An Age-Structured Assessment Model for Georges Bank Winter Flounder

by

Jon K.T. Brodziak

March 2002

Recent Issues in This Series:

- 01-05 Report of the 32nd Northeast Regional Stock Assessment Workshop (32nd SAW): Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. [By the 32nd Northeast Regional Stock Assessment Workshop.] April 2001.
- 01-06 Defining Triggers for Temporary Area Closures to Protect Right Whales from Entanglements: Issues and Options. By P.J. Clapham and R.M. Pace, III. April 2001.
- 01-07 Proceedings of the 14th Canada-USA Scientific Discussions, January 22-25, 2001, MBL Conference Center, Woods Hole, Massachusetts. By S. Clark and R. O'Boyle, convenors. May 2001.
- 01-08 TRAC Advisory Report on Stock Status: A Report of the Fourth Meeting of the Transboundary Resources Assessment Committee (TRAC), St. Andrews Biological Station, St. Andrews, New Brunswick, April 17-20, 2001. [By the 4th Transboundary Resources Assessment Committee Meeting.] July 2001.
- 01-09 **Results of a Field Collection of Biopsy Samples from Coastal Bottlenose Dolphin in the Mid-Atlantic.** By J. Nicolas, D.C. Potter, C.W. Potter, and P.E. Rosel. July 2001.
- 01-10 Assessment of the Georges Bank Atlantic Cod Stock for 2001. By L. O'Brien and N.J. Munroe. [A report of the 4th Transboundary Resources Assessment Committee Meeting.] July 2001.
- 01-11 **Protocol and Guide for Estimating Nucleic Acids in Larval Fish Using a Fluorescence Microplate Reader.** By E.M. Caldarone, M. Wagner, J. St. Onge-Burns, and L.J. Buckley. July 2001.
- 01-12 Northeast Fisheries Science Center Publications, Reports, and Abstracts for Calendar Year 2000. By L. Garner and J.A. Gibson. August 2001.
- 01-13 Elemental Composition of Fish Otoliths: Results of a Laboratory Intercomparison Exercise. By V.S. Zdanowicz. September 2001.
- 01-14 Identification of Seasonal Area Management Zones for North Atlantic Right Whale Conservation. By R.L. Merrick, P.J. Clapham, T.V.N. Cole, P. Gerrior, and R.M. Pace, III. October 2001.
- 01-15 Bycatch Estimates of Coastal Bottlenose Dolphin (*Tursiops truncatus*) in U.S. Mid-Atlantic Gillnet Fisheries for 1996 to 2000. By D.L. Palka and M.C. Rossman. November 2001.
- 01-16 Causes of Reproductive Failure in North Atlantic Right Whales: New Avenues for Research -- Report of a Workshop Held 26-28 April 2000, Falmouth, Massachusetts. By R.R. Reeves, R. Roland, and P.J. Clapham, editors. November 2001.
- 01-17 Collected Abstracts of the Northeast Fisheries Science Center's Seventh Science Symposium, Westbrook, Connecticut, December 11-13, 2001. By R. Mercaldo-Allen, J. Choromanski, M.S. Dixon, J.B. Hughes, D.R. Lanyon, C.A. Kuropat, C. Martin, and J.J. Ziskowski, compilers. December 2001.
- 01-18 Report of the 33rd Northeast Regional Stock Assessment Workshop (33rd SAW): Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. [By Northeast Regional Stock Assessment Workshop No. 33.] December 2001.
- 01-19 **Report of the 33rd Northeast Regional Stock Assessment Workshop (33rd SAW): Public Review Workshop.** [By the 33rd Northeast Regional Stock Assessment Workshop.] December 2001.
- 01-20 Assessment of 19 Northeast Groundfish Stocks through 2000: A Report to the New England Fishery Management Council's Multi-Species Monitoring Committee. By Northern Demersal and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. December 2001.
- 02-01 Workshop on the Effects of Fishing Gear on Marine Habitats off the Northeastern United States, October 23-25, 2001, Boston, Massachusetts. By Northeast Region Essential Fish Habitat Steering Committee. February 2002.
- 02-02 **The 2001 assessment of the Gulf of Maine Atlantic cod stock.** By R.K. Mayo, E.M. Thunberg, S.E. Wigley, and S.X. Cadrin. March 2002.

A Report of the 34th Northeast Regional Stock Assessment Workshop

An Age-Structured Assessment Model for Georges Bank Winter Flounder

by

Jon K.T. Brodizak

Woods Hole Lab., National Marine Fisheries Serv., Woods Hole, MA 02543-1026

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts

March 2002

Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review but no technical or copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

All documents issued in this series since April 2001, and several documents issued prior to that date, have been copublished in both paper and electronic versions. To access the electronic version of a document in this series, go to *http://www.nefsc.nmfs.gov/nefsc/publications/series/crdlist.htm*. The electronic version will be available in PDF format to permit printing of a paper copy directly from the Internet. If you do not have Internet access, or if a desired document is one of the pre-April 2001 documents available only in the paper version, you can obtain a paper copy by contacting the senior Center author of the desired document. Refer to the title page of the desired document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (*i.e.*, non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

This document's publication history is as follows: manuscript submitted for review--December 31, 2001; manuscript accepted through technical review--March 4, 2002; manuscript accepted through policy review--March 18, 2002; and camera-ready copy submitted for publication--March 20, 2002. This document may be cited as:

Brodziak, J.K.T. 2002. An age-structured assessment model for Georges Bank winter flounder. *Northeast Fish. Sci. Cent. Ref. Doc.* 02-03; 54 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.

TABLE OF CONTENTS

TABLE OF CONTENTS iii
ABSTRACT iv
INTRODUCTION
POPULATION DYNAMICS MODEL 1
STATISTICAL ESTIMATION APPROACH
SOUTHERN DEMERSAL WORKING GROUP RECOMMENDATIONS
MODEL DIAGNOSTICS
MODEL RESULTS
CONCLUSIONS
ACKNOWLEDGMENTS
LITERATURE CITED
TABLES
FIGURES
APPENDIX

ABSTRACT

An age-structured assessment model for Georges Bank winter flounder (*Pseudopleuronectes americanus*) stock during 1964-2000 is developed to provide an alternative to VPA-based analyses of stock status. Age-structured population dynamics of winter flounder are modeled using standard forward-projection methods for statistical catch-at-age analyses.

Trends in the relative abundance of population biomass are measured by research survey indices for Georges Bank winter flounder. Three surveys were available: the NEFSC autumn groundfish survey (1963-2000), the NEFSC spring groundfish survey (1968-2000), and the Canadian spring groundfish survey (1987-2000). Two alternative models were examined in detail: (1) a model that used all three research survey time series (**WINC**, *WIN*ter flounder model including *C*anadian survey) and (2) a model that used the two NEFSC research survey time series (**WIN**, *WIN*ter flounder model). Both the WINC and WIN models provided similar trends in population biomass and fishing mortality, indicating that results were robust to the inclusion of the Canadian research survey time series. Based on model diagnostics, the WIN model that used the two NEFSC research survey time series provided the best fit to the data.

Conditioned on the accuracy of the model and the assessment data, results of the best fit model indicate that: (i) Spawning biomass exceeded 20,000 mt in 1964 but declined to less than 3,000 mt in the early-1990s. Spawning biomass in year 2000 was roughly 9,900 mt; (ii) Fishing mortality (fully-recruited, age-4 estimate) increased steadily from less than 0.2 in the early-1960s to over 1.0 in the late-1980s and early-1990s, but has declined since then to roughly 0.32 in 2000; (iii) Stock-recruitment data show that the stock produced large year classes (>15 million recruits) in the 1960s and 1970s when spawning biomass was near or above 10,000 mt; (iv) Surplus production data show that the stock was most productive during the 1970s and early-1980s, with annual surplus production of roughly 3,000 mt. Since the mid-1980s annual surplus production has decreased to roughly 2,000 mt.

INTRODUCTION

An age-structured assessment model for Georges Bank winter flounder (*Pseudopleuronectes americanus*) stock during 1964-2000 is developed to provide an alternative to VPA-based analyses of stock status. Age-structured population dynamics of winter flounder are modeled using standard forward-projection methods for statistical catch-at-age analyses (Fournier and Archibald 1982, Methot 1990, Ianelli and Fournier 1998, Quinn and Deriso 1999). We describe the underlying population dynamics model, statistical estimation approach, Southern Demersal Working Group recommendations, model diagnostics, and model results below.

POPULATION DYNAMICS MODEL

The age-structured model is based on forward projection of population numbers at age. This modeling approach is based on the principle that population numbers through time are determined by recruitment and total mortality at age through time. That is, if one knew the time series of inputs and outputs to the population numbers and the initial population size at age, then one would have complete information on the population size, spawning biomass, and total mortality through time. In practice, one uses available sampling data and a statistical model of how the data were observed to estimate parameters to determine the time series of population sizes.

Population numbers at age through time are key variables in the age-structured model and the population numbers at age matrix $N=(N_{y,a})_{YxA}$ contains this information. This matrix has dimensions Y by A, where Y is the number of years in the assessment time horizon and A is the number of age classes modeled. The oldest age (A) comprises a plus-group consisting of all fish age-A and older. The time horizon for winter flounder is 1964-2000 (Y=37). The choice of time horizon was determined by the availability of landings data which are first available in 1964 and a relative abundance index, the NEFSC autumn groundfish survey. The number of age classes in the model is 7, representing ages 1 through 7+.

1

Recruitment (numbers of age-1 fish) in year y (R_y) is modeled as a lognormal deviation from an average recruitment parameter (μ_R), where the V_y are independent and identically distributed (iid) normal random variables with zero mean and constant variance.

$$R_{y} = \mu_{R} e^{V_{y}} \tag{1}$$

For all years, y, from 1965-2000, $R_y = N_{y1}$ is estimated from the recruitment deviation and average recruitment parameter. The recruitment deviations are constrained to sum to zero over all years.

