/µ, as t → ∞, in other words, the 
ommunity approa
hes its �
arrying�
apa
ity. In order to illustrate generi
 model features we dis
uss below a few partialimplementations of this general s
heme, in
luding expli
it parameterizations. At theend of this se
tion we emphasize the role of the basi
 reprodu
tive number, R0, as ameasure of e�e
tiveness of adoption.3.1 Models without in
ubation: SIR ModelThe 
lassi
al epidemi
 model 
onsists of three states: sus
eptibles (S), adopters (orinfe
ted, I), and re
overed (R). In this SIR model, sus
eptible individuals transitdire
tly to the adopter 
lass through 
onta
t with other adopters, without any delayperiod or in
ubation. The re
overed state 
onsists of those individuals who no longermanifest the idea. This state allows for the de
ay of adopters by re
overy and thusleads to a regulation of the idea spread. The model is de�ned by the following systemof ordinary di�erential equations (where overdots denote derivatives with respe
t totime):










































Ṡ = Λ − βS I
N

− µS,

İ = βS I
N

− (γ + µ)I,

Ṙ = γI − µR,

Ṅ = Λ − µN,

(1)
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where 1/(γ+µ) is the average time spent manifesting the idea as an adopter (γ denotesthe re
overy rate from infe
tion). The term βSI/N is usually referred to as the standardin
iden
e. The parameter β is the per 
apita idea adoption rate. It 
an in turn bethought as the produ
t between the mean 
onta
t rate per 
apita and the probabilityof adoption per 
onta
t.As noted above, although re
overy is a natural 
on
ept in epidemiology (sin
e or-ganisms naturally may be
ome immune after exposure and/or infe
tion), there is nostri
t parallel when dis
ussing ideas. Loose analogies are possible, e.g. on
e one losesinterest in an idea it is usually harder to have an individual express it, whereas noveltymay make it more attra
tive. Nevertheless there is no systemati
 
ognitive pro
ess,analogous to the immune system, that a
tively 
lears out ideas. As su
h many ideasare remembered for life.Many ideas may be short-lived, say from years to days, 
ompared to the lifetime ofthe individual. In this 
ase, we may 
onsider a single outbreak by setting Λ = µ = 0.The sign of the right hand side of the se
ond equation in system (1) then determinesthe spread of the idea and depends on the initial fra
tion of sus
eptibles, S(t0)/N . Ifthe initial state of the population 
an be su
h that S(t0)/N < γ/β, then the numberof infe
tives 
an only de
rease. This is the basis of immunization 
ampaigns, wherebymembers of the sus
eptible 
lass are turned into members of the immune 
lass, andhen
e be
ome part of R(t0). Thus knowledge of the infe
tion rate, β, and of thelifetime of the infe
tion, 1/γ, results in the re
ommendation for the fra
tion of immune(re
overed) ne
essary for an epidemi
 not to develop, namely R(t0)/N > 1 − (γ/β).For a very infe
tious disease or idea (large β) or one with a slow re
overy rate (small
γ) almost all of the population must be immune in order to halt the spread.Due to the less 
lear de�nition of immunity to an idea, the 
on
ept of what may
onstitute immunization is also ill-de�ned. Clearly the novelty of an idea and a per-
eption of its potential are often its most attra
tive features. Changing this per
eptionthrough edu
ation (e.g., about the 
onsequen
es of a 
ertain behavior, ideology, or pra
-ti
e) may lead to an in
rease of skepti
ism and 
onsequently greater �immunity� uponexposure. Moreover we should keep in mind that this 
on
ept of immunization, justas in standard epidemi
s but for di�erent reasons, is usually only valid for the lifetimeof an individual. Although some biologi
al immunity 
an be passed e.g. from motherto infant, it is usually the 
ase that young individuals are more sus
eptible to new dis-eases and ideas alike. In the Feynman diagram 
ase this is borne out histori
ally: over80 per
ent of the early adopters of the diagrams in ea
h 
ountry were either graduatestudents or postdo
s when they �rst began using the diagrams; older physi
ists simplydid not re-tool [36℄.The asymptoti
 late-time dynami
s of model (1) are well known, and will form thebasis for the analyses of more 
omplex models dis
ussed below. Suppose that Λ > 0 and
µ > 0. For long times, and regardless of the distribution of infe
tives and sus
eptibles,re
ruitment and exits will balan
e ea
h other so that limt→∞ N(t) = N∗ = Λ/µ. Thereare up to two di�erent non-negative steady states (�xed points), known in epidemiologyas the disease-free equilibrium with S∗ = N∗ = Λ/µ, I∗ = R∗ = 0, and the endemi
state (whenever β/(γ + µ) > 1) with

S∗ =
γ + µ

β
N∗, I∗ =

[

µ

γ + µ
−

µ

β

]

N∗, R∗ =
γ

µ
I∗ =

[

γ

γ + µ
−

γ

β

]

N∗. (2)The eigenvalues around the disease-free state equilibrium are (−µ,−µ, β − (γ + µ)).10



Thus it is stable provided that β < γ + µ, i.e. if the de
ay rate (due to exit andre
overy) is larger than the idea adoption rate. The instability of the disease-free state
orresponds to stability of the endemi
 state. The eigenvalues of the linearized systemaround the endemi
 equlibrium are
− µ, −

