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Theoretical Division, T-7 Department of Mathematics and Statistics 

Los Alamos National Laboratory Arizona State University 

David Kaiser 
Program in Science, Technology, and Society, and Department of Physics 

Massachusetts Institute of Technology 

David E. Wojick 
Office of Scientific and Technical Information 

US Department of Energy 

October 4, 2006 

Introduction 

The accelerated development of digital libraries and archives, in tandem with efficient 
search engines and the computational ability to retrieve and parse massive amounts of 
information, are making it possible to quantify the time evolution of scientific literatures. 
These data are but one piece of the tangible recorded evidence of the processes whereby 
scientists create and exchange information in their journeys towards the generation of 
knowledge. As such, these tools provide a proxy with which to study our ability to innovate. 

Innovation has often been linked with prosperity and growth and, consequently, trying 
to understand what drives scientific innovation is of extreme interest. Identifying sets of 
population characteristics, factors, and mechanisms that enable scientific communities to 
remain at the cutting edge, accelerate their growth, or increase their ability to re-organize 
around new themes or research topics is therefore of special significance. Yet generating a 
quantitative understanding of the factors that make scientific fields arise and/or become 
more or less productive is still in its infancy. This is precisely the type of knowledge 
most needed for promoting and sustaining innovation. Ideally, the efficient and strategic 
allocation of resources on the part of funding agencies and corporations would be driven 
primarily by knowledge of this type. 
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Early  steps  have  been  taken  toward  such  a  quantitative  understanding  of  scientific 
innovation.  Some  have  focused  on  characterizing  the  broad  properties  of  relevant  time 
series, such as numbers of publications and authors  in a given field (see [1, 2, 3], and [4] 
and references therein). Others have focused on the structure and evolution of networks of 
co­authorship and citation, see e. g. [5, 6, 7]. Together these types of studies provide much­ 
needed statistical analyses of the structure and evolution of scientific communities. Despite 
these efforts, however,  crucial elements of prediction  have  remained elusive. Building on 
many of these earlier  insights, we provide here a coarse­grained approach to modeling the 
time­evolution  of  scientific  fields  mathematically,  through  adaptive models  of  contagion. 
That  is, our models  are  inspired by epidemic contact processes, but  take  into account  the 
social  interactions  and  processes  whereby  scientific  ideas  spread  –  social  interactions 
gleaned from close empirical study of historical cases [4]. Variations in model parameters 
can  increase  or  hamper  the  speed  at which  a  field  develops.  In  this way,  models  for  the 
spread  of  “infectious”  ideas  can  be  used  to  identify  pressure  points  in  the  process  of 
innovation that may allow for the evaluation of possible interventions by those responsible 
for promoting innovation, such as funding agencies. 

This  report  is organized as  follows: Section 2  introduces and discusses  the population 
model used here to describe the dynamics behind the establishment of scientific fields. The 
approach is based on a succinct (coarse) description of contact processes between scientists, 
and  is  a  simplified  version  of  a  general  class  of  models  developed  in  the  course  of  this 
work. We  selected  this model  based primarily on  its ability  to treat a wide  range of data 
patterns efficiently, across several different scientific fields. We also describe our methods 
for  estimating  parameter  values,  our optimization  techniques  used  to match  the model  to 
data, and our method of generating error estimates. Section 3 presents brief accounts of six 
case  studies  of  scientific  evolution, measured  by  the  growth  in  number  of  active  authors 
over time, and shows the results of fitting our model to these data, including extrapolations 
to the near future. Section 4 discusses these results and provides some perspectives on the 
values and limitations of the models used. We also discuss topics for further research which 
should improve our ability to predict (and perhaps influence) the course of future scientific 
research. Section 5 provides more detail on the broad class of epidemic models developed 
as part of this project. 