Initial population abundance at age in 1964 is based on recruitment deviations from average recruitment for 1959-1964 and natural mortality. For all ages a < A, the numbers at age in the first year (ystart=1) are estimated as a lognormal deviation from average recruitment as reduced by natural mortality (M)

$$N_{1,a} = \mu_R e^{V_{ystart-a+1}} e^{-(a-1)M}$$
(2)

For the plus group, the initial numbers at age is the sum of numbers at ages 7 and older based on average recruitment and recruitment deviations for ages 7 and older in 1964 along with the natural mortality rate

$$N_{1,A} = \frac{\mu_R e^{V_{ystart-A+1}} e^{-(A-1)M}}{1 - e^{-M}}$$
(3)

Total mortality rates at age through time are also key variables in the population dynamics model. The total instantaneous mortality at age matrix $\mathbf{Z}=(Z_{y,a})_{YxA}$ and the instantaneous fishing mortality at age matrix $\mathbf{F}=(F_{y,a})_{YxA}$ both have dimensions Y by A. Instantaneous natural mortality at age is assumed to be constant with M equal to 0.2. Thus, for all years y, and age classes a, total mortality at age is the sum of fishing and natural mortality

$$Z_{y,a} = F_{y,a} + M \tag{4}$$

To determine total mortality, fishing mortalities will be estimated. While natural mortality might be estimable in some rare data-rich situations, M is often highly correlated with other parameters and is not estimable in practice (see for example, Schnute and Richards 1995).

Population numbers at age through time are computed from the initial population numbers at age, recruitment through time, and total mortality at age through time. For each age class, indexed by "a", that is younger than the plus group (a < A), the number at age is sequentially determined using a standard survival model

$$N_{y,a} = N_{y-1,a-1} e^{-Z_{y-1,a-1}}$$
(5)

For the plus group, numbers at age are the sum of survivors of age A-1 and survivors from the plus group in the preceding year

$$N_{y,A} = N_{y-1,A-1} e^{-Z_{y-1,A-1}} + N_{y-1,A} e^{-Z_{y-1,A}}$$
(6)

Estimation of fishing mortality at age is facilitated by making the simplifying assumption that fishing mortality can be modeled as a separable process. This assumption implies that $F_{y,a}$ is determined from the average selectivity pattern of age-a fish (S_a) and fully-recruited fishing mortality in year y (F_y)

$$F_{y,a} = S_a F_y \tag{7}$$

While more complicated models of time-varying selectivity may be useful, this approximation is likely to be satisfactory if observation errors in the catch-at-age data are substantial.

Fully-recruited fishing mortality in each year is modeled as a lognormal deviation from average fishing mortality (μ_F), where the U_y are iid normal random variables with zero mean and constant variance

$$F_{v} = \mu_{F} e^{U_{v}} \tag{8}$$

The fishing mortality deviations (U_v) are constrained to sum to zero over all years.

Fishery selectivity at age is modeled as being time-invariant throughout the assessment time horizon. This approach was chosen for parsimony and because there was believed to be

substantial errors in the observed fishery age composition, especially in recent years. In particular, winter flounder catch-at-age data to estimate fishery selectivity are limited to 1982-2000, a period when the fishery was prosecuted primarily by domestic trawl fishing vessels. Since 1993, fishery sampling intensity of Georges Bank winter flounder catches has been relatively low. As a result, temporal changes in fishery selectivity would likely be difficult to detect given relatively high measurement errors in the fishery age composition data.

The average fishery selectivity at age is estimated for ages 1 through 6. For ages 7 and older, fishery selectivity is assumed to be equal to the age-6 selectivity value. This approach was chosen to reflect the fact that age-7 fish were not likely to differ much from age-6 fish in their fishery selectivity. Two constraints are applied to the estimated selectivity at age coefficients. First, the selectivities are constrained to average 1 for estimated ages. This forces the scale of each coefficient to be near unity. Second, a constraint is applied to ensure that estimated selectivities change smoothly between adjacent ages. Details of the implementation of both constraints are described in the section on statistical estimation approach. Last, for each year, the selectivity at age values are rescaled so that the maximum selectivity at age value is unity. This rescaling ensures that estimated fully-recruited fishing mortality rates are directly comparable to biological reference points such as $F_{0.1}$.

Fishery removals from the population are accounted for through the fishery catch numbers at age matrix $C=(C_{y,a})_{YxA}$ and the fishery catch biomass at age (yield) matrix $Y=(Y_{y,a})_{YxA}$. Both C and Y have dimensions Y by A. Fishery catch at age in each year is computed in a standard manner from Baranov's catch equation using population numbers, fishing mortality, and total mortality at age

$$C_{y,a} = \frac{N_{y,a} F_{y,a} \left(1 - e^{-Z_{y,a}}\right)}{Z_{y,a}}$$
(9)

Catch biomass at age in each year $(Y_{y,a})$ is approximated by the product of catch numbers at age and the long-term mean weights at age, where W_a is the mean weight at age computed as the

average of mean Georges Bank weights at age from fishery sampling during 1982-2000

$$Y_{y,a} = C_{y,a} W_a \tag{10}$$

Use of the long-term mean weights at age is likely to be a useful approximation unless mean weights at age have varied substantially through time. Since fishery sampling has been relatively poor in recent years, the use of a long-term average was considered to be adequate given the likely errors in the observed annual mean weights at age computed from fishery samples.

Total fishery catch biomass in year y (Y_y) is the sum of yields by age class

$$Y_{y} = \sum_{a=1}^{A} Y_{y,a}$$
(11)

The calculated total fishery catch biomass time series is compared to observed values using a lognormal probability model. This model feature was included because it was expected that observed catches were not accurately reported in some years and that discards were not estimated for inclusion in the catch-at-age data.

Similarly, the proportion of fishery catch at age a in year y $(P_{y,a})$ is computed from estimated catch numbers

$$P_{y,a} = \frac{C_{y,a}}{\sum_{a} C_{y,a}}$$
(12)

The time series of fishery proportions at age are fitted to observed fishery values using a multinomial probability model (see for example, Fournier and Archibald 1982, Quinn and Deriso 1999). This model feature accounts for the possibility that the fishery catch-at-age data are measured with error.

Trends in the relative abundance of population biomass are measured by research survey indices for Georges Bank winter flounder. Three surveys were available: the NEFSC autumn groundfish survey (1963-2000), the NEFSC spring groundfish survey (1968-2000), and the Canadian spring

groundfish survey (1987-2000). The survey biomass index in year y (I_y) for any of the surveys is modeled as a catchability coefficient (Q_{SURVEY}) times the population biomass that is vulnerable to the survey, where $S_{SURVEY,a}$ is survey selectivity at age a and p_{SURVEY} is the fraction of annual total mortality that occurs prior to the survey

$$I_{y} = Q_{SURVEY} \sum_{a} S_{SURVEY,a} W_{a} N_{y,a} e^{-p_{SURVEY} Z_{y,a}}$$
(13)

The survey biomass index time series are fitted to observed values using a lognormal probability model. This model feature accounts for the possibility that the survey relative abundance indices are measured with error.

Survey selectivity accounts for differential vulnerability of winter flounder age classes to the survey fishing gear and also for differential vulnerability due to differences in the behavior and distribution of juvenile and adult fish. For each of the three surveys, selectivity at age is modeled using Thompson's exponential-logistic model (Thompson 1994), where α , β , and γ are parameters and survey selectivity for winter flounder is assumed to be time invariant

$$S_{SURVEY,a} = \frac{1}{1 - \gamma} \left(\frac{1 - \gamma}{\gamma} \right)^{\gamma} \left(\frac{e^{\alpha \gamma (\beta - a)}}{1 + e^{\alpha (\beta - a)}} \right)$$
(14)

This model has the useful property that the maximum selectivity value is unity. For values of $\gamma > 0$ survey selectivity is dome-shaped, and survey selectivity is flat-topped (i.e., constant at older ages) when $\gamma=0$.

Survey age composition data provide information on the relative abundance of winter flounder age classes captured with the survey gear. Survey catch proportion at age a in year y ($P_{SURVEY, y, a}$) is computed from survey selectivity, the fraction of mortality occurring prior to the survey, and population numbers at age

$$P_{SURVEY,y,a} = \frac{S_{SURVEY,a} N_{y,a} e^{-p_{SURVEY}Z_{y,a}}}{\sum_{a} S_{SURVEY,a} N_{y,a} e^{-p_{SURVEY}Z_{y,a}}}$$
(15)

The time series of survey proportions at age are fitted to observed fishery values using a multinomial probability model. This model feature accounts for the possibility that the survey age composition data are measured with error.

STATISTICAL ESTIMATION APPROACH

The population dynamics model is fit to observed data using an iterative maximum likelihood estimation approach. The statistical model consists of ten likelihood components (L_j) and two penalty terms (P_k). The model objective function (Λ) is the weighted sum of the likelihood components and penalties where each summand is multiplied by an emphasis coefficient (λ_j) that reflects the relative importance of the data.

$$\Lambda = \sum_{j} \lambda_{j} L_{j} + \sum_{k} \lambda_{k} P_{k}$$
(16)

Each likelihood component is written as a negative log-likelihood so that the maximum likelihood estimates of model parameters are obtained by minimizing the objective function. The Automatic Differentiation Model Builder software is used to estimate a total of roughly 95 parameters depending upon the model configuration. The likelihood components and penalty terms are described below.

1. Recruitment

Recruitment strength is modeled by lognormal deviations from average recruitment for the period 1959-2000. A total of 42 recruitment deviation parameters (V_y) and one average recruitment parameter (μ_R) are estimated based on the objective function minimization. The recruitment likelihood component (L_1) is

$$L_1 = \frac{n_1}{2} \sum_{y} V_y^2$$
 (17)

where

$$V_y = \ln(R_y) - \ln(\mu_R)$$

and the V_y are iid normal random variables with zero mean and constant variance and n_1 is the number of recruitment deviations.