βµ ± A

2(γ + µ)
, (3)where A =

√

µ(β2µ − 4β(γ + µ)2 + 4(γ + µ)3). All eigenvalues are negative providedthat β > γ + µ, guaranteeing the lo
al stability of the endemi
 state.As a result a trans
rit
al bifur
ation (where the two equilibria ex
hange stability)takes pla
e at R0 ≡ β/(γ + µ) = 1. In the mathemati
al epidemiology literaturethe dimensionless quantity R0 is known as the basi
 reprodu
tive number. R0 has anintuitive and useful interpretation as the average number of se
ondary 
ases produ
ed bya �typi
al� infe
ted individual during his/her entire life as infe
tious, when introdu
edin a population of sus
eptibles (assumed to be at a demographi
 steady state). We willdis
uss the role of R0 further in Subse
tion 3.3.3.2 Competition and in
ubation: SIZ and SEIZ ModelsIn the spread of ideas, but almost never in standard epidemi
s, the exposure of indi-viduals to an idea almost invariably leads to both enthusiasts and skepti
s. In the 
aseof Feynman diagrams, skepti
s did indeed emerge. Julian S
hwinger, for example, whodeveloped a non-diagrammati
 method of renormalization, quipped years later thatFeynman diagrams had �brought 
omputation to the masses� � hardly a good thing, asfar as S
hwinger was 
on
erned. Although his graduate students at Harvard did learnsomething about the diagrams, they made little use of them in their dissertations andearly arti
les. J. R. Oppenheimer, too, was initially skepti
al, and e�e
tively blo
kedDyson's re
ruitment e�orts at the Institute for Advan
ed Study in Prin
eton for severalweeks, before Hans Bethe inter
eded dire
tly on Dyson's behalf. In Mos
ow, meanwhile,the in�uential Lev Landau made his distaste for Feynman diagrams 
lear during theearly 1950s, blo
king any dis
ussion of them in his famous seminar (even 
hastisingone young graduate student who had expressed interest in the diagrams that it wouldbe �immoral� to 
hase su
h �fashions� as Feynman diagrams!) [36℄. Thus in
lusion ofskepti
s alongside enthusiasts is quite important. This 
an be modeled by 
onsideringtwo 
ompeting and mutually ex
lusive infe
ted states, say I and Z. The simplest su
hmodel (SIZ) is given by






















Ṡ = Λ − βS I
N

− bS Z
N

− µS

İ = βS I
N

− µI

Ż = bS Z
N

− µZ,

(4)where b and β denote the per 
apita rates of idea reje
tion and adoption by sus
eptibles,respe
tively.The interesting new feature about this type of model is that it 
an support up tothree �xed points. The �rst is the usual disease-free state S = N∗ = Λ/µ, I = 0, Z = 011



(extin
tion of both adopters and skepti
s), and two endemi
 states, one for ea
h strand
I, Z:

S = µ
β
N∗, I =

(

1 −
µ
β

)

N∗, Z = 0 (extin
tion of skepti
s) (5)or
S = µ

b
N∗, Z =

(

1 −
µ
b

)

N∗, I = 0 (extin
tion of adopters). (6)Observe that model (4) does not support the steady state 
o-existen
e of adoptersand skepti
s. For the disease-free state the eigenvalues are (b − µ, β − µ,−µ). Thusfor stability one needs both b < µ and β < µ. This means that there are two R0's,
RI

0 = β/µ, and RZ
0 = b/µ.Under these 
ir
umstan
es, whi
h of the endemi
 states be
omes stable? To in-vestigate this question we inspe
t the eigenvalues around the I endemi
 state. Thisgives

− µ,

(

b

β
− 1

)

µ, −β + µ. (7)Similarly we obtain the eigenvalues for the endemi
 Z state by repla
ing b with β andvi
e versa in (7). This result implies that only one of the two endemi
 states 
an bestable, depending on the relative magnitude of the 
onta
t rates b and β. We note,however, that be
ause there is no 
onta
t term between the I and Z, the way one 
lassends up dominating relies on long-time 
hanges in the population through 
y
les ofre
ruitment and exit. This time s
ale 
an be very long, diverging in the limit where
b → β. For β > b it will take on average β/(β − b) generations until the disappearan
eof skepti
s.The model generalizes immediately to an arbitrary number, nZ , of alternative en-demi
 states, Zi (in whi
h we in
lude the usual I), with asso
iated 
onta
t rates bi.There will then be nZ + 1 �xed points, one disease-free and nZ endemi
 
orrespondingto ea
h strand. As in the SIZ model above only the state with the largest bi will belo
ally stable. The stability of the �xed point asso
iated with Zi for de
ay in favor ofan alternative state Zj is 
hara
terized by an eigenvalue [(bi/bj)−1]µ. The disease-freeequilibrium will be lo
ally stable if and only if all Ri

0 = bi/bj < 1, ∀
nZ

i=1.As above, 
onsider the 
ase in whi
h re
overy 
an take pla
e in the SIZ model, andpro
eeds with rate γI from the I 
lass, and with rate γZ from the Z 
lass. RI,Z
0 
hangeby the simple modi�
ation µ → µ + γI,Z . In the absen
e of vital dynami
s, it thenbe
omes a ne
essary and su�
ient 
ondition for the growth of the strand I, Z that

S(t0)/N > γI,Z/β, respe
tively. What is interesting now is that the redu
tion of thesus
eptibles 
an be a
hieved by having a suitably large fra
tion of the population in the
omplementary infe
tive strand(s). For example, I will not grow if [Z(t0)+R(t0)]/N >
1−(γI/β). This observation quanti�es the fa
t that in a population with a large fra
tionof skepti
s an idea will not take hold. In this sense 
omplementary strands e�e
tivelya
t like re
overy states. This may be the most natural explanation for why old ideasseldom re-surfa
e, in spite of being preserved for very long times in the population andvarious ar
hives.One important drawba
k of SIR and SIZ models is that on
e exposed to an infe
tedperson, a sus
eptible individual transits immediately to the infe
ted 
lass. This featureis often unrealisti
, espe
ially for ideas that require long periods of apprenti
eship, whi
his 
ommon in s
ienti�
 resear
h and is a signi�
ant feature of the Feynman-diagram user12



Parameter De�nition
Λ Re
ruitment rate

1/µ Average lifetime of the idea
1/ǫ Average idea in
ubation time
1/γ Average re
overy time
β Per-
apita S-I 
onta
t rate
ρ Per-
apita E-I 
onta
t rate
b Per-
apita S-Z 
onta
t rate
l S → Z transition probability given 
onta
t with skepti
s

1 − l S → E transition probability given 
onta
t with skepti
s
p S → I transition probability given 
onta
t with adopters