2  Models and Parameter Estimation 
Our  starting  point  is  a  generalized  SEIR  (Susceptible,  Exposed,  Infected,  Recovered) 
epidemic  model.  Such  models  include  terms  familiar  from  epidemiological 
studies,  such  as  contact  rates  between  individuals  and  latency  and  recovery 
times.  The  model  also  includes  (exponential)  population  growth  and  multiple  contacts 
between  members  of  the  exposed  and  infected  classes,  terms  that  proved  important 
in our previous study of the dynamics of how Feynman diagrams spread [4].  The model is



written explicitly as


dS I
= ΛN − βS 

dt N 
dE I I 

= βS 
N 

− κE − ρE ,
dt N (1)
dI I 

= κE + ρE 
N 

− γI, 
dt 
dR 

= γI, 
dt 

where S(t) is the size of the susceptible population at time t, E(t) is the size of the exposed 
class, I(t) is the size of the infected class (that is, those who have adopted the new scientific 
idea), and R(t) is the size of the population who have recovered (no longer publishing on 
the topic). We shall refer to the size of the entire population, the sum over these classes, as 
N . Note that we did not include an exit (or death) term, as this tends to be very small, and 
is ‘subsumed’ by the recovered class. In this model, the population, N , grows exponentially 
with rate Λ. In some instances, indicated explicitly below, the growth term will be written 
as Λ, instead of ΛN , and may not apply to the entire duration of the dynamics. 

The remaining parameters account for the probability and effectiveness of a contact 
with an adopter β, the standard latency time 1/κ, the duration of the infectious period 
1/γ, and the probability that an exposed person has multiple effective contacts with other 
adopters, ρ. The model may be visualized as in Fig. 1. The reproductive number for the 
model – that is, the average number of new people infected by a given infected individual 
– is R0 = β/γ. This is a simplified version of a more general family of models developed in 
the course of this work, which feature multiple latency classes (see Section 5, below, and 
also [8]). 

Parameter estimation is performed via a stochastic ensemble algorithm as described in 
[4]. The parameters describing the initial conditions [S(t0), E(t0), I(t0), R(t0)] and the 
dynamical parameters are organized as a vector of real-valued numbers. An ensemble of 
such vectors or strings is generated via the perturbation of a “progenitor” string. The fitness 
of the resulting strings – referred to collectively as a “generation,” given the similarity to 
genetic algorithms – is evaluated by comparison with the data. The ‘best’ strings are 
chosen to spawn the subsequent generation, and so on, until the procedure converges, 
that is, the fitness ceases to improve. Several checks are performed to guarantee that 
the absolute (global) best fit was reached. The procedure generates not only a best fit 
solution, showing the smallest deviation to the data, but also an ensemble of good strings, 
from which uncertainty in the solution is quantified. 

Below we apply this stochastic ensemble optimization procedure to data on the number 
of authors participating in the advent and subsequent growth of several fields, in the 
aftermath of a discovery, breakthrough, or surge of interest. 
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Figure 1: Transfer diagram for the SEIR model. 

Case studies and population modeling results 

In this section we present several studies of the emergence of scientific fields and results 
of modeling the evolution in numbers of authors using the models introduced in section 
2. Parameter estimates are given at the end of the section for all cases, and discussion, 
conclusions and outlook are presented in the next section. 

Cosmological Inflation 

Cosmological inflation is a theory, proposed by A. Guth and A. Linde in 1981, describing 
the exponential expansion of the early universe. Remarkably, it provides solutions to most 
open issues that arise when combining big bang cosmology with astrophysical observations. 
Originally it was conceived to solve the problem of overproduction of cosmological defects 
(mostly monopoles, see cosmic strings below), but perhaps its strongest feature is to provide 
a prediction for the initial energy density perturbations necessary to seed the large-scale 
structure of the universe (see [9]). 

The data shown here result from literature searches based on citations to an early set of 
publications in the field as well as to later review articles. The time evolution of the field, 
measured in terms of numbers of authors, is peculiar when compared to other case studies 
discussed below: it is approximately linear, appearing least like a classic epidemic curve. 
Nevertheless, our SEIR model with population growth and large contact rate describes the 
data very well. (See Fig. 2.) 

Cosmic Strings 
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Figure 2: The temporal evolution of the cumulative number of authors publishing in Cos
mological Inflation (blue dots), the fit from the model (red line), and 95% confidence 
interval (dashed lines). The solid black line shows the best-fit solution with twice the con
tact rate between susceptible and adopters. The small sensitivity of the solution to changes 
in the contact rate is the result of the solution placing the E and I classes at their fixed 
points, slowly driven by an increasing population N . 
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Cosmic strings and other topological defects are non-perturbative solutions of unified 
theories of elementary interactions that may have been formed in phase transitions in the 
early universe. In 1976 T. W. B. Kibble suggested that the internal symmetry groups of 
modern theories of particle physicstaken together with the Higgs mechanism, necessary 
to render elementary particles massivelead inexorably to phase transitions in the early 
universe, similar to, but generally more complex than those in superconductors and certain 
superfluids. It follows that, in the early universe, as in these materials, topological defects 
could form that would be stable and able to concentrate vast amounts of energy in their 
profiles, be they monopoles, cosmic strings, or domain walls. These defects could seed the 
large-scale structure of the universe by providing energy (and momentum) inhomogeneities 
upon which baryonic matter could fall. 