2. Fishery age composition

Fishery age composition is modeled as a multinomial distribution for sampling catch numbers at age. The constant $N_{E,Fishery, y}$ denotes the effective sample size for the multinomial distribution for year y and is assumed to be 200 fish per year during 1982-1993, 100 fish per year during 1994-1997 and 2000, and 50 fish per year during 1998-1999. These different sample sizes were chosen to reflect the relative intensity of fishery sampling of Georges Bank winter flounder. The observed number of fish at age in the fishery samples is computed as the effective sample size times the observed proportion at age, denoted with a superscript "OBS" for all variables. The negative log-likelihood of the multinomial sampling model for the fishery ages (L₂) is

$$L_{2} = -\sum_{y} N_{E,Fishery,y} \sum_{a} \left(P_{y,a}^{OBS} \ln P_{y,a} - P_{y,a}^{OBS} \ln P_{y,a} \right)$$
(19)

The second term in summation over ages indexed by "a" is a constant that scales L_2 to be zero if the observed and predicted proportions were identical. Six fishery selectivity coefficients (S₁ through S₆) are estimated based on the objective function minimization.

3. NEFSC Fall survey age composition

Fall survey age composition is also modeled as a multinomial distribution for sampling survey catch numbers at age. The constant $N_{E,Fall,y}$ denotes the effective sample size for the multinomial distribution for year y and is assumed to be constant across time for the years 1982-2000 when

winter flounder autumn survey catch-at-age data are available. The observed number of fish at age in the survey samples is computed as the effective sample size times the observed proportion at age. The effective sample size was assumed to be 100 fish in each year. The negative log-likelihood of the multinomial sampling model for the autumn survey ages (L_3) is

$$L_{3} = -\sum_{y} N_{E,Fall,y} \sum_{a} \left(P_{Fall,y,a}^{OBS} \ln P_{Fall,y,a} - P_{Fall,y,a}^{OBS} \ln P_{Fall,y,a} \right)$$
(20)

As with the fishery age composition, the second term in the summation over the age index "a" is a constant that scales L_3 to be zero if the observed and predicted proportions were identical. Three fall survey selectivity coefficients (α_{Fall} , β_{Fall} , γ_{Fall}) are estimated based on the objective function minimization using the survey selectivity model (Eqn. 14).

4.NEFSC Fall survey biomass index

The fall survey biomass index is modeled by lognormal deviations of predicted values from observed values during 1964-2000, where the log-transformed deviations $D_{Fall, y}$ are iid normal random variables with zero mean and constant variance

$$I_{Fall,y}^{OBS} = I_{Fall,y} e^{D_{Fall,y}}$$
(21)

The fall survey biomass likelihood component (L_4) is

$$L_4 = \frac{n_4}{2} \sum_{y} D_{Fall,y}^2$$
(22)

where n_4 is the number of observed fall survey index values. One fall survey catchability coefficient (Q_{Fall}) is estimated based on the objective function minimization.

5. NEFSC Spring survey age composition

Spring survey age composition is also modeled as a multinomial distribution for sampling survey catch numbers at age. The constant $N_{E,Spr,y}$ denotes the effective sample size for the multinomial distribution for year y and is assumed to be constant for the years 1982-2000 when winter flounder spring survey catch-at-age data are available. The observed number of fish at age in the

survey samples is computed as the effective sample size times the observed proportion at age. The effective sample size was assumed to be 100 fish in each year. The negative log-likelihood of the multinomial sampling model for the spring survey ages (L_5) is

$$L_{5} = -\sum_{y} N_{E,Spr,y} \sum_{a} \left(P_{Spr,y,a}^{OBS} \ln P_{Spr,y,a} - P_{Spr,y,a}^{OBS} \ln P_{Spr,y,a} \right)$$
(23)

Three spring survey selectivity coefficients (α_{Spr} , β_{Spr} , γ_{Spr}) are estimated based on the objective function minimization using the survey selectivity submodel (Eqn. 14).

6. NEFSC Spring survey biomass index

The spring survey biomass index is modeled by lognormal deviations of predicted values from observed values during 1968-2000, where the log-transformed deviations $D_{Spr, y}$ are iid normal random variables with zero mean and constant variance

$$I_{Spr,y}^{OBS} = I_{Spr,y} e^{D_{Spr,y}}$$
(24)

The spring survey biomass likelihood component (L_6) is

$$L_6 = \frac{n_6}{2} \sum_{y} D_{Spr,y}^2$$
(25)

where n_6 is the number of observed spring survey index values. One spring survey catchability coefficient (Q_{Spr}) is estimated based on the objective function minimization.

7. Canadian Spring survey age composition

Canadian spring survey age composition is also modeled as a multinomial distribution for sampling survey catch numbers at age. The constant $N_{E,CANSpr, y}$ denotes the effective sample size for the multinomial distribution for year y and is assumed to be constant for the years 1987-2000 when winter flounder Canadian spring survey catch-at-age data are available. The observed number of fish at age in the survey samples is computed as the effective sample size times the observed proportion at age. The effective sample size was assumed to be 200 fish in each year. The negative log-likelihood of the multinomial sampling model for the Canadian spring survey ages (L₇) is

$$L_{7} = -\sum_{y} N_{E,CANSpr,y} \sum_{a} \left(P_{CANSpr,y,a}^{OBS} \ln P_{CANSpr,y,a} - P_{CANSpr,y,a}^{OBS} \ln P_{CANSpr,y,a} \right)$$
(26)

Three Canadian spring survey selectivity coefficients (α_{CANSpr} , β_{CANSpr} , γ_{CANSpr}) are estimated based on the objective function minimization using the survey selectivity model (Eqn. 14).

8. Canadian Spring survey biomass index

The Canadian spring survey biomass index is modeled by lognormal deviations of predicted values from observed values during 1987-2000, where the log-transformed deviations $D_{CANSpr, y}$ are iid normal random variables with zero mean and constant variance

$$I_{CANSpr,y}^{OBS} = I_{CANSpr,y} e^{D_{CANSpr,y}}$$
(27)

The Canadian spring survey biomass likelihood component (L₈) is

$$L_8 = \frac{n_8}{2} \sum_{y} D_{CANSpr,y}^2$$
(28)

where n_8 is the number of observed Canadian spring survey index values. One Canadian spring survey catchability coefficient (Q_{CANSpr}) is estimated based on the objective function minimization.

9. Catch biomass

Catch biomass is modeled by lognormal deviations of predicted values from observed values during 1934-1999, where T_y are iid normal random variables with zero mean and constant variance

$$Y_{y}^{OBS} = Y_{y}e^{T_{y}}$$
⁽²⁹⁾

The catch biomass likelihood component (L_9) is

$$L_9 = \frac{n_9}{2} \sum_{y} T_y^2$$
(30)

where n_9 is the number of observed catch biomass values.

10. Fishing mortality

Annual values of fully-recruited fishing mortality are modeled as lognormal deviations from average fishing mortality during the period 1934-2000. A total of 37 fishing mortality deviation parameters (U_y) and one average fishing mortality parameter (μ_F) are estimated based on the objective function minimization. The fishing mortality likelihood component (L_{10}) is

$$L_{10} = \frac{n_{10}}{2} \sum_{y} U_{y}^{2}$$
(31)

where

$$U_y = \ln(F_y) - \ln(\mu_F)$$

and n_{10} is the number of observed catch values.

11. Fishery selectivity

Two constraints on fishery selectivity are included in a penalty function. The fishery selectivity penalty function (P_1) is

$$P_{1} = \left(\frac{1}{7}\sum_{a=1}^{7}S_{a} - 1\right)^{2} + \sum_{a=1}^{5}\left(S_{a} - 2S_{a+1} + S_{a+2}\right)^{2}$$
(33)

The first term constrains the fishery selectivity coefficients to scale to an average of 1. The second term constrains the fishery selectivity coefficient of age a+1 to be near to the linear prediction of this value interpolated from age a and age a+2 selectivities over the range of estimated selectivity coefficients.

12. Fishing mortality penalty

One constraint on fishing mortality is imposed to ensure that during the early phases of the iterative estimation process the observed catch could not be generated by an extremely small F on an extremely large population size. The fishing mortality penalty function (P_2) is

$$P_{2} = 10\sum_{y} \left(F_{y} - 0.1\right)^{2} \Leftrightarrow phase < 3$$

$$P_{2} = \frac{1}{1000} \sum_{y} \left(F_{y} - 0.1\right)^{2} \Leftrightarrow phase \ge 3$$
(34)

The constraint is weighted with a value of 10 for the initial estimation phases and is weighted with a value of 0.001 for all later estimation phases. The value of 0.1 was used because this value is sufficient to ensure that the estimated mean F will be on the order of the value of natural mortality for Georges Bank winter flounder.

Initial values are input for all parameters before the estimation phases are conducted. A total of nine estimation phases were used for the iterative minimization of the objective function. Any parameters first estimated in a given phase, say N, are estimated in all subsequent phases, N+1, N+2, etc. The first phase estimates average recruitment. The second phase estimates average fishing mortality and fishing mortality deviations. The third phase estimates recruitment deviations. The fourth phase estimates fishery and NEFSC spring survey selectivity coefficients. The fifth phase estimates the spring survey catchability coefficient. The sixth phase estimates the NEFSC fall survey selectivity coefficients. The seventh phase estimates the fall survey catchability coefficient. The eighth phase estimates the Canadian spring survey selectivity coefficient.