1 − p S → E transition probability given 
onta
t with adoptersTable 2: Parameter de�nitions used in the several population models of this se
tion.data dis
ussed below. The simplest way of in
orporating some delay in an SIZ modelis to introdu
e a new 
lass of in
ubators (or exposed), denoted by E, between thesus
eptible and adopter states. Upon 
onta
t with an adopter, a sus
eptible individualtransits with a given probability to the E 
lass. This 
lass has a given 
hara
teristi
lifetime, 1/ǫ, before the individual manifests the idea and transits to the I 
lass. Thatis, 1/ǫ is the average in
ubation (or maturation) time of the idea [41℄. It is expe
tedto be a fun
tion of personal e�ort on the part of the adopter as well as environment(adverse or supportive). There may also be population losses due to vital dynami
s,whi
h we will 
ontinue to assume o

ur on a times
ale 1/µ. In this sense not all of theexposed population will be
ome infe
ted.This extension leads to an SEIZ model. In addition, this model 
an be enri
hedwith extra pro
esses to generate a better des
ription of the data. Below we presenta version of the SEIZ model in whi
h skepti
s re
ruit from the sus
eptible pool withrate b, but their a
tion may result either in turning the individual into another skepti
(with probability l), or it may have the unintended e�e
t of sending that person intothe in
ubator 
lass (with probability 1 − l). We also introdu
e a probability, p, thata sus
eptible individual will be
ome immediately infe
ted with the idea upon 
onta
t.Conversely, with probability 1−p that person will transit to the in
ubator 
lass instead,from whi
h the individual may later be
ome an adopter. Furthermore, the transition ofindividuals from the in
ubator 
lass to the adopter 
lass 
an be promoted by 
onta
t,with rate ρ. With these 
hoi
es the model is given by:










































Ṡ = Λ − βS I
N

− bS Z
N

− µS

Ė = (1 − p)βS I
N

+ (1 − l)bS Z
N

− ρE I
N

− ǫE − µE

İ = pβS I
N

+ ρE I
N

+ ǫE − µI

Ż = l b S Z
N

− µZ.

(8)
As expe
ted, the system has a disease-free state with S∗ = N, E∗ = I∗ = Z∗ = 0.13



Analysis of the lo
al stability of this �xed point (utilizing next generation operator[42, 43℄) reveals that the basi
 reprodu
tive numbers are given by
RI,Z

0 =

(

β(ǫ + pµ)

µ(ǫ + µ)
,
l b

µ

)

. (9)As in the SIZ model the �rst number, RI
0, is the one of interest, as it 
orresponds to aneigenve
tor with a 
omponent of adopters. The se
ond value, RZ

0 , 
orresponds to theex
lusive growth of a population of skepti
s, without a

eptan
e of the idea.3.3 Speed of idea propagation and e�e
tiveness of adoptionFrom the dis
ussion of the models above we 
an de�ne several important intuitivequantities that 
hara
terize the spread of ideas. For example, a simple measure of thespeed of propagation of the idea is the number of new adopters per unit time. This issimply given by İ.For simple models, su
h as the ones dis
ussed above, in whi
h there is only onegrowing eigenvalue λ+ for ea
h infe
tive strand, the initial velo
ity of the spread issimply
vini ≡ İ(t0) ≃ λ+I(t0). (10)The quantity vini gives a measure of how fast the idea will initially spread but not ofits overall adoption e�e
tiveness. In order to determine the latter we must 
onsiderthe number of new adoptions that a spreader of the idea 
an lead to during his/herlifetime. Sin
e there is no a priori good reason to suspe
t that ideas are short-lived,the e�e
tiveness of an idea may result from slow spread over long periods of time andthus may not be well 
hara
terized by vini.The number of se
ondary adoptions indu
ed by a typi
al idea spreader in a popu-lation of sus
eptibles over that person's lifetime as an adopter, tidea, is 
alled the basi
reprodu
tive number, R0, in e
ology and epidemiology (see [3, 5, 26℄). As su
h R0 isthe invasion 
riterion for adopters in a population of sus
eptibles, or analogously theaverage bran
hing ratio (the number of o�spring) of the typi
al adopter over his/herlifetime in this state. If R0 = I(tidea)/I(t0) > 1 then the idea will spread. The greater

R0 the more e�e
tive the idea adoption will be.In pra
ti
e R0 
an be 
omputed in simple models through the linearization of İ(t)around the disease-free equilibrium. These expressions are summarized in Table 3. Forthe 
omputation of R0 in models with heterogeneous populations other methods arene
essary [5, 42, 43℄. In the next se
tion we will estimate the statisti
al distributions for
R0 subje
t to �tting the data for the spread of Feynman diagrams in the USA, Japan,and the USSR. The mean of this distribution provides a measure of the e�e
tiveness ofthe adoption of Feynman diagrams in the three 
ountries.4 Results and dis
ussionWe now analyze the results of estimating parameters by mat
hing the data on thespread of Feynman diagrams for three distin
t 
ountries to several population modelsdis
ussed above. These models allow us to dis
uss the e�e
ts of the re
overed 
lass, of14



Model SIR SEI SEIZ
RI

0
β

γ+µ

βǫ

µ(µ+ǫ)
β(ǫ+pµ)
µ(ǫ+µ)Table 3: Basi
 reprodu
tive number RI

0 for the SIR, SEI, and SEIZ models dis
ussed inse
tion 3. model USA Japan USSRSIR 2.816 1.788 1.487SEI 1.963 1.638 1.437SEIZ 1.467 1.568 1.437Table 4: The smallest (absolute value) average deviation per data point between the best�t parameters of ea
h model and data on the number of Feynman diagram adopters for theUSA, Japan, and the USSR.laten
y, and of 
ompetitive idea strands. They also explore several 
lasses of transitionme
hanisms, both by progression and by 
onta
t between population 
lasses.Table 4 summarizes the results. To gauge the appli
ability of ea
h model to ea
hdata set we used the simplest measure of goodness of �t, by 
omputing the absolutevalue of the deviation between model predi
tion and data. Average deviations per datapoint are shown in Table 4. Details of our ensemble estimation pro
edure are given inAppendix A.Here we note simply that parameter estimation must, by pra
ti
al ne
essity, be
on�ned to given numeri
al ranges, with upper and lower bounds di
tated by generalempiri
al 
onsiderations. Our 
hoi
es of estimation intervals are shown in Table 5.This pro
edure is familiar from epidemiology, where knowledge about su
h quantitiesas the length of in
ubation and infe
tious periods is often used to restri
t various modelparameters to plausible values (see [44℄; [8℄ also employs assumptions of this nature inimmunology).4.1 Results for models without in
ubation: SIRWe start by presenting our results for simple models without in
ubation. Parameterestimates are given in Table 6 for the USA, Japan, and the USSR, while the modelsolutions are 
ompared to the data in Fig. 3.The estimates for the initial population paint a pi
ture of a 
onsiderably largers
ienti�
 