For some time, until the mid-1990s, cosmic strings and cosmological inflation were rival 
theories contending to explain the features of the observed universe. More recent precise 
measurements of the cosmic microwave background and type Ia supernovae, however, seem 
to weigh more strongly in favor of inflation, making the case for cosmological defects in
creasingly constrained [9]. This most likely accounts for the up-turn in numbers of authors 
publishing on inflation and the declining rate of new authors pursuing cosmic strings. (See 
Fig. 3.) 

Prions 

Prions (proteinaceous infectious particle) are abnormally configured proteins, which 
were shown in 1982, by S. B. Prusiner and colleagues, to cause scrapie, a transmis
sible spongiform encephalopathy in sheep. It was later recognized that other related 
diseases, such as Kuru (Kreuzfeld Jacobs disease in humans) and BSE (mad cow dis
ease) are also caused by prions, and not by a virus or any other conventional infectious 
agent. The discovery was followed, a decade later, by great public health scares, princi
pally associated with BSE in the UK, which contributed to raise the profile of the field. 
By the late 90s research in prions had become underfunded, and the field started to 
show signs of slow down. For the discovery of prions and their connection to spongi
form encephalopathies Stanley B. Prusiner won the Nobel prize in Medicine in 1997 (see 
http://nobelprize.org/nobel prizes/medicine/laureates/1997/press.html). 

The data used here were obtained from a keyword search for prion among scientific 
publications (having eliminated a genus of like named birds), and also includes research in 
scrapie. (See Fig. 4.) In the near future we intend to enlarge this dataset by including 
scientific literatures dealing with Kuru, BSE, and related nervous system pathologies. 

H5N1 Influenza 

H5N1 influenza is a subtype of the influenza A virus that causes “bird flu.” It is presently 
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Figure 3: The temporal evolution of the cumulative number of authors publishing in Cosmic 
Strings (blue dots), the fit from the model (red line), and 95% confidence interval (dashed 
lines). The solid black line shows the best-fit solution with twice the contact rate between 
susceptible and adopters. 
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Figure 4: The temporal evolution of the cumulative number of authors publishing in Prions 
and Scrapie (blue dots), the fit from the model (red line), and 95% confidence interval 
(dashed lines). The solid black line shows the best-fit solution with twice the contact rate 
between susceptible and adopters. 
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a disease of birds, but there have been over 200 confirmed cases of human infection, mostly 
in Southeast Asia, with an observed case mortality rate of about 57%. For these reasons 
H5N1 influenza is thought to have the potential to cause the next great human influenza 
pandemic. As a result research in H5N1 and other types of influenza has gained extraor
dinary impetus over the last few years. Research on the H5N1 subtype started in earnest 
after 1997, when the first human cases of the disease were identified in Hong Kong. New, 
larger outbreaks in the last 2-3 years have lead to great scientific and public interest in the 
field and its relation to other influenza types. Its literature spans themes in health policy, 
epidemiology and molecular biology. (See Fig. 5.) 
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Figure 5: The temporal evolution of the cumulative number of authors publishing in H5N1 
influenza (blue dots), the fit from the model (red line), and 95% confidence interval (dashed 
lines). The solid black line shows the best-fit solution with twice the contact rate between 
susceptible and adopters. 

Carbon Nanotubes 

Carbon nanotubes are a recently discovered allotrope of carbon, which promises to 
generate a whole family of new materials and potentially revolutionize nano-engineering. 
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Research in this area started in 1991, when Sumio Iijima of NEC in Japan discovered a new 
method (arc discharge) to produce them, although nanotubes had been described before 
in the literature. It is hoped that these materials may usher in many promising engineer
ing solutions at the nanoscale due to their enormous strength, lightness, and conductive 
properties of heat and electrical currents. 