The twelve emphasis values (λ s) used for the baseline model were:

- 1. Recruitment $\lambda_1 = 10$
- 2. Fishery age composition $\lambda_2=1$
- 3. NEFSC Fall survey age composition $\lambda_3=1$
- 4. NEFSC Fall survey biomass index $\lambda_4=10$
- 5. NEFSC Spring survey age composition $\lambda_5=1$
- 6. NEFSC Spring survey biomass index $\lambda_6=10$
- 7. Canadian Spring survey age composition $\lambda_7=1$
- 8. Canadian Spring survey biomass index $\lambda_8=10$

- 9. Catch biomass $\lambda_9 = 100$
- 10. Fishing mortality $\lambda_{10}=1$
- 11. Fishery selectivity penalty $\lambda_{11}=10$
- 12. Fishing mortality penalty $\lambda_{12}=1$

SOUTHERN DEMERSAL WORKING GROUP RECOMMENDATIONS

After making some adjustments to the initial model configuration to better reflect the timing of the surveys and the emphasis factors for the fishery and survey age composition likelihood components, the Southern Demersal Working Group recommended that two final models be examined: (1) a model that used all three research survey time series (**WINC**, *WIN*ter flounder model including *C*anadian survey) and (2) a model that used the two NEFSC research survey time series (**WIN**, *WIN*ter flounder model). Both the WINC and WIN models provided similar trends in population biomass and fishing mortality, indicating that results were robust to the inclusion of the Canadian research survey time series.

MODEL DIAGNOSTICS

Model diagnostics showed that the WIN model provided a better fit to the observed catch biomass series (RMSE=0.137) than the WINC model (RMSE=0.149). The WIN model also provided a better fit to the NEFSC fall biomass series (RMSE=0.356) than the WINC model (RMSE=0.373). The fits to the NEFSC spring biomass series were nearly identical for the two models (WIN, RMSE=0.472 vs WINC, RMSE=0.473). In addition, the trend in the observed Canadian spring biomass series was lower than the WINC model predictions during 1998-2000, suggesting that the Canadian survey was not tracking relative abundance in recent years. Overall, the WIN model that used the two NEFSC research survey time series provided the best fit to the catch biomass and NEFSC survey biomass series while the WINC model provided a poor fit to the Canadian survey biomass series in recent years (see Figure 4 below). The condition numbers of the hessian matrices of the two models were also different with the WINC model having a much higher condition number (κ =6.83·10¹²) than the WIN model (κ =2.83·10⁷). This indicated that the numercial solution of the WINC model was not well-determined relative to the WIN model. Based on model diagnostics, the WIN model that used the two NEFSC research survey time series was considered to be the best model among the statistical catch-at-age models examined for winter flounder. Computer code to fit the WIN model, the input data file, and the standard deviation parameter file are listed in the Appendix.

Plots of diagnostics for the two models include the discrepancies between observed data and predicted values for the catch biomass series (Figure 1), the fall survey biomass series (Figure 2), the spring survey biomass series (Figure 3), and the Canadian spring survey biomass series (Figure 4, shown for the WINC model only). For the best fit WIN model, diagnostic plots

15

include the fishery age composition series (Figure 5), the fall survey age composition series (Figure 6), and the spring survey age composition series (Figure 7). For the WINC model, a diagnostic plot of the Canadian spring survey age composition series is also shown (Figure 8).

MODEL RESULTS

Model estimates of spawning biomass, fishing mortality, recruitment, and population biomass for the WIN model during the period 1963-2000 are listed in Table 1. Fishery and survey selectivity estimates at age are shown in Figure 9. Recruitment estimates are shown in Figure 10 (see also Table 1). Population biomass estimates are shown in Figure 11 (see also Table 1). Spawning biomass estimates (at start of the spawning season) are shown in Figure 12 (see also Table 1). Fishing mortality estimates are shown in Figure 13 (see also Table 1). Stockrecruitment data are shown in Figure 14. Surplus production implied by the age-structured estimates of exploitable biomass and observed catches are shown in Figure 15.

Other model outputs included depletion ratios for year 2000, relative to 1964, for spawning biomass (46%) and population biomass (53%). Similarly, depletion ratios for year 2000, relative to 1982, were computed for spawning biomass (88%) and population biomass (81%). Long-term average recruitment was estimated to be 5.550 million age-1 fish during 1959-1999.

Sensitivity to the assumed value of M was investigated by systematically varying this parameter using the likelihood profile feature of the AD Model Builder software. This analysis showed that the model was not stable for moderate departures from M=0.2. In particular, running the baseline model under alternative assumptions about M showed that the model did not converge in its final

configuration for M=0.195, 0.196, 0.2005, 0.201, 0.2015, 0.2025, 0.203, while it did converge for M=0.197 (-lnL=3445.2), M=0.198 (-lnL=3444.8), M=0.199 (-lnL=3444.2), and M=0.202 (-lnL=3443.0). The objective function value for the assumed value of M=0.2 was -lnL=3443.8. This suggested that the objective function surface was a complicated function of natural mortality and that the model was sensitive to the assumed value.

Based on the Southern Demersal Working Group's recommendations, a sensitivity analysis was conducted on the value of the effective sample size time series for the fishery age composition likelihood. This was done to see how the model results might change if different effective sample sizes were used. The SDWG suggested multiplying the effective sample size time series by ½ and 2. The use of multipliers of less than 0.8 did not lead to model convergence, presumably because there was insufficient information assigned to the fishery age composition in these cases. Nonetheless, estimated spawning biomass, a key model output, was insensitive to using effective sample sizes that were 80% and 200% of the baseline values, which ranged from 50 to 200 fish (Figure 16). Overall, this suggested that the model solution would not be well-determined if effective sample sizes for the fishery age composition were below 40 fish per year, but, for values above this, the results appeared to be robust.

CONCLUSIONS

Conditioned on the accuracy of the model and the assessment data, results of the best fit model indicate that:

- The Georges Bank winter flounder stock appears to have a dome-shaped fishery selectivity pattern with age-4 fish being fully-recruited (Figure 9).
- The NEFSC fall bottom trawl survey appears to have a dome-shaped selectivity pattern and provides an index of the relative number of age-5 fish (Figure 9).
- The NEFSC spring bottom trawl survey appears to have an asymptotic selectivity pattern and provides an index of the relative number of age-3 and older fish (Figure 9).
- Recruitment appears to have been relatively strong during the early-1970 to early-1980s with the 1974 year class being the largest observed during 1964-2000 (Figure 10).
- Population biomass was over 20,000 mt in the early-1960s, declined to less than 5,000 mt in the early-1990s, and has subsequently increased to roughly 10,000 mt in year 2000 (Figure 11).
- Spawning biomass exceeded 20,000 mt in 1964 but declined to less than 3,000 mt in the early-1990s (Figure 12). Spawning biomass in year 2000 was roughly 9,900 mt.
- Fishing mortality (fully-recruited, age-4 estimate) increased steadily from less than 0.2 in the early-1960s to over 1.0 in the late-1980s and early-1990s (Figure 13), but has declined since then to roughly 0.32 in 2000.
- Stock-recruitment data show that the stock produced large year classes (>15 million recruits) in the 1960s and 1970s when spawning biomass was near or above 10,000 mt (Figure 14).

- Surplus production data show that the stock was most productive during the 1970s and early-1980s (Figure 15), with annual surplus production of roughly 3,000 mt. Since the mid-1980s annual surplus production has decreased to roughly 2,000 mt.
- The results of the age-structured model appear to be sensitive to the assumed value of natural mortality of 0.2.
- The results of the age-structured model do not appear to be sensitive to the effective sample size for the fishery age composition data provided that effective sample sizes of 50-200 fish are collected each year.

ACKNOWLEDGMENTS

I thank the members of the Southern Demersal Working Group for their helpful comments and suggestions. I also thank the members of the 34th Northeast Regional Stock Assessment Review Committee for their helpful comments and thoughtful review.

LITERATURE CITED

Fournier, D. A., and C. P. Archibald. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39:1195-1207.

Ianelli, J. N., and D. A. Fournier. 1998. Alternative age-structured analyses of NRC simulated stock assessment data. NOAA Tech. Memo. NMFS-F/SPO-30. pp. 81-96.

Methot, R. D. 1990. Synthesis model: an adaptive framework for analysis of diverse stock assessment data. Int. North Pac. Fish. Comm. Bull. 50:259-277.

Quinn, T. P., II, and R. B. Deriso.1999. Quantitative fish dynamics. Oxford University Press, New York, 542 pp.

Schnute, J. T., and L. J. Richards. 1995. The influence of error on population estimates from catch-age models. Can. J. Fish. Aquat. Sci. 52:2063-2077.

Thompson, G. G. 1994. Confounding of gear selectivity and the natural mortality rate in cases where the former is a nonmonotone function of age. Can. J. Fish. Aquat. Sci. 51:2654-2664.

Table 1. Baseline model results for Georges Bank winter flow	ounder.
--	---------