ommunity sus
eptible to learn Feynman diagrams in the USA than in theother two 
ountries. In Japan, S(t0) appears more than three times smaller than inthe USA, while in the Soviet Union our estimates indi
ate a very small number ofsus
eptibles around 1952. Nevertheless both the USA and the USSR show strong levelsof re
ruitment (slightly higher Λ in the USA), as 
ompared to Japan.This makes sense given ea
h 
ommunity's rates of growth during this time period. Inthe postwar United States, the rate at whi
h new Ph.D.s in physi
s were granted grew15



parameter baseline range unit
S(t0) [0,500℄ people
E(t0) [0,100℄ people
I(t0) [0,20℄ people
R(t0) [0,10℄ people
Z(t0) [0,100℄ people

ǫ [0.2,6℄ 1/year
β [0,12℄ 1/year
b [0,12℄ 1/year
l [0,1℄ 1
γ [0,12℄ 1/year
Λ [0,50℄ people/year
µ [0.025,12℄ 1/year
p [0,1℄ 1
ρ [0,12℄ 1/yearTable 5: Parameters used in the SIR, SEI and SEIZ population models, their allowed rangesin our estimation pro
edure and units.
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Figure 3: The best �t traje
tory (see table 6) for the rise of Feynman diagram adoptionobtained for the SIR model vs. the data for the USA, Japan, and the USSR.16



USAparameter best-�t mean std
S(t0) 114.092 96.463 76.726
I(t0) 11.948 10.982 0.542
R(t0) 0.830 0.550 0.432

β 0.534 0.663 0.052
γ 8.542 × 10−3 0.049 0.034
Λ 40.417 42.864 5.130
µ 0.036 0.058 0.023
R0 12.029 6.752 2.008

Japanparameter best-�t mean std
S(t0) 33.901 24.534 3.537
I(t0) 4.018 3.799 0.348
R(t0) 1.925 0.864 0.714

β 1.990 2.255 0.131
γ 8.668 × 10−3 0.054 0.034
Λ 12.466 20.759 2.646
µ 0.031 0.087 0.037
R0 49.582 16.922 4.308USSRparameter best-�t mean std

S(t0) 1.347 1.156 1.088
I(t0) 1.935 1.583 0.218
R(t0) 9.742 4.928 2.415

β 1.251 1.258 0.045
γ 0.030 0.092 0.062
Λ 32.822 32.031 6.894
µ 0.188 0.134 0.063
R0 5.739 6.053 1.963Table 6: Parameter estimation (SIR model) for the spread of Feynman diagrams in the USA,Japan, and the USSR. The three 
olumns show our best-�t estimate, the mean 
omputedover an ensemble of parameter set realizations, and 
orresponding standard deviation (std).
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tive number R0 estimated fromthe SIR model for the USA data on the spread of Feynman diagrams. R0 measures thee�e
tiveness of the idea adoption. Its value estimates the average number of adopters indu
edby a typi
al spreader in a population of sus
eptibles.by nearly twi
e that of any other �eld between 1945 and 1951, qui
kly ex
eeding (by afa
tor of three) the prewar rate at whi
h new physi
ists had been trained. Meanwhile,building on the wartime Manhattan Proje
t pattern, the federal government pumpedmoney into physi
s at more than ten times the prewar levels. Most singled out forsupport during the early postwar period was high-energy physi
s, pre
isely that bran
hof the dis
ipline in whi
h Feynman diagrams were �rst developed and from whi
h theearliest adopters 
ame [39℄. These fa
tors led to a large population of sus
eptibles whenFeynman and Dyson �rst introdu
ed Feynman diagrams.Japan, on the other hand, had a strong tradition of high-energy physi
s beforethe war, but massive shortages of funding and basi
 supplies during the early postwaryears hampered the growth of that 
ountry's physi
s 
ommunity (lower Λ). Althoughabsolute numbers of new physi
ists in Japan did not grow at anything like the pa
e inthe United States after World War II, several institutional 
hanges were introdu
ed inJapan right around the time that Feynman diagrams were invented, greatly fa
ilitatingthe diagrams' spread throughout Japan. This fa
t is re�e
ted in the highest adoptionrate, β, for Japan, 
ompared to the other two 
ountries. This in turn leads both to thefastest speed of adoption and the highest value of R0.Conta
ts between Japanese and Ameri
an physi
ists began again in 1948 (whileJapan was still under U.S. o

upation), in
luding visits by several Japanese theoreti
alphysi
ists to the Institute for Advan
ed Study in Prin
eton, New Jersey, where Free-man Dyson was honing the new diagrammati
 te
hniques. A new organization in Japan,known as the Elementary Parti
le Theory Group, was also founded in 1948, and beganto publish its own informal newsletter and preprint organ, Soryushi-ron Kenkyu, whi
h18



