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PROBLEM: Leakin
entered the sugs
Prediction of contaminant fransport is
complicated by geological heterogeneities,
resulting in scale-dependence of transport
parameters.

GOAL: To provide validated scaling
strategies which can be applied to existing
contaminant distributions and migration
scenarios at Hanford and similar sites

OBJECTIVES:

1. Layer Scale: Separate quantification
of  hydraulic,  geochemical, and
mineralogical factors influencing U(VI)
transport

Up-Scale: Apply numerical, composite
medium, and fractal approaches to
compute effective coupled hydraulic
and reactive transport parameters

Validate: Apply up-scaled parameters
to U(VI) transport through
progressively larger scales of intact
samples that encompass both lateral
and vertical U(VI) transport

FUTURE WORK:

1. Repeated measurements
unconsolidated granular material
determine precision of URC method.

on
to

2. Determination of hydraulic properties
of individual layers of large intact
Hanford sediment sample.

3. Determine arplicabilify of composite
medium model to transient system

4. Validate model with measurements at
different scales

5. Extend model from monofractal (2
materials) to multifractal  (many
materials)

6. Extend uncertainty analysis to large-

scale models

LAYER SCALE:
The ULTRA ROCK CENTRIFUGE (URC) measures

water content as a function of pressure (6(y))
and predicts hydraulic conductivity (K(S)).
Solution is collected from centrifuged, originally
saturated samples to generate a production curve

(Fig. 1). The slope of the production curve is used
to calculate relative permeability (Fig. 2) using
the following expressions (Christiansen, 2002;

In order to reliably estimate transport parameters,
and sensitivity are performed to
utions of model and parameter

INTERMEDIATE SCALE:

analyses of uncer’rain'rg
determine the contri
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Waste storage tanks at

LARGE 2D SCALE:

estimation errors. Previous work involved the transport of

Br, Co, and U(VI) in intact Hanford sediment cores in
which flow is parallel or perpendicular to bedding (Mayes
in prep; Pace et al,
different parameter combinations using convective-
dispersive equation (Parker and van Genuchten, 1984) for
simultaneously fitting nonreactive tracer Br and reactive
tracer Co are attempted (Fig.

et al., 2003,

3).
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Fig. 3. Fitting velocity (V), ispersion (D), refardation (R), puise, and decay constant (1) fo flow-
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llel Co data in Hanford Coarse (HC) sediment showing 95% confidence limits. The fit
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Fig. 2. Relative permeability versus saturation for two small diameter Berea Sandstone
test cores. The measurement was repeated 3 fimes.

Berea Sandstone test cores were repeatedly
measured to study the degree of consistency of
the laboratory method (e.g., Fig. 2). At high
saturations, the precision of the k.,
measurements appears to be higher than at low
saturation, where the relative k., can vary up to
05-15 order of magnitude for any given
saturation value.
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Sensitivity

Deviation

rresponds to Fit Combination #5 (Fig. 4).
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parameters of unsaturated layered
sediments were estimated using a physically-based Cantor Bar
model to represent interbedded layers of coarse (blue) and
red (fine) sediments (Tang et al., accepted).

A direct averaging approach, the

+
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composite medium model, is used
scale
arameters

the

hydraulic
from

individual

ayers to a composite system

(eg., Mualem, 1984; Yeh et dl.,

1985; Pruess, 2004).
This approach has been criticized because it ignores variances

in the hydraulic gradient (dh or Ah) (Khaleel et al.,

Therefore we tested the
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sensitivity of the model to
variations in hydraulic gradient over scales of 10-100 cm.
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Fig. 6. Comparison between layered and effective (composite) parameters af a scale of 10 cm for parallel-bed and
cross-bed conductivity for a range of hydraulic gradients (dh).

The hydraulic conductivity calculated from layered and effective

parameters were similar regardless of the gradient (Fig. 6). The

Fig. 4. Combined uncertainty due to model fitting error and param

of fitting parameters.

Fig. 4 shows that uncertainties due to model fitting
errors exceed those due to parameter estimation errors.
Errors decrease with increasing estimated parameters
for combinations 1-5. Combination 6, however, did not

inty for 6

improve the fit and therefore can be eliminated.
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Fig. 5. Sensitivity
of fitting
parameters during
experimental
progress.
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Fig. 7. Anisotropy as a function of gradient (dh).

model works well the for steady-state 1D case. Results were
similar for length scale of 100 cm (hot shown). Anisotropy is not
sensitive to the gradient (Fig. 7).
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Fig. 8. Simulation of 2D layered system

The variance in conductivity at high gradients causes the
difference between layered and composite cases (Fig. 8). The
hydraulic conductivity of the composite case is close to the
harmonic mean of the layered case (Fig. 8), meaning that the
composite medium approach is valid for these conditions.
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