				Recruitment		Surplus
	Population	Spawning	Exploitable	(thousands	Fishina	production
Year	biomass (mt)	biomass (mt)	biomass (mt)	of age-1 fish)	mortality	(mt)
1964	22826.2	21676.4	13539.9	1445.9	0.13	954.8
1965	20011.2	18943.5	12977.7	2063.2	0.15	-425.2
1966	20039.7	16295.8	10865.5	15293.4	0.24	195.9
1967	18517.5	15626.9	8864.3	3081.4	0.36	3125.2
1968	16539.7	14772.4	9640.6	4455.3	0.25	2345.6
1969	15379.3	13455.5	9987.1	4786.8	0.28	1207.7
1970	14996.9	12154.5	8676.8	9241.8	0.35	1457.4
1971	14362.9	11503.7	7418.2	5966.8	0.69	3524.7
1972	14333.2	9849.8	6759.9	15867.4	0.87	3678.6
1973	12751.0	9160.7	5926.5	6306.8	0.79	3680.8
1974	11413.1	9048.7	6631.3	5778.1	0.51	2714.0
1975	13598.3	8868.6	7127.4	18178.6	0.54	2718.8
1976	13691.9	10358.8	6909.2	4439.5	0.32	3999.3
1977	15039.8	12052.0	9015.5	9322.5	0.45	3840.5
1978	15246.5	11878.0	9262.0	8822.0	0.46	2450.1
1979	15037.9	11648.6	8462.0	9240.5	0.46	2829.3
1980	15209.2	11630.1	8227.3	9565.8	0.60	3726.5
1981	15335.1	11149.7	7978.8	12555.0	0.61	3829.3
1982	14804.4	11211.2	7796.1	8414.2	0.42	4104.6
1983	14269.8	11935.9	8920.7	3601.1	0.54	3264.7
1984	12790.0	10157.0	8277.4	6906.5	0.98	674.1
1985	9456.7	6919.0	5020.5	6487.6	0.87	1268.4
1986	8687.7	6097.6	4125.9	7678.8	0.62	2248.2
1987	8454.3	6368.6	4587.0	3707.5	0.95	2156.4
1988	7839.5	5186.5	4074.5	8755.6	1.21	1789.8
1989	6515.1	4390.5	3005.3	4044.8	1.09	2009.5
1990	5615.1	4078.0	3123.8	3193.4	1.41	1072.6
1991	4503.3	2795.5	2243.4	5287.0	1.41	1258.1
1992	3886.7	2467.1	1673.4	3139.4	1.20	2023.7
1993	4155.9	2500.1	1848.1	5422.7	1.17	1679.5
1994	4602.5	2695.8	1844.5	5759.9	0.70	1673.7
1995	6035.0	3685.5	2546.2	7742.6	0.39	2048.7
1996	7545.3	5263.1	3834.9	5617.8	0.56	2091.1
1997	7745.3	5991.2	4590.0	4029.4	0.47	1756.1
1998	8877.9	6276.4	4916.1	9554.6	0.31	1874.8
1999	10801.3	7752.0	5455.9	8671.2	0.21	2516.3
2000	12041.8	9874.0	6930.2	3901.7	0.32	

Year

Figure 3. Winter flounder spring survey biomass index fit for the WIN (A) and WINC (B) models, 1968-2000

Figure 4. Winter flounder Canadian spring survey biomass index fit for the WINC model, 1987-2000

Figure 6. Winter flounder fall survey age composition residuals for the WIN model, 1982-2000

Figure 7. Winter flounder spring survey age composition residuals for the WIN model, 1982-2000

George Bank winter flounder fishery selectivity

Georges Bank winter flounder recruitment, 1964-2000

Georges Bank winter flounder population biomass (thousand mt), 1964-2000

Year

Georges Bank winter flounder spawning biomass (thousand mt), 1964-2000

Figure 13. Fishing mortality estimates for the WIN model

Figure 14. Stock-recruitment estimates for the WIN model

Georges Bank winter flounder stock-recruitment data, 1964-1999

Georges Bank winter flounder surplus production, 1964-1999

Figure 16. Sensitivity of WIN Baseline model to effective sample size of the fishery age composition likelihood component

Appendix. AD Model Builder computer code to fit the WIN model, the input data file, and the standard deviation parameter file.

Computer Code

//WINTER FLOUNDER AGE-STRUCTURED MODEL //JON BRODZIAK NEFSC OCTOBER 2001 //COMMENT LINES BEGIN WITH "//" DATA SECTION //READ DATA FROM INPUT FILE "WIN.DAT" init int styr init int endyr init_int nages init int nselages fish init_vector catch_bio(styr,endyr) init int nobs fish init ivector yrs fish(1,nobs fish) init_vector nsamples_fish(1,nobs_fish) init_matrix obs_p_fish(1,nobs_fish,1,nages) init int nobs FALL init ivector yrs FALL(1,nobs FALL) init_number zfrac_FALL init_vector obs_FALL(1,nobs_FALL) init int nsamples FALL init_matrix obs_p_FALL(1,nobs_FALL,1,nages) init int nobs SPR init_ivector yrs_SPR(1,nobs_SPR) init number zfrac SPR init_vector obs_SPR(1,nobs_SPR) init int nsamples SPR init matrix obs p SPR(1,nobs SPR,1,nages) init vector wt(1,nages)init number zfrac spawn init_vector maturity(1,nages) init number lambda recruitment init_number lambda_fishery_age init number lambda_FALL_age init number lambda biomass index FALL init_number lambda_SPR_age init number lambda biomass index SPR init_number lambda_catch_biomass init number lambda fishery sel init_number lambda_f_penalty

int styr_rec

LOCAL_CALCS //COMPUTE YEAR OF FIRST RECRUITMENT DEVIATION TO BE ESTIMATED styr_rec=styr-nages+2; END_CALCS

INITIALIZATION_SECTION //PROVIDE INITIAL PARAMETER VALUES //NATURAL MORTALITY (NOT ESTIMATED) M 0.20

//MEAN RECRUITMENT) IN THOUSANDS OF FISH mean_log_rec 8.45

//LOG(MEAN ANNUAL FISHING MORTALITY) log_avg_fmort -2.5 //FALL SURVEY INDEX PARAMETERS qFALL 1. exp_FALL 1. log_gamma_FALL -2. log_beta_FALL 0. log_a50_FALL 1.5

//SPRING SURVEY INDEX PARAMETERS qSPR 1. exp_SPR 1. log_gamma_SPR -25. log_beta_SPR 0. log_a50_SPR 1.5

PARAMETER_SECTION //DECLARE MODEL PARAMETERS AND VARIABLES init_bounded_number M(.02,.25,-1) init_number mean_log_rec(1) init_bounded_dev_vector rec_dev(styr_rec,endyr,-15,15,3)

init_bounded_number qFALL(.001,1000.,7)
init_bounded_number exp_FALL(.25,4.,-1)
init_bounded_number log_gamma_FALL(-50.,0.999,6)
init_bounded_number log_beta_FALL(-50.,10.,6)
init_bounded_number log_a50_FALL(0.,3.,6)

init_bounded_number qSPR(.001,1000.,5)
init_bounded_number exp_SPR(.25,4,-1)
//FIX log_gamma_SPR at -25 to assume flat-topped curve
init_bounded_number log_gamma_SPR(-50.,0.999,-1)
init_bounded_number log_beta_SPR(-50.,10.,4)
init_bounded_number log_a50_SPR(0.,3.,4)

init_number log_avg_fmort(2)
init_bounded_dev_vector fmort_dev(styr,endyr,-15,15,2)

init_vector log_selcoffs_fish(1,nselages_fish,4)

vector log_sel_fish(1,nages) vector sel(1,nages) vector sel_FALL(1,nages) vector sel_SPR(1,nages) number avgsel_fish

vector rec_years(styr_rec,endyr)
vector years(styr,endyr)
vector ages(1,nages)

vector totn_FALL(styr,endyr) vector totn_SPR(styr,endyr) vector popnbiom(styr,endyr) sdreport_vector spawnbiom(styr,endyr) sdreport_vector recruitment(styr,endyr) vector explbiom(styr,endyr) vector surplus_production(styr,endyr-1) vector pred_FALL(styr,endyr) matrix pred_p_fish(styr,endyr,1,nages) matrix pred_p_SPR(styr,endyr,1,nages) matrix pred_p_SPR(styr,endyr,1,nages) vector pred_catch(styr,endyr)

vector natage_FALL(1,nages) vector natage_SPR(1,nages) vector natage_spawn(1,nages) matrix natage(styr,endyr,1,nages) matrix catage(styr,endyr,1,nages) matrix Z(styr,endyr,1,nages) matrix F(styr,endyr,1,nages) matrix S(styr,endyr,1,nages)

number beta_FALL number gamma_FALL number a50_FALL number beta_SPR number gamma_SPR number a50_SPR

number survival

vector offset(1,4) number rec_like number catch_like vector age_like(1,4) vector sel_like(1,4) number fpen number FALL_like number SPR_like

number rmse_catch_bio number rmse_FALL number rmse_SPR

objective_function_value f

sdreport_number endbiom sdreport_number depletion_popnbiom sdreport_number endspawn sdreport_number depspawn sdreport_number depspawn82 sdreport_number depspawn82 sdreport_vector endN(1,nages) likeprof_number endF

RUNTIME_SECTION convergence_criteria 1e-6;

PRELIMINARY_CALCS_SECTION

```
//SET TIME HORIZON:years
for (int i=styr; i<=endyr; i++)
{
    years(i)=i;
}
//SET RECRUITMENT TIME HORIZON:rec_years
for (i=styr_rec; i<=endyr; i++)
{
    rec_years(i)=i;
}
//SET AGE CLASSES:ages
for (i=1; i<=nages; i++)
{
    ages(i)=i;
}</pre>
```

//RESCALE FALL SURVEY INDEX
obs_FALL*=1000;

//RESCALE SPRING SURVEY INDEX

obs_SPR*=1000;