helped to spread news of the new diagrammati
 te
hniques. And �nally the Japaneseuniversity system qui
kly expanded tenfold, beginning in 1949, allowing young physi-
ists to establish new groups and visit new institutions throughout the 
ountry, puttingthe new te
hniques into rapid 
ir
ulation [36, 37℄.The Soviet Union was the only 
ountry in the world after World War II in whi
hthe growth in the numbers of new physi
ists and in government spending on physi
swas 
omparable with the United States. This may explain why our estimates of there
ruitment rates Λ are so high and 
ommensurate for the two nations. But the onsetof the Cold War in the late 1940s e�e
tively ended all informal 
ommuni
ation betweenphysi
ists in the USA and USSR just months before Feynman and Dyson introdu
edFeynman diagrams.These geopoliti
al 
onstraints severely limited the ex
hange of information for sev-eral years and explain why Feynman diagrams took hold in the Soviet Union only laterand at a slower initial pa
e (smallest vini). Only with the �Atoms for Pea
e� initiatives,starting in 1955, did physi
ists from both 
ountries begin to meet informally for ex-tended visits. And only after these lengthy fa
e-to-fa
e �exposures� did Soviet physi
istsbegin to adopt Feynman diagrams at a 
omparable rate to those in the USA and Japan[36, 37℄. Over time the e�e
tiveness of adoption, R0, was nevertheless 
omparablebetween the USSR and the USA.Finally we noti
e that both the exit and re
overy rates, µ and γ, are small in every
ase, their sum being 
omparable to a 
areer lifetime (5-25 years). The fa
t that γ isestimated to be smaller that µ is a 
onsequen
e of our imposed lower bound on theexit rate and the fa
t that the data only 
onstrains their sum. Although this estimate
annot be made with good 
on�den
e for data whi
h only 
overs the �rst six years, itis an indi
ation that ideas are not naturally forgotten.In
identally, we do know in some 
ases that the time to 
hange resear
h subje
twas mu
h shorter for a few prominent authors. Ri
hard Feynman was working almostex
lusively on his theory of super�uidity by 1953 (although some of his students 
ontin-ued to use the diagrams under his supervision), while Freeman Dyson was persuaded to
hange resear
h dire
tion, to 
ondensed-matter theory, at a meeting with Enri
o Fermialso in 1953. (See Dyson's testimony in [45℄; see also [36℄.)The long exit and re
overy times, 
ombined with �nite, plausible values of the
onta
t rate β, lead in turn to large values of R0. The fa
t that an infe
ted individual,when introdu
ed in a population of sus
eptibles, 
an lead to many adopters (here 6-50)is asso
iated not with high adoption rate for the idea, β, but rather with a long time(many years) over whi
h the idea 
an be transmitted, 1/(γ + µ). This is a feature thatwe will see repeated in more 
omplex models and that is manifestly di�erent betweenbiologi
al infe
tion and the spread of ideas.4.2 Results for models with In
ubation: SEIWe now analyze the e�e
ts of in
luding laten
y in the models. In the simplest SEImodel, sus
eptibles transit to an intermediate 
lass of in
ubators (E) upon 
onta
twith adopters, in whi
h they remain for a 
hara
teristi
 �in
ubation� time 1/ǫ, afterwhi
h they manifest the idea. Note that due to exit pro
esses the average time spent inthe in
ubator 
lass is a
tually 1/(ǫ + µ), and that some individuals exit the populationand never manifest the idea. In pra
ti
e µ will be estimated to be small and the timespent in the in
ubators 
lass is indeed essentially the in
ubation time. The simplest19



USAparameter best-�t mean std
S(t0) 478.515 398.691 61.990
E(t0) 60.989 44.686 4.728
I(t0) 0.020 0.160 0.135

ǫ 0.257 0.391 0.055
β 1.041 0.951 0.086
µ 0.025 0.040 0.012
Λ 45.385 40.052 6.467
R0 37.711 23.172 5.798

Japanparameter best-�t mean std
S(t0) 30.248 31.037 2.190
E(t0) 11.569 12.022 1.400
I(t0) 0.153 0.165 0.129

ǫ 2.361 2.009 0.279
β 5.956 4.417 0.787
µ 0.039 0.044 0.013
Λ 12.067 12.578 1.093
R0 150.136 105.372 35.223USSRparameter best-�t mean std

S(t0) 3.074 0.810 0.722
E(t0) 3.344 3.462 0.647
I(t0) 0.682 0.738 0.266

ǫ 1.713 1.613 0.476
β 3.715 3.589 0.753
µ 0.067 0.075 0.035
Λ 17.819 19.372 3.668
R0 53.257 55.892 28.788Table 7: Parameter estimations for the SEI model for the adoption of Feynman diagrams inthe USA, Japan, and the USSR.SEI model is a subset of the SEIZ model of eq. (8), and is given by























Ṡ = Λ − βS I
N

− µS

Ė = βS I
N

− ǫE − µE

İ = ǫE − µI.

(11)Results of the parameter estimates are presented in Table 7.The most important qualitative di�eren
e, relative to models without laten
y, isthat the model 
an now better �t data at early times for the USA and Japan (seeFig. 5). This a

ounts for the bulk of the improvements in Table 4. In both 
asesthis is made possible in the SEI model be
ause starting with a number of individualsin the in
ubator 
lass allows a two-stage growth pro
ess for the adopters. Initiallythe in
ubators are depleted, allowing for a growth of adopters with a negative se
ondderivative. This is the main feature of SEI solutions, a

ounting for their better �t ofthe data relative to the SIR model. The two-stage pro
ess is a property of the growth
urve for adopters in the USA from the initial time until early 1950, and to a lesserextent for Japan over the same period, after a slightly later start. The 
hara
teristi
20
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Figure 5: Best �t traje
tories 
orresponding to the parameter estimations for the SEI model,for the USA, Japan, and the USSR. The SEI model �ts the data better at early times,espe
ially for the USA, when 
ompared to the SIR model.time at whi
h the 
urve 
hanges 
on
avity 
an be 
omputed from the initial growth as
t∗ ≃

1

ǫ
ln

[

E(t0)

E(t0) + I(t0)

(

1 +
ǫ + µ

β

N(t0)

S(t0)

)]