We built a database of scientific publications in the field by performing a keyword search 
for “carbon nanotubes” among scientific publications, and excluding “tubules,” which is a 
term that tends to co-occur with carbon, but refers instead to cells’ skeletons. (See Fig. 6.) 
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Figure 6: The temporal evolution of the cumulative number of authors publishing in Carbon 
Nanotubes (blue dots), the fit from the model (red line), and 95% confidence interval 
(dashed lines). The solid black line shows the best-fit solution with twice the contact rate 
between susceptible and adopters. 

Quantum Computing and Computation 

Quantum Computing is an emerging field of research dedicated to the discovery of new 
devices and theoretical implementations of states that are genuinely quantum-mechanical 
and can be manipulated for computation. A quantum computer would be able to perform 
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certain operations (such as factorization) much faster and solve physical quantum models 
more naturally and efficiently than any classical computer. The field is naturally multi
disciplinary involving research in quantum theory, material science, and engineering. It 
dates back to the late 1960s and 1970s, but gained momentum with several theoretical 
breakthroughs in the 1980s and 1990s. In 1982 Richard Feynman showed how quantum 
systems could be used to do computation. In 1985 David Deutch proved that any physi
cal process can, in principle, be modeled perfectly in a quantum computer. In the 1990s 
algorithms by Shor and Grover and NMR experiments by Laflamme et al. demonstrated 
explicitly the advantage of quantum algorithms in certain computational tasks and the 
first implementations of the technology. Today the field remains very active, especially in 
finding hardware implementations that can both be resistant to quantum decoherence and 
amenable to external control. (See Fig. 7.) 
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Figure 7: The temporal evolution of the cumulative number of authors publishing in Quan
tum Computing and Computation (blue dots), the fit from the model (red line), and 95% 
confidence interval (dashed lines). The solid black line shows the best-fit solution with 
twice the contact rate between susceptible and adopters. 
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Table 1: Parameter estimates for the models of Section 2, and data sets described in Section 
3. Best fit curves and 95% Confidence Intervals for the model estimates are shown in Figs. 
2-7. 

Discussion and Outlook 

The case studies developed here show that population models analogous to those of epi
demiology, suitably adapted, provide excellent bases with which to describe quantitatively 
the emergence and development of scientific fields across the natural sciences. Remarkably, 
our simple model describes equally well theoretical fields (such as cosmic strings and infla
tion) as experimental ones (such as prions and carbon nanotubes), or those that include 
both kinds of activity (such as quantum computing and H5N1 influenza). This in itself is 
an important demonstration that the type of model we devised to treat one particular case 
in great detail (the spread of Feynman diagrams among theoretical physicists) [4] may be 
applied much more broadly, with equally impressive fits to empirical data. 

Moreover, the parameter estimates for these many cases reveal several features that 
make intuitive sense. For example, the two cases that draw authors from only one nar
rowly defined specialty – inflation and cosmic strings – show the smallest initial populations 
of susceptibles, S(t0), whereas those fields that cross disciplinary boundaries, potentially 
attracting researchers from many different scientific areas, reveal correspondingly larger 
initial populations of susceptibles. Likewise, the two purely theoretical fields (again, infla
tion and cosmic strings) show the greatest effectiveness of contact, β; those fields which 
most thoroughly mix theoretical and experimental components (quantum computing and 
H5N1 influenza) have intermediate values for β; while the more purely experimental fields 
(prions and carbon nanotubes) have the smallest values for β. As one might expect, it is 
one thing to practice and master a pencil-and-paper technique; quite another to build and 
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oversee an entire working lab group. 
We must note however that although the fundamental dynamics of contact and spread 

may be analogous between the spread of ideas and disease, many characteristics of the two 
dynamics are fundamentally different. First, the nature of the contacts is clearly distinct. 
Many scientific contacts are prolonged and based on mentor/apprenticeship relationships 
such as those between advisors and students or postdocs. This fact also highlights that 
recruitment plays an important role, alongside conversion of susceptibles in the growth of 
a field. Parameter estimation supports these expectations, showing large numbers of initial 
susceptibles and/or population growth typically of a few percent a year. 

Compared to most diseases, scientific ideas spread slowly, taking years to become 
adopted by a significant number of practitioners. They also show substantial contact rates 
over these time scales, perhaps the result of the many intentional social structures – PhD 
programs, postdocs, meetings, workshops, etc. – designed to foster sustained interactions. 
The result is that although incubation times range between 1.4-5 years and infectious pe
riods between 6 months and 10 years, all cases show large basic reproductive numbers R0 

between 1.8 and 64. This point seems to be very general and a manifestly different feature 
between ideas and infectious diseases: useful ideas may never be forgotten, leading to very 
long infectious periods and therefore large R0. 