//CHECK INPUT DATA cout << "START YEAR: "<<styr<< endl; cout << "END YEAR: "<<endyr<< endl; cout << "AGE CLASSES: "<<nages<<endl; cout << "FISHERY SELECTED AGES: "<<nselages fish<<endl; cout << "CATCH BIOMASS" << endl; cout << catch bio << endl; cout << "FISHERY YEARS"<<endl; cout << yrs_fish<< endl; cout << "FALL SURVEY YEARS"<<endl; cout << yrs FALL<< endl; cout << "FRACTION OF Z BEFORE FALL SURVEY"<<endl; cout << zfrac FALL << endl; cout << "FALL SURVEY INDEX" << endl; cout << obs FALL<< endl; cout << "SPRING SURVEY YEARS"<<endl; cout << yrs SPR<< endl; cout << "FRACTION OF Z BEFORE SPRING SURVEY"<<endl; cout << zfrac_SPR<< endl; cout << "SPRING SURVEY INDEX"<<endl; cout << obs SPR<< endl; cout << "FISHERY AGE COMPOSITION"<<endl; cout << obs_p_fish<< endl; cout << "FALL SURVEY AGE COMPOSITION"<<endl; cout << obs p FALL<< endl; cout << "SPRING SURVEY AGE COMPOSITION"<<endl; cout << obs p SPR<< endl; cout << "WEIGHT AT AGE"<<endl; cout << wt<< endl: cout << "FRACTION OF Z BEFORE SPAWNING"<<endl; cout << zfrac_spawn<< endl; cout << "MATURITY AT AGE"<<endl; cout << maturity<< endl; cout << "LAMBDA RECRUITMENT: " << lambda_recruitment <<endl; cout << "LAMBDA FISHERY AGE: " << lambda_fishery_age << endl; cout << "LAMBDA FALL SURVEY AGE: " << lambda FALL age << endl; cout << "LAMBDA FALL SURVEY INDEX: " << lambda_biomass_index_FALL << endl; cout << "LAMBDA SPRING SURVEY AGE: " << lambda_SPR_age << endl; cout << "LAMBDA SPRING SURVEY INDEX: " << lambda biomass index SPR << endl; cout << "LAMBDA CATCH BIOMASS: " << lambda_catch_biomass << endl; cout << "LAMBDA FISHERY SELECTIVITY: " << lambda fishery sel << endl; cout << "LAMBDA F PENALTY: " << lambda_f_penalty << endl; //COMPUTE OFFSET FOR FISHERY AGE MULTINOMIAL for (i=1; i <= nobs fish; i++) //CHECK FOR FISHERY AGE DATA IN YEAR i, -99 = MISSING DATA if (obs p fish(i,1) ≥ 0.0) obs_p_fish(i)=obs_p_fish(i)/sum(obs_p_fish(i)); for (int j=1; $j \le nages$; j++) if (obs_p_fish(i,j)>0.0) { offset(1)=nsamples_fish(i)*obs_p_fish(i,j)*log(obs_p_fish(i,j)); } } } //cout << "FISHERY PROPORTION AT AGE DATA" << endl; //cout << obs_p_fish << endl;</pre> //COMPUTE OFFSET FOR AUTUMN SURVEY AGE MULTINOMIAL for (i=1; i <= nobs_FALL; i++) //CHECK FOR AGE DATA IN YEAR i, -99 = MISSING DATA

```
if (obs_p_FALL(i,1) \ge 0.0)
     obs_p_FALL(i)=obs_p_FALL(i)/sum(obs_p_FALL(i));
    for (int j=1; j \le nages; j++)
      if (obs_p_FALL(i,j)>0.0)
       {
       offset(2)=nsamples_FALL*obs_p_FALL(i,j)*log(obs_p_FALL(i,j));
       }
     }
    }
 //cout << "FALL SURVEY PROPORTION AT AGE DATA" << endl;
 //cout << obs_p_FALL << endl;</pre>
 //COMPUTE OFFSET FOR SPRING SURVEY AGE MULTINOMIAL
   for (i=1; i <= nobs_SPR; i++)
    //CHECK FOR AGE DATA IN YEAR i, -99 = MISSING DATA
    if (obs_p_SPR(i,1) >= 0.0)
     obs_p_SPR(i)=obs_p_SPR(i)/sum(obs_p_SPR(i));
    for (int j=1; j \le nages; j++)
      if (obs_p_SPR(i,j)>0.0)
       offset(3)-=nsamples_SPR*obs_p_SPR(i,j)*log(obs_p_SPR(i,j));
       }
     }
    3
 //cout << "SPRING SURVEY PROPORTION AT AGE DATA" << endl;
 //cout << obs p SPR << endl;</pre>
TOP OF MAIN SECTION
//ALLOCATE SPACE IN READ-WRITE MEMORY
 arrmblsize=2000000:
 gradient structure::set GRADSTACK BUFFER SIZE(2000000);
 gradient_structure::set_CMPDIF_BUFFER_SIZE(6000000);
PROCEDURE SECTION
//DO THE FUNCTION CALLS IN SEQUENCE
 get_selectivity();
 get_mortality();
 survival=mfexp(-1.0* M);
 get_numbers_at_age();
 get catch at age();
 evaluate_the_objective_function();
FUNCTION get_selectivity
//FISHERY SELECTIVITY ESTIMATION FOR AGES 1 TO NSELAGES FISH
 //SET AVERAGE TO 1 AND THEN RESCALE SO MAX VALUE=1
 for (int j=1;j<=nselages_fish;j++)
  log_sel_fish(j)=log_selcoffs_fish(j);
 for (j=nselages_fish+1;j<=nages;j++)
  log sel fish(j)=log sel fish(j-1);
 avgsel_fish=log(mean(mfexp(log_selcoffs_fish)));
 log_sel_fish-=log(mean(exp(log_sel_fish)));
 sel=mfexp(log sel fish);
 sel/=max(sel);
 //cout<<"FISHERY SELECTIVITY"<<endl;
 //cout<<sel<<endl;
 //cout<<"MAXIMUM VALUE: "<<max(sel)<<endl;
```

//AUTUMN SURVEY SELECTIVITY ESTIMATION VIA THOMPSON MODEL beta_FALL=mfexp(log_beta_FALL);

```
gamma_FALL=mfexp(log_gamma_FALL);
a50_FALL=mfexp(log_a50_FALL);
for (j=1; j \le nages; j++)
 sel_FALL(j)=(1./(1.-gamma_FALL))*pow((1.-gamma_FALL)/gamma_FALL,
        gamma FALL)*(exp(beta FALL*gamma FALL*(a50 FALL-
        double(j)))/(1+exp(beta_FALL*(a50_FALL-double(j)))));
sel_FALL/=max(sel_FALL);
//cout<<"FALL SURVEY SELECTIVITY"<<endl;
//cout<<sel FALL<<endl;
//cout<<"MAXIMUM VALUE: "<<max(sel FALL)<<endl;
//SPRING SURVEY SELECTIVITY ESTIMATION VIA THOMPSON MODEL
beta_SPR=mfexp(log_beta_SPR);
gamma_SPR=mfexp(log_gamma_SPR);
a50_SPR=mfexp(log_a50_SPR);
for (j=1; j \le nages; j++)
  {
  sel SPR(j)=(1./(1.-gamma SPR))*pow((1.-gamma SPR)/gamma SPR,
        gamma_SPR)*(exp(beta_SPR*gamma_SPR*(a50_SPR-
        double(j)))/(1+exp(beta_SPR*(a50_SPR-double(j)))));
sel SPR/=max(sel SPR);
//cout<<"SPRING SURVEY SELECTIVITY"<<endl;
//cout<<sel SPR<<endl;
//cout<<"MAXIMUM VALUE: "<<max(sel SPR)<<endl;
//cout << "END OF GET SELECTIVITY" << endl;
FUNCTION get_mortality
//COMPUTE TOTAL MORTALITY BY YEAR AND AGE
//COMPUTE FISHING MORTALITY MATRIX
for (int i=styr;i<=endyr;i++)
 for (int j=1;j<=nages;j++)
    F(i,j)=sel(j)*mfexp(log_avg_fmort + fmort_dev(i));
   }
  }
//COMPUTE TOTAL MORTALITY MATRIX
 Z=F+M;
//COMPUTE SURVIVAL MATRIX
 S=mfexp(-1.0*Z);
//cout << "END OF GET MORTALITY" << endl;</pre>
FUNCTION get_numbers_at_age
//COMPUTE NUMBERS AT AGE MATRIX
int itmp;
//COMPUTE NUMBERS AT AGE IN INITIAL YEAR
for (int j=1;j<nages;j++)
  {
   itmp=styr+1-j;
  natage(styr,j)=mfexp(mean log rec-M*double(j-1)+rec dev(itmp));
  natage(styr,nages)=mfexp(mean_log_rec-M*(nages-1))/
           (1. - survival);
//COMPUTE RECRUITMENT IN SUBSEQUENT YEARS
for (int i=styr+1;i<=endyr;i++)
```

```
{
```

```
natage(i,1)=mfexp(mean_log_rec+rec_dev(i));
  }
//COMPUTE NUMBERS AT AGES 2 TO PLUS-GROUP VIA FORWARD PROJECTION
for (i=styr;i< endyr;i++)
   for (j=2;j<=nages;j++)
    ł
    natage(i+1)(j)=natage(i)(j-1)*S(i)(j-1);
   natage(i+1,nages)+=natage(i,nages)*S(i,nages);
  }
//COMPUTE VARIABLES DERIVED FROM NUMBERS AT AGE MATRIX
for (i=styr;i<=endyr;i++)
  {
  //COMPUTE PREDICTED FALL SURVEY INDEX AND AGE COMPOSITION
  natage_FALL=elem_prod(natage(i),mfexp(-zfrac_FALL*Z(i)));
  totn FALL(i)=(natage FALL*sel FALL);
  pred_FALL(i)=qFALL*pow((natage_FALL*elem_prod(sel_FALL,wt)),exp_FALL);
  pred_p_FALL(i)=elem_prod(sel_FALL,natage_FALL)/totn_FALL(i);
  //COMPUTE PREDICTED SPRING SURVEY INDEX AND AGE COMPOSITION
  natage_SPR=elem_prod(natage(i),mfexp(-zfrac_SPR*Z(i)));
  totn_SPR(i)=(natage_SPR*sel_SPR);
  pred SPR(i)=qSPR*pow((natage SPR*elem prod(sel SPR,wt)),exp SPR);
  pred_p_SPR(i)=elem_prod(sel_SPR,natage_SPR)/totn_SPR(i);
  //COMPUTE POPULATION AND SPAWNING AND EXPLOITABLE BIOMASS
  popnbiom(i)=natage(i)*wt;
  natage_spawn=elem_prod(natage(i),mfexp(-zfrac_spawn*Z(i)));
  spawnbiom(i)=natage_spawn*elem_prod(maturity,wt);
  explbiom(i)=natage(i)*elem prod(sel,wt);
  //COMPUTE RECRUITMENT
  recruitment(i)=mfexp(mean_log_rec+rec_dev(i));
  }
  //COMPUTE ANNUAL SURPLUS PRODUCTION
  for (i=styr;i<endyr;i++)
   surplus_production(i)=explbiom(i+1)-explbiom(i)+catch_bio(i);
   }
  //COMPUTE DEPLETION RATIOS FOR POPULATION AND SPAWNING BIOMASS
  depletion popnbiom=popnbiom(endyr)/popnbiom(styr);
  depspawn=spawnbiom(endyr)/spawnbiom(styr);
  deppopnbiom82=popnbiom(endyr)/popnbiom(1982);
  depspawn82=spawnbiom(endyr)/spawnbiom(1982);
  //COMPUTE POPULATION AND SPAWNING BIOMASS IN ENDING YEAR
  endbiom=popnbiom(endyr);
  endspawn=spawnbiom(endyr);
  //COMPUTE F AND NUMBERS AT AGE IN ENDING YEAR
  endF=mfexp(log_avg_fmort+fmort_dev(endyr));
  endN=natage(endyr);
//cout << "END OF GET NUMBERS AT AGE" << endl;
FUNCTION get_catch_at_age
//COMPUTE CATCH NUMBERS BY YEAR AND AGE
for (int i=styr; i<=endyr; i++)
 ł
```

```
pred_catch(i)=0.;
  //APPLY THE CATCH EQUATION
  for (int j = 1; j \le nages; j++)
   Ł
   catage(i,j) = natage(i,j)*F(i,j)*(1.-S(i,j))/Z(i,j);
   //COMPUTE PREDICTED CATCH BIOMASS
   pred_catch(i)+=catage(i,j)*wt(j);
   }
   //COMPUTE PREDICTED FISHERY AGE COMPOSITION
   pred_p_fish(i)=catage(i)/sum(catage(i));
 //cout << "END OF GET CATCH AT AGE" << endl;
FUNCTION evaluate_the_objective_function
//COMPUTE THE MODEL LIKELIHOOD (f)
 f=.0;
 //DO THIS WHEN RECRUITMENT DEVIATIONS ARE ESTIMATED (PHASE>2)
 if (active(rec_dev))
  age_like=0.;
  int ii;
  //COMPUTE RECRUITMENT LIKELIHOOD COMPONENT
  rec like=norm2(rec dev);
  f+=lambda_recruitment*rec_like;
  //COMPUTE AGE COMPOSITION LIKELIHOODS
  //FISHERY COMPONENT
  for (int i=1; i <= nobs fish; i++)
   ii=yrs_fish(i);
   for (int j=1; j<=nages; j++)
    -{
    if (obs_p_fish(i,1) \ge 0.0)
   age_like(1)-=nsamples_fish(i)*obs_p_fish(i,j)*log(pred_p_fish(ii,j)+1.e-13); //cout << "FISHERY AGE: "<<age_like(1) << " " << i << " " <<j< endl;
    }
   }
   age_like(1)-=offset(1);
   age like(1)*=lambda fishery age;
  //AUTUMN SURVEY COMPONENT
  for (i=1; i <= nobs FALL; i++)
   ii=yrs_FALL(i);
   for (int j=1; j<=nages; j++)
    if (obs_p_FALL(i,1) >= 0.0)
     age_like(2)-=nsamples_FALL*obs_p_FALL(i,j)*log(pred_p_FALL(ii,j)+1.e-13);
   /\!/cout << "FALL SURVEY AGE: " << age_like(2) << " " << i << " " << j << endl;
    }
   }
   age_like(2)=offset(2);
   age like(2)*=lambda FALL age;
  //SPRING SURVEY COMPONENT
  for (i=1; i \leq nobs_SPR; i++)
   3
   ii=yrs SPR(i);
   for (int j=1; j<=nages; j++)
    {
```

```
if (obs_p_SPR(i,1) >= 0.0)
    age_like(3)=nsamples_SPR*obs_p_SPR(i,j)*log(pred_p_SPR(ii,j)+1.e-13);
//cout << "SPRING SURVEY AGE: "<< age_like(3) << " " << i << " " << j << endl;
}
age_like(3)=offset(3);
age_like(3)=lambda_SPR_age;
f+=sum(age_like);</pre>
```