. (12)This time is longest for the USA, on the order of 10 months, shortest for Japan at2.3 months, and about 5 months for the USSR, re�e
ting the relative values of theparameters ǫ and β estimated for the three 
ountries. Beyond this point in time thee�e
t of the in
ubator 
lass is relatively negligible. For Japan and the USSR, where
ǫ is largest, the 
lass be
omes essentially non-dynami
al beyond the initial transient,with E → βSI/(Nǫ), and as a 
onsequen
e the solutions look mu
h like those of theSIR model.In pra
ti
e the in
ubation periods estimated for the three 
ountries are quite dif-ferent. For the USA (see Fig. 6), the best �t solutions prefer to start in 1949 with arelatively large number of in
ubators and an in
ubation time of order 3-4 years. Inboth Japan and the Soviet Union the initial population in
luded fewer in
ubators buthad a 
onsiderably shorter in
ubation time, of the order of 5-6 months in Japan and7-8 months in the USSR. These in
ubation period estimates for Japan and the SovietUnion are unexpe
tedly short, sin
e most of the papers were authored by graduatestudents who took on average a few years of training (�in
ubation�) before publishing.The small values for ǫ thus reveal some limits of the simple SEI model: in parti
ular,simple progression to adoption (parameterized by ǫ) does not 
apture the dynami
sadequately, sin
e (as we know histori
ally) the role of multiple 
onta
ts was important.We return to this issue below.Beyond the role played by the in
ubator 
lass, we observed the same relative hier-21
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Mean Incubation Time [years]Figure 6: Histogram of the mean in
ubation time 1/ǫ for Feynman diagrams in the USA,estimated by �tting the SEI model to data, see table 7.ar
hy of several important quantities among the di�erent national 
ommunities. Japanhad the largest e�e
tiveness of adoption, R0, whereas both the USA and the USSRdisplayed smaller and statisti
ally 
ommensurate values for R0. (Data were only 
ol-le
ted for the USA and Japan for the period 1949-54, be
ause the steep rate of growthmade longer 
olle
tion times infeasible. The slow rise of diagram adoption in the USSR,on the other hand, en
ouraged us to 
olle
t data for a longer period, 1949-59, makingdire
t 
omparisons between late-time behavior in the USA and the USSR di�
ult.) Inevery 
ase the large values of R0 are essentially due to a long lifetime of the idea, 1/µ,of 13-40 years. The re
ruitment rates, Λ, similarly to the SIR estimates, are highestfor the USA, followed by the USSR, re�e
ting these national e�orts to in
rease thenumbers of new physi
ists.In spite of all these qualitative similarities one should also keep in mind that thenumeri
al values for ea
h of these parameters are generally di�erent between the SIRand SEI models, and not always statisti
ally 
ompatible. Thus preferen
e of one modelover another 
an be determined via 
onsideration of the goodness of �t (Table 4), butshould also take into 
onsideration qualitative knowledge of the pro
esses at play.4.3 Results for models with In
ubation and Competition:SEIZFinally we 
onsider the most 
omplex model of our set, whi
h in
ludes an additional
lass Z mu
h like that of adopters, but whi
h 
ompetes with I for sus
eptibles. Resultsof the parameter estimation pro
edure are given in Table 8 and in Fig. 7.It is 
lear both from Table 4 and from Fig. 7 that the SEIZ model gives the best22



USAparameter best-�t mean std
S(t0) 98.973 108.662 5.852
E(t0) 24.515 24.984 0.447
I(t0) 5.916 × 10−5 0.031 0.027
Z(t0) 0.114 0.160 0.119

ǫ 0.202 0.210 0.009
β 0.488 0.496 0.012
b 0.164 0.156 0.117
l 0.311 0.252 0.171
µ 0.025 0.032 0.006
p 0.570 0.566 0.052
ρ 11.893 11.549 0.330
Λ 49.527 47.860 1.555
RI

0 18.412 14.975 2.227

Japanparameter best-�t mean std
S(t0) 24.806 24.798 1.356
E(t0) 16.123 15.292 0.781
I(t0) 1.35 × 10−3 0.092 0.076
Z(t0) 0.333 0.517 0.452

ǫ 0.995 0.976 0.077
β 2.365 2.341 0.115
b 0.077 0.378 0.351
l 0.365 0.406 0.227
µ 0.031 0.036 0.009
p 0.007 0.068 0.051
ρ 3.897 4.008 0.461
Λ 11.553 12.033 0.634
RI

0 74.821 65.245 13.808USSRparameter best-�t mean std
S(t0) 1.064 0.957 0.609
E(t0) 4.129 2.660 0.481
I(t0) 0.954 0.980 0.151
Z(t0) 1.176 1.162 0.522

ǫ 0.230 0.482 0.145
β 1.818 1.731 0.102
b 0.0112 0.267 0.187
l 0.730 0.649 0.247
µ 0.075 0.070 0.023
p 0.097 0.104 0.071
ρ 3.340 3.341 0.506
Λ 18.134 18.288 1.785
RI

0 18.806 25.055 10.614Table 8: Parameter estimations for the SEIZ model and data for the spread of Feynmandiagrams for the USA, Japan, and the USSR. We restri
ted the estimation pro
edure to theregime where RI
0 > RZ

0 , see Eq. (9).
23
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Figure 7: The best �t solutions of the SEIZ model (see Table 8) vs. the data for the USA,Japan, and the USSR.�ts to data, parti
ularly in the 
ase of the USA.We observed that good solutions (with very similar smallest deviation per point) arepossible with either idea strand I or Z having the largest R0. In this sense our initial sixyears of data 
annot determine whi
h idea strand, adopters or skepti
s, will eventuallywin out over many generation times. In the parameter estimates presented in Table 8we have restri
ted the solutions to have RI
0 > RZ