It is also typical of the spread of ideas that long and repeated contacts between adopters 
and susceptible individuals take place in order for the concept or technique to be transmit
ted. Here we modeled these processes via a contact term between exposed and infected, 
proportional to the contact rate ρ. In most of our case studies, however, with the exception 
of Prions & Scrapie, estimation of this term shows very small values for ρ, indicating that 
perhaps persistent contacts were not essential, or that a different modeling strategy might 
be necessary to capture such effects. 

While most case studies showed growth dynamics that are familiar from other invasion 
processes, two of our examples were peculiarly different. First, Cosmological Inflation 
shows growth in numbers of authors that has been remarkably linear over more than 20 
years, without displaying the more typical phase of exponential growth. Nevertheless, 
our model provides an excellent fit to the data, even though parameter estimates force the 
numbers of exposed and adopters to their fixed points, as functions of a growing population 
N , at a relative growth rate of 7% a year. As a result the model solution that best fits 
the data for inflation is particularly sensitive to the growth dynamics of the population of 
susceptibles, and less so to the magnitude of the contact rate, as this factors out in the 
fixed point solution for I. It would be interesting to validate these inferences, or seek good 
fit solutions in different regimes. 

Second, Quantum Computing and Computation shows a particularly long incipient 
period, with very slow growth over more than twenty years, and a quick (exponential) 
rise starting in the late 1980s. We modeled these dynamics by allowing for susceptible 
population growth starting only in 1990, which gives an excellent fit to the data. We 
note, however, that models with several exposed classes and therefore potentially longer 
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successive incubation times (see Section 5), or with time-varying contact rates, may also 
provide viable alternatives. As for the case of inflation, it would be interesting to obtain 
more detailed historical data that could guide such detailed modeling choices. 

An important component of predicting the future course of a scientific field is assess
ments of the sensitivity of goodness of fit from model solutions to perturbations in param
eters. Figures 2-7 show the changes in model best fits due to the doubling of the contact 
rate between susceptibles and adopters. More systematic approaches capable of quanti
fying exhaustively which parameters lead to the greatest sensitivity at a specific stage of 
the dynamics are also being pursued through the study of sensitivity equations, and will 
be presented elsewhere [10]. This type of study will enable potential optimal interventions 
by funding agencies and other organizations, analogous in spirit to those designed to halt 
the spread of infectious diseases, but with the opposite intention of increasing the pace of 
scientific discovery and the spread of ideas. 

We note in closing that the type of modeling described here can be enlarged in several 
interesting directions. One direction involves improvements to the model itself. The length 
of the infectious period, recruitment rates, and perhaps even incubation times may be mea
surable directly from publication data, PhD theses records, and so on. Knowledge of their 
distributions would help greatly to constrain and improve models, as well as distinguish 
whether the growth of a field is the primary result of the recruitment of new susceptibles, 
or instead the consequence of the conversion of an already large susceptible population via 
a larger contact rate. Additional features of the basic SEIR model may also be added, such 
as a model in which the size of the infected class facilitates further recruitment (directly 
linking I with Λ). Such a model might account for the unusual pattern of publications 
on nanotechnology, which jumped discontinuously around 1990 [11]. Similarly, an explicit 
class of converts to competing ideas, Z (“skeptics” or “stiflers”), may be added, as in [4]. 
This feature could prove especially useful for the combined case of inflation and cosmic 
strings, since many authors published on both topics over time. 

Second, measures of scientific productivity can be produced by considering numbers 
of papers and authors over time, to judge if fields show increasing returns in scientific 
productivity resulting from the addition of new authors (increasing returns to scale) or 
otherwise. We believe that such studies will indicate whether a field shows vitality, in the 
sense of expanding opportunities per individual researcher, and that this feature may be a 
determinant of their future development and capacity to recruit. Related to this, studies 
that track trends in PhD theses in addition publications should help elucidate the roles 
played by institutions in the dynamics of scientific fields. For example, does the evolution 
in recruitment rates or susceptible populations derive mostly from having large numbers 
of students emerge from a few influential departments, or from having many departments 
train a smaller average number of practitioners? We have begun work on one such case, 
involving dissertations on superstring theory between the mid-1970s and today [12]. Work 
on this and related cases in the future may help us expand beyond simple measures like 
R0 to quantify growth and change. 
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Finally, detailed networks of authors, or of publications, can be built to quantify how 
relationships of collaboration, citation, or concept flow are structured and evolve over time. 
Such models yield the greatest level of detail, showing the specific paths and associations 
of individual authors or papers, and potentially complementing issues raised by epidemic 
models, which deal primarily with average properties of entire scientific communities. 
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Appendix 