}

//COMPUTE AUTUMN SURVEY INDEX LIKELIHOOD (LOGNORMAL)
FALL_like=norm2(log(obs_FALL+0.001)-log(pred_FALL(yrs_FALL)+0.001));
FALL_like*=0.5*double(size_count(obs_FALL));
f+=lambda_biomass_index_FALL*FALL_like;

//COMPUTE ROOT MEAN SQUARED ERROR FOR FALL SURVEY INDEX FIT
rmse_FALL=norm(log(obs_FALL+0.001)-log(pred_FALL(yrs_FALL)+0.001));
rmse_FALL*=1.0/sqrt(double(size_count(obs_FALL))));

//COMPUTE SPRING SURVEY INDEX LIKELIHOOD (LOGNORMAL) SPR_like=norm2(log(obs_SPR+0.001)-log(pred_SPR(yrs_SPR)+0.001)); SPR_like*=0.5*double(size_count(obs_SPR)); f+=lambda_biomass_index_SPR*SPR_like;

//COMPUTE ROOT MEAN SQUARED ERROR FOR SPRING SURVEY INDEX FIT
rmse_SPR=norm(log(obs_SPR+0.001)-log(pred_SPR(yrs_SPR)+0.001));
rmse_SPR*=1.0/sqrt(double(size_count(obs_SPR)));

//COMPUTE CATCH BIOMASS LIKELIHOOD
catch_like=norm2(log(catch_bio+0.000001)-log(pred_catch+0.000001));
catch_like*=0.5*double(size_count(catch_bio));
f+=lambda_catch_biomass*catch_like;

//COMPUTE ROOT MEAN SQUARED ERROR FOR CATCH BIOMASS FIT rmse_catch_bio=norm(log(catch_bio+0.000001)-log(pred_catch+0.000001)); rmse_catch_bio*=1.0/sqrt(double(size_count(catch_bio)));

//COMPUTE SELECTIVITY LIKELIHOODS
//FISHERY COMPONENT
sel_like(1)=norm2(first_difference(first_difference(log_sel_fish)));
f+=lambda_fishery_sel*square(avgsel_fish);

//SURVEY COMPONENTS (PLACEHOLDERS FOR FUTURE USE)
sel_like(2)=0.;
sel_like(3)=0.;
sel_like(4)=0.;

f+=lambda_fishery_sel*sel_like(1);

```
//COMPUTE F PENALTY LIKELIHOOD CONSTRAINT
//HIGH PENALTY IF ESTIMATION PHASE < 3
//LOW PENALTY IF ESTIMATION PHASE >= 3
if (current_phase()<3)
{</pre>
```

```
fpen=10.*norm2(mfexp(fmort_dev+log_avg_fmort)-.1);
}
else
{
fpen=0.001*norm2(mfexp(fmort_dev+log_avg_fmort)-.1);
}
if (active(fmort_dev))
{
fpen+=norm2(fmort_dev);
```

f+=lambda f penalty*fpen;

REPORT_SECTION //OUTPUT RESULTS TO FILE "WIN.REP"

report << "Winter Flounder Age-structured Model WIN" << endl;

report << "Estimated Numbers (000s) of Fish at Age (year,age)" << endl; report << natage << endl; report << "Estimated Fishing Mortality (year,age)" << endl; report << F << endl;

report << "Observed FALL SURVEY Biomass Index (year)" << endl; report << yrs_FALL << endl; report << obs_FALL << endl; report << "Predicted FALL SURVEY Biomass Index (year)" << endl; report << pred_FALL << endl; report << "Residuals for FALL SURVEY Biomass Index (year)" << endl; report << obs_FALL - pred_FALL(yrs_FALL) << endl;

report << "Observed SPRING SURVEY Biomass Index (year)" << endl; report << yrs_SPR << endl; report << obs_SPR << endl; report << "Predicted SPRING SURVEY Biomass Index (year)" << endl; report << pred_SPR << endl; report << "Residuals for SPRING SURVEY Biomass Index (year)" << endl; report << obs_SPR - pred_SPR(yrs_SPR) << endl;

report << "Fishery age composition effective sample size (year)" << endl; report << yrs_fish << endl; report << nsamples_fish << endl;</pre>

```
report << "Observed Fishery Proportion at Age (year,age)" << endl;
report << obs_p_fish << endl;
report << "Predicted Fishery Proportion at Age (year,age)" << endl;
report << pred_p_fish << endl;
```

```
report << "Observed FALL SURVEY Proportion at Age (year,age)" << endl;
report << obs_p_FALL<< endl;
report << "Predicted FALL SURVEY Proportion at Age (year,age)" << endl;
report << pred_p_FALL<< endl;
```

```
report << "Observed SPRING SURVEY Proportion at Age (year,age)" << endl;
report << obs_p_SPR<< endl;
report << "Predicted SPRING SURVEY Proportion at Age (year,age)" << endl;
report << pred p SPR<< endl;
```

report << "Population Biomass (mt) by Year"<< endl; report << years << endl; report << population Biomass in 2000" << endl; report << "Population Biomass in 2000" << endl; report << endbiom << endl; report << "Depletion ratio in 2000 for population biomass" << endl; report << depletion_popnbiom << endl; report << "Depletion ratio in 2000 relative to 1982 population biomass" << endl; report << deppopnbiom82 << endl;

report << "Spawning Biomass (mt) by Year" << endl; report << years << endl; report << spawnbiom << endl; report << "Spawning Biomass in 2000" << endl; report << endspawn << endl; report << "Depletion ratio in 2000 for spawning biomass" << endl; report << depspawn << endl; report << "Depletion ratio in 2000 relative to 1982 spawning biomass" << endl;

report << depspawn82 << endl;