0 , thus limiting the sear
h spa
eto the histori
ally san
tioned eventual domination of Feynman diagrams over otherte
hniques. This does not pre
lude the skepti
s from growing initially in a populationof sus
eptibles, and we �nd in fa
t that degenerate solutions with and without a growingnumber of skepti
s are possible.A novelty of the SEIZ model relative to the SEI is that the progression to adoption
an result from multiple 
onta
ts, both while sus
eptible (parameterized by β) and whilein
ubating (parameterized by ρ). For every 
ountry the fa
t that p is small and ρ sizablemakes adoption favored and faster through 
onta
t with adopters while in
ubating,relative to simple progression as in the SEI model. This may indeed be the 
ase inreality sin
e the learning of Feynman diagrams in the early years was 
hara
terizedby extensive interpersonal 
onta
ts at several stages of physi
ists' apprenti
eship. Weknow of only one 
ase in all three 
ountries in whi
h a few physi
ists learned about thediagrams su�
iently well from arti
les or textbooks alone. Pra
ti
ally every adopter inall three 
ountries is known to have intera
ted repeatedly with other adopters beforeusing the diagrams in their resear
h [36℄.We also observe that for the SEIZ model the relative magnitudes of the re
ruitmentrates for the USA, USSR, and Japan follow the trends observed in simpler models,while the same is approximately true also for the e�e
tiveness of adoption, R0. Theestimated probability distribution fun
tion for RI
0 for Japan in the SEIZ model is shown24
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R0Figure 8: The probability distribution of the basi
 reprodu
tive number RI
0 estimated fromthe SEIZ model for the Japan data on the spread of Feynman diagrams. The Japanese e�e
-tiveness of adoption is 
onsistently greater than that for the other two 
ountries, regardlessof the spe
i�
 model 
onsidered.in Fig. 8. As with the previous model, the large values of RI

0 estimated in the SEIZmodel are mainly due to the very long lifetime of the idea.Among the models dis
ussed above we are therefore in
lined to prefer the SEIZmodel. Not only does it best �t the empiri
al data, but it also in
ludes e�e
ts thatwe know to have been important, su
h as laten
y (apprenti
eship), adoption throughmultiple 
onta
ts, and institutional and intelle
tual resistan
e. Estimated parameters,both in their orders of magnitude and (more important) in their relative sizes, re�e
tproperties of the idea's spread in ea
h national 
ommunity that mat
h qualitative ex-pe
tations based on our empiri
al knowledge of the pro
ess.5 Con
lusionsIn this paper we applied several population models, inspired by epidemiology, to thespread of a s
ienti�
 idea, Feynman diagrams, in three di�erent 
ommunities under-going very di�erent so
ial transformations during the middle years of the twentieth
entury. There is always a tradeo� between the use of models that in
lude more detail(heterogeneous populations) and highly aggregate simple models with a manageablenumber of parameters. Although, a model built under very simplisti
 assumptions isexpe
ted to have deep limitations, the use of simple epidemi
-type models have hadtremendous su

ess in the re
ent past, partly due to their ability to use existing datato make predi
tions (treatment for HIV [8℄) or re
ommendations (
ontrol measures forSARS [44℄). This is the thinking behind the model 
hoi
es made above. Moreover given25



the relative sparsity of quantitative data on so
ial dynami
al pro
esses at present su
hmodels may well prove to be the most useful starting points for modeling.We have found that suitably adapted epidemi
 models do a good job of �tting theempiri
al data, provided we allow their parameters to be very di�erent from those nor-mally estimated for standard epidemi
s. In this sense the spread of Feynman diagramsappears analogous to a very slowly spreading disease, with 
hara
teristi
 progressiontimes of years instead of days or weeks. The spread of the diagrams also shows anenormous e�e
tiveness of adoption due primarily to the very long lifetime of the idea,rather than to abnormally high 
onta
t rates.The models give a quanti�
ation of parameters that are 
hara
teristi
 both of theidea and of the mixing population in whi
h it spreads. This allows a more pre
ise dis-
ussion of the so
iologi
al reasons why the idea evolved di�erently in distin
t national
ommunities. The initial velo
ity of spread of Feynman diagrams was fastest in Japan,followed by the USA, and slowest in the USSR, probably as a result of geopoliti
al 
on-straints that severely limited a

ess to the idea and its pra
titioners. The e�e
tivenessof the adoption, en
apsulated by R0, was 
onsistently largest for Japan, most likelyre�e
ting the high level of organization of its s
ienti�
 
ommunity in the di�
ult timesthat followed the end of World War II. To our knowledge this is the �rst time thatbasi
 reprodu
tive number distributions have been estimated for the spread of an idea.The USA and the USSR also show high re
ruitment rates, following the two 
ountries'massive investment in nu
lear and high-energy physi
s during the early Cold War. Inthis study we have done what seems to be yet un
ommon in epidemiology, namely theestimation not only of model parameters and their variability, but also of the e�e
tivepopulation sizes of the 
ommunities involved.In the pro
ess of 
onstru
ting epidemiologi
al-type models and estimating theirparameters for the spread of Feynman diagrams, we had to 
onfront several 
on
eptualissues 
on
erning why the spread of ideas is or is not analogous to that of a disease.One interesting aspe
t of the spread of ideas is the inadequa
y (or irrelevan
e) of there
overed state. In fa
t many ideas may never be forgotten at all, as that would be inthe worst interest of the adopter. As a result our parameter estimates 
onsistently �ndvery long re
overy times, 1/γ. The same holds for the exit rates, 1/µ.In spite of these slow rates of exit and re
overy, individuals 
ommonly have toa
quire many ideas, and these may in some 
ases be mutually ex
lusive, or at least mayadversely a�e
t the adoption of others. We introdu
ed a new 
lass of simple models withmultiple Z 
lasses representing these strands. It is a 
urious, and we believe importantfa
t that the re
ruitment of individuals from a 
lass of sus
eptibles to other ideas hasthe same mathemati
al e�e
t as va

ination against disease. In this sense �immunity�to an idea may be obtained either by edu
ation about its possible impli
ations (perhapsanalogous to a
tual immunization), or by distra
tion with other, more easily a
quired
on
epts embodied by the Z 
lasses.We must emphasize that the behavior of individuals when exposed to ideas may bevery di�erent, indeed opposite, to what they may do during an epidemi
 outbreak. First,people intentionally seek ways to extend the infe
tious period of an idea, usually byre
ording it and storing it in various do
uments. In this sense the lifetime of an idea 
anlargely trans
end that of individuals. Se
ond, short of va

ination the most e�e
tivestrategy to stop a disease epidemi
 is through isolation, whi
h redu
es the 
onta
trate. Ideas, unlike diseases, are usually bene�
ial and thus people's behavior tends to26