Mathematical Extensions 

To study the dynamics of the transmission of an scientific idea, we formulate a model, fol
lowing the approaches in mathematical epidemiology ([8, 15, 17]) described by the following 
system of differential equations 

I Z 
S�(t) = Λ − βS 

N 
− bS 

N 
− µS, 

I Z I 
E1
� (t) = (1 − p)βS + (1 − l)bS 

N 
− ρ1E1 

N 
− (µ + γ)E1,

N 
I 

E� (t) = γE1 − (µ + γ)E2 − ρ2E2 , (2)2 N 
I I I 

N N 
Z 

( ) = � + + +I pβS ρ E γE ρ E µI, t −1 1 2 2 2 
N 

( ) = �Z lbS µZ. t −
N 

Fig.8 is the transfer diagram for System 2. 

( ) (1 ) + (1 ) ( )� +E βI l bZ γ Et ≈ − − −p µ 1, 

Trivial steady-state is locally asymptotically stable if and only if 

I 

Linearize System 2 at S ≈ N , and E1 ≈ 0, E2 ≈ 0, I ≈ 0, Z ≈ 0, we have 

1

E� (t) = γE1 − (µ + γ)E2, (3)2

I �(t) = pβI + γE2 − µI, 

Z �(t) = lbZ − µZ. 

0, Rmax(R
 Z) < 1
0 

where

lb 

(4)ZR
 =
0 µ 

is on average the secondary “stifler” individuals generated by one typical “stifler” individual 
in an otherwise susceptible population; 

R
I 
0 =


pβ β γ γ 
+ (1 − p)( )( )( ) (5) 

µ µ µ + γ µ + γ 

is on average the secondary “infectious” individuals generated by one typical “infectious”

individual in an otherwise susceptible population. The first term in R
I 

0 is the contribution

of transmission from S to I directly while the second term corresponds to the contribution 
of transmission from S to I through E1 and E2. 
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Figure 8: Transfer diagram for the SEIZ model. 

Model with n Exposed Classes 

We consider a situation when people get exposed to an scientific idea, there are n 
learning stages before they fully understand the idea and be able to teach (“infect”) others. 
Let Ei denote the i − th class of exposed individuals for i = 1, 2, , n. Then, following · · · 
similar modeling approaches as those used in epidemiology ([8, 15, 17]) , we arrive the 
following model 
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I Z 
S�(t) = Λ − βS 

N 
− bS 

N 
− µS, 

I Z I 
E1
� (t) = (1 − p)βS + (1 − l)bS 

N 
− ρ1E1 

N 
− (µ + γ)E1,

N 
I 

E2
� (t) = γE1 − (µ + γ)E2 − ρ2E2 ,

N 
I 

E3
� (t) = γE2 − (µ + γ)E3 − ρ3E3 , (6)

N 
· · · 

I 
E� (t) = γEn−1 − (µ + γ)En − ρnEn ,n N 

I I I I I 
I �(t) = pβS 

N 
+ ρ1E1 

N 
+ ρ2E2 

N 
+ ρ3E3 

N 
+ · · · + γEn + ρnEn 

N 
− µI, 

Z 
Z �(t) = lbS 

N 
− µZ. 

The system diagram is shown in Fig.9. Similar to the case where we have two exposed 
classes, we can find the basic reproductive numbers R0 

Z and R0 
I for “stifler” and infectious 

classes respectively as given in Eq.7 and Eq.8. 