maximize e�e
tive 
onta
ts. This pattern 
an be 
aptured through the mapping ofthe so
ial network of 
onta
ts that underlie the spread of the idea, whi
h we analyzeelsewhere [38℄. There we show that the 
ommunities where Feynman diagrams spreadthe fastest had 
reated intentional so
ial and behavioral stru
tures that ensured verye�
ient 
ommuni
ation of s
ienti�
 knowledge.We �nish by remarking that the SEIZ model, whi
h in
luded both skepti
 andin
ubator 
lasses, as well as a

eleration to adoption from in
ubation (parameterizedby ρ), 
aptures most adequately the role of su
h 
lasses in the transmission pro
ess,sin
e it yields the best �ts (smallest average deviations in Table 4). Nevertheless themodeling of the spread of ideas dis
ussed above is but a simple 
ari
ature of the 
omplexso
ial dynami
al pro
esses involved. Our hope is that this work may bring a new andhopefully useful quantitative perspe
tive into the study of the di�usion of ideas, by thesimplest means possible.A
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e, Hoboken, New Jersey, 2003).Appendix A. Ensemble parameter estimation pro-
edureHere we give a short des
ription of our parameter estimation pro
edure and un
ertaintyquanti�
ation.The problem of generating estimates for model parameters des
ribing the spread ofideas is the absen
e of 
lear quantitative expe
tations, both 
on
erning whi
h modelshould apply best and what the quantitative value of its parameters should be. Assu
h we devised a novel sear
h method 
apable of both �nding the best �t to the datapossible given a 
hoi
e of model, but also of produ
ing an ensemble of solutions thatare 
ompatible with the data within a 
ertain admissible error.As a starting point we take the fa
t that simple population models 
annot be ex-pe
ted to give perfe
t des
riptions of the data, resulting in a minimum level of dis
rep-an
y. We 
hose to parameterize this dis
repan
y by a 
olle
tive measure of the averageabsolute value of the deviation between the best model predi
tion and ea
h data point.This measure allows us to dis
uss and 
ompare how good models are at des
ribing aspe
i�
 data set. Our results are given in Table 4.Se
ond, we expe
t in general that data 
ontains errors, e.g. early underestimation,false positives, a

ounting errors. Thus a given level of un
ertainty in the data will29



translate into parameter statisti
al distributions that are 
ompatible with those allow-able deviations. This is a sto
hasti
 optimization problem (see, e.g., [46℄ for a generaldis
ussion). Based on this idea we perform an estimation of the joint parameter distri-bution of model parameters, 
onditional on a set of allowable deviations at ea
h datum.To be spe
i�
 we 
an write that the unknown exa
t data point IE(ti), measured at time
t = ti, 
an be written in terms of the observed datum IO(ti) and an error ξ(ti) as

IE(ti) = IO(ti) + ξ(ti). (13)The error ξ(ti) is only known statisti
ally. In order to pro
eed we must spe
ify a modelfor ξ. Here we assumed a simple Gaussian distribution su
h that
P [ξ(ti)] = P

[

IE(ti) − IO(ti)
]

= N e
−

ξ2(ti)

2σ2(ti) , (14)where N is the normalization fa
tor and σ(ti) parameterizes the expe
ted error at time
t = ti.This expe
tation for the errors 
an be translated into a 
ommensurate �tness fun
-tion (analogous to a Hamiltonian in statisti
al physi
s) that 
an in turn be minimizedin order to produ
e parameter estimates through a sear
h pro
edure. For ea
h modelrealization (in terms of a set of parameters S = (S(t = t0), E(t = t0), ..., β, γ, ...)) wetake this fun
tion to be

H(S) =
∑

i

[

IM (ti) − IO(ti)
]2

2σ2(ti)
, (15)whi
h is an impli
it fun
tion of S. If the model 
ould generate exa
t results we 
ouldthen make the natural asso
iation IE(ti) → IM (ti). This is usually not the 
ase, sin
ea residual minimal deviation always persists. To a

ount for this we normalize thisfun
tion to zero by taking H ′(S) = H − H0, i.e. by subtra
ting the minimal value of

H, obtained for the best parameter set.Given this 
hoi
e of H ′ we 
an produ
e, in analogy with standard pro
edures instatisti
al physi
s, a joint probability distribution for model parameters given by
P (S) ∼ e−H′

. (16)This 
hoi
e guarantees that all statisti
al moments are �nite. This joint probabilitydistribution 
an then be used to 
ompute any moment of any set of parameters, in-
luding single parameter distribution fun
tions, and 
ross-parameter 
orrelations su
has 
ovarian
es. In Se
tion 4 we show results for the single parameter averages andtheir standard deviations. We also show some single parameter probability distributionfun
tions.In general the estimation of this probability distribution 
an be obtained by ran-domly generating many model parameter sets and weighing them a

ording to Eq. (16).The pro
edure is slightly 
ompli
ated be
ause we are dealing with an inverse problemin whi
h, given a trial set of parameters, 
omparison with the data is performed onlyafter the non-linear model dynami
al equations have been solved. Fortunately for mod-els that 
onsist of small numbers of ordinary di�erential equations the 
omputationale�ort is not prohibitive.In pra
ti
e we used an ensemble of trial solutions, from whi
h we sele
t a numberof best strings, a

ording to a standard Monte Carlo pro
edure, weighted by Eq. (16),30



to generate the next generation of the ensemble. In order to do this we introdu
e amutation implemented in terms of random Gaussian noise around the best parametersets. This yields an e�e
tive minimization method, 
apable of exploring large regionsof parameter spa
e. It also 
reates as a byprodu
t an ensemble of good strings withsmall deviations to the data. For small enough deviations from the best string we 
ansample parameter spa
e in an unbiased manner. It is this ensemble, and its best string,that is then used to estimate Eq. (16). Results given in Se
tion 4 involve ensembleswith several million realizations and a 
hoi
e of σ, 
ommon to all points, 
orrespondingto 10% deviation between the best parameter estimate and other ensemble members.
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