R0 
Z = 

pβ 
(7) 

µ 

RI = (1 − p)(
β

µ 
)( 

µ + 
γ

γ 
)n , (8)0 

and define R0 = max{R0 
Z , R0

I }. 
By using the same approach as J.M. Hayman and J. Li used [22], we can show that the 

trivial steady-state is locally asymptotically stable if R0 < 1, and it is unstable if R0 > 1. 
In fact, the Jacobian matrix of system(6) at the trivial steady-state is given by ⎡
 ⎤
−(µ + γ) 0 0 0 (1 − p)β (1 − l)b· · · 

γ −(µ + γ) 0 0 0 0· · · 
0 γ −(µ + γ) 0 0 0· · · 
· · · 
0 0 0 −(µ + γ) 0 0· · · 
0 0 0 γ pβ − µ 0· · · 
0 0 0 0 0 lb − µ· · · 

⎢⎢⎢⎢⎢⎢⎢⎢⎣


⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
 (9)
J1 = 

From the last row of J1, we can see that J1 has an eigenvalue lb − µ, which is negative 
when R0 = max{R0 

Z , R0
I } < 1. 
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Define
 ⎡
 ⎤

−(µ + γ) 0 0 0 (1 − p)β· · · 

γ −(µ + γ) 0 0 0· · · 
0 γ −(µ + γ) 0 0· · · 
· · · 
0 0 0 −(µ + γ) 0· · · 
0 0 0 γ pβ − µ· · · 

⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎦
 ,
 (10)
J =


Recall from well known M-matrix theory that if B = [bij ] is an irreducible n × n matrix 
with bii ≥ 0, and bij ≤ 0, for i =� j, i, j = 1, · · · , n, then the real part of every nonzero 
eigenvalue of B is positive if and only if there exists a positive vector x > 0 such that 
Bx ≥ 0[19, 20, 21]. 

Let B = −J , since 0 < p < 1, it is easy to see that B is irreducible, the diagonal 
elements of B are positive and the off-diagonal elements of B are non-positive. Define the 
following vector 

v = ( 
µ

µ 

(µ 
− 
+ 
pβ

γ)
, 
µ

µ 

(µ 
− 
+ 
pβ

γ)
( 
µ + 

γ

γ 
), 

µ

µ 

(µ 
− 
+ 
pβ

γ)
( 
µ + 

γ

γ 
)2 , · · · , 

µ

µ 

(µ 
− 
+ 
pβ

γ)
( 
µ + 

γ

γ 
)n−1 ,

µ 

1
( 
µ + 

γ

γ 
)n)T , 

then v is a positive vector if R0 < 1. Since when R0 < 1 

B · v = (1 − R0, 0, 0, · · · , 0, 0)T ≥ 0, 

according to the M-matrix theory, every nonzero eigenvalue of B has positive real part. 
Hence, every nonzero eigenvalue of J has negative real part. Finally, calculating the deter
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minant of J , we get


|J | =


−(µ + γ) 0 0 0 (1 − p)β· · · 
γ −(µ + γ) 0 0 0· · · 
0 γ −(µ + γ) 0 0· · · 
· · · 
0 0 0 −(µ + γ) 0· · · 
0 0 0 γ pβ − µ
· · ·


= −(µ + γ)


−(µ + γ) 0 0 0 0· · · 
γ −(µ + γ) 0 0 0· · · 
0 γ −(µ + γ) 0 0· · · 
· · · 
0 0 0 −(µ + γ) 0· · · 
0 0 0 γ pβ − µ· · ·


γ −(µ + γ) 0 0 0· · · 
0 γ −(µ + γ) 0 0· · · 
0 0 γ 0 0

+ (−1)n(1 − p)β 
· · ·


· · · 
0 0 0 γ −(µ + γ)· · · 
0 0 0 0 γ· · · 

= (−1)n(µ + γ)n(pβ − µ) + (−1)n(1 − p)βγn


= (−1)n(R0 − 1)µ(µ + γ)n = 0 � if R0 < 1.


that means, J has no zero eigenvalue. 
Therefore, when R0 < 1, each eigenvalue of J1 has negative real part, hence, the trivial 

steady-state is locally asymptotically stable. 
Now consider R0 > 1. If RZ > 1, then J1 has a positive eigenvalue lb − µ. If R0 

I > 1,0 

when n is odd, we have |J(n+1)×(n+1)| < 0, i.e., the product of even number of eigenvalues 
of J is negative, so J must have a positive eigenvalue; when n is even, |J(n+1)×(n+1)| > 0, 
i.e., the product of odd number of eigenvalues of J is positive which again implies that J 
has a positive eigenvalue. Therefore, when R0 > 1, J1 always has a positive eigenvalue, 
hence, the trivial steady-state is unstable. 
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Figure 9: Transfer diagram for the SEIZ model with n exposed classes.
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