report << "Exploitable Biomass (mt) by Year"<< endl; report << years << endl; report << explbiom << endl; report << "Population numbers at age (thousands) in 2000" << endl; report << ages << endl; report << endN << endl; report << "Mean Recruitment (thousands of age-1 recruits)" << endl; report << mfexp(mean_log_rec) << endl; report << "Recruitment (thousands of age-1 recruits) by Year" << endl; report << rec years << endl; report << mfexp(mean log rec+rec dev) << endl; report << "Observed Catch Biomass (mt) by Year" << endl; report << years << endl; report << catch bio << endl; report << "Predicted Catch Biomass (mt) by Year" << endl; report << pred catch << endl; report << "Residuals for Catch Biomass (year)" << endl; report << catch_bio - pred_catch << endl; report << "Annual Surplus Production (mt)" << endl; report << years << endl; report << surplus_production << endl; report << "Estimated Average Annual Fishing Mortality by Year" << endl; report << years << endl; report << mfexp(log_avg_fmort+fmort_dev) << endl; report << "Fishing Mortality in 2000" << endl; report << endF << endl; report << "Fishery Selectivity by Age" << endl; report << ages << endl; report << sel << endl; report << "FALL SURVEY Selectivity by Age" << endl; report << ages << endl; report << sel_FALL << endl; report << "SPRING SURVEY Selectivity by Age" << endl; report << ages << endl; report << sel_SPR << endl; report << "OBJECTIVE FUNCTION VALUE: " << f << endl; report << "LIKELIHOOD EMPHASIS FACTORS" << endl; report<< "RECRUITMENT::FISHERY AGE::FALL SURVEY AGE::SPRING SURVEY AGE::F PENALTY"<<endl; report << lambda_recruitment<<" "<< lambda_fishery_age<< " "<< lambda_FALL_age<<" "<< lambda_SPR_age<<' "<<lambda f penalty<<endl; report<< "FISHERY SELECTIVITY::CATCH BIOMASS::FALL SURVEY INDEX::SPRING SURVEY INDEX"<<endl; report << lambda_fishery_sel<<" "<<lambda_catch_biomass<<" "<<lambda_biomass_index_FALL<<" "<< lambda biomass index SPR<< endl; report << "LIKELIHOOD COMPONENTS" << endl; report<< "RECRUITMENT::FISHERY AGE::FALL SURVEY AGE::SPRING SURVEY AGE::F PENALTY"<<endl; report << rec_like<<" "<< age_like<< " "<<fpen<<endl; report<< "FISHERY SELECTIVITY::CATCH BIOMASS::FALL SURVEY INDEX::SPRING SURVEY INDEX"<<endl; report << sel_like(1)+square(avgsel_fish)<<" "<<catch_like<<" "<<FALL_like<<" "<<SPR_like<<endl; report << "ROOT MEAN SQUARE ERRORS" << endl;

report << "CATCH BIOMASS: " << rmse_catch_bio << endl; report << "FALL SURVEY INDEX: " << rmse_FALL << endl; report << "SPRING SURVEY INDEX: " << rmse_SPR << endl; //END OF MODEL

Input Data File

# Styr end 1964 2000 # Number	lyr) : of age clas	ses										
7												
# Number	of age clas	ses for sele	ectivity estir	nation								
6	. 100	4 2000	27									
# Catch bi	iomass: 196	4 to 2000, 1	1=37	1000	2510	2716	4102	4510	2076	2210	2027	1002
1517	168/	2197	2349	1999	2518	2/16	4183	4512	2976	2218	2937	1893
	3594	3250	3064	3975	4012	2980	3908	3931	2103	1/8/	2009	2859
# Number	years of fis	shery age d	ata 1982-20	1849	1085	912	/00	1550	1450	1555	1042	1639
19 # W	C C 1	1.4										
# Years 0	1 age fisher	y data	1095	1096	1007	1000	1020	1000	1001	1002	1002	1004
1962	1905	1904	1965	1980	1907	2000	1909	1990	1991	1992	1995	1994
# Number	of age sam	nles in fish	erv (nsamn	les fish)	1)))	2000						
200 200 2	00 200 200	200 200 2	00 200 200	200 100 10	0 100 100	100 50 50 1	00					
# Fishery	age compos	sition data	1234567	7+								
0.00000	0.08486	0.41064	0.25206	0.12279	0.06206	0.06759						
0.00157	0.12224	0.45068	0.22582	0.08562	0.03200	0.08208						
0.00000	0.05432	0.10992	0.26437	0.27156	0.12245	0.17738						
0.00647	0.26544	0.22862	0.26775	0.16188	0.03678	0.03306						
0.00000	0.24850	0.49630	0.08792	0.08545	0.04886	0.03297						
0.00000	0.30680	0.39872	0.21318	0.03159	0.02101	0.02870						
0.00000	0.17289	0.57407	0.17440	0.04079	0.01854	0.01931						
0.00000	0.40298	0.35663	0.14864	0.04296	0.03114	0.01766						
0.00000	0.09098	0.62677	0.20613	0.05692	0.01404	0.00515						
0.00000	0.19447	0.41678	0.31196	0.04457	0.01240	0.01982						
0.00000	0.27448	0.26059	0.25070	0.16133	0.03178	0.02113						
0.01507	0.12209	0.46449	0.18316	0.12986	0.06627	0.01906						
0.00000	0.34688	0.37904	0.16016	0.04382	0.03691	0.03320						
0.17432	0.44893	0.17637	0.12455	0.04998	0.01249	0.01335						
0.00000	0.39007	0.30046	0.12727	0.08299	0.05508	0.04412						
0.00000	0.20124	0.46752	0.24724	0.05527	0.01459	0.01413						
0.00359	0.04938	0.62445	0.27636	0.03345	0.00860	0.00418						
0.016/8	0.31642	0.429//	0.14492	0.0/181	0.01608	0.00423						
0.00000	0.16969	0.44941	0.1662/	0.10002	0.07469	0.03991						
# Number	of years of	FALL SU	RVEY data	1964-2000								
3/ # V	CEALL OIL											
# Y ears 0.	1065	1066 KVEY dala	1067	1069	1060	1070	1071	1072	1072	1074	1075	1076
1904	1903	1900	1907	1908	1909	1970	19/1	1972	19/5	19/4	1975	19/0
	19//	1970	19/9	1980	1901	1962	1965	1904	1965	1960	1907	2000
# Fraction	of 7 Prior	to FALL S	URVEV (fr	action of ve	1995 ar)	1994	1995	1990	1997	1990	1999	2000
# Plaction		IO FALL 5		action of ye	<i>a</i> ()							
# Untrans	formed FA	LI SURVE	V hiomass	index								
1 822	2.05	5 655	2 074	1.072	2 385	6 4 9	1 259	1.58	1 195	1 464	2 061	3 9 2 5
1.022	3 992	3.000	3 829	1.865	2.505	2 692	2 363	2 445	1 1 1 9	2 178	0.889	1 273
	1.051	0.346	0.136	0.384	0.663	0.578	1.337	1.756	1.534	1.565	2.641	2.66
# Number	of age sam	ples in FA	LL SURVE	Y (nsample	s FALL)	0.070	1.007	1.,00	1.001	1.000	2.0.11	2.00
100		r		- (
# FALL S	URVEY as	ge composit	tion data									
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						

-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
0.39119	0.42743	0.08732	0.06710	0.02423	0.00273	0.00000						
0.02611	0.22086	0.42943	0.18562	0.02169	0.07220	0.04409						
0.17857	0.26801	0.24763	0.21944	0.06231	0.01591	0.00813						
0.17298	0.53288	0.22308	0.04219	0.01444	0.01444	0.00000						
0 32442	0.46462	0 10849	0.06005	0.01420	0.00714	0.02107						
0.06907	0.26720	0.28637	0.15901	0.00000	0.10360	0.11476						
0 72489	0 15738	0.09565	0.00979	0.00000	0.00615	0.00615						
0.06271	0.69030	0.04701	0.09227	0.04721	0.03744	0.02305						
0.16881	0.12058	0.60812	0.00000	0 10249	0.00000	0.00000						
0 28464	0.00000	0.38702	0.32834	0.00000	0.00000	0.00000						
0.03443	0.68125	0.23156	0.01389	0.03887	0.00000	0.00000						
0.50592	0.11283	0.23130	0.14772	0.02255	0.00000	0.00000						
0.189/15	0.11203	0.18186	0.09771	0.02255	0.00000	0.00000						
0.13745	0.38301	0.15375	0.02052	0.03003	0.00000	0.00000						
0.41307	0.21067	0.15575	0.02032	0.02044	0.00000	0.00770						
0.07508	0.21907	0.40300	0.13832	0.03574	0.00070	0.04029						
0.04551	0.39093	0.33202	0.1/132	0.03303	0.01040	0.00160						
0.13932	0.14311	0.30919	0.20744	0.09400	0.01002	0.01352						
0.14000	0.30322	0.13408	0.12037	0.23342	0.03393	0.01950						
0.02297	0.21001	0.21392	0.13434	0.20023	0.09400	0.1104/						
# Number	of years of	SPRING S	OKVEY	ata 1968-20	00							
	CUDVEN											
# SPKING	10CO	years	1071	1072	1072	1074	1075	1076	1077	1079	1070	1000
1908	1909	19/0	19/1	1972	19/5	19/4	19/5	1976	19//	1978	19/9	1980
	1981	1982	1983	1984	1985	1980	1987	1988	1989	1990	1991	1992
"F (1993	1994	1995	1996	1997	1998	1999	2000				
# Fraction	of Z Prior	to SPRING	SURVEY	(fraction of	(year)							
0.25		,	1									
# SPRING	SURVEY	biomass in	dex		2 505		1 107	2 2	1 50			• • • • •
3.114	4.29	2.294	2.168	5.321	3.507	5.782	1.407	3.012	1.58	5.055	2.206	2.801
	3.749	1.523	7.111	5.604	2.65	1.214	1.247	1.648	0.757	1.573	1.319	0.898
	0.57	0.578	1.489	1.504	1.192	0.722	3.479	3.693				
# Number	of age sam	ples in SPR	AING SURV	EY (nsam	ples_SPR)							
100												
# SPRING	SURVEY	age compo	sition data									
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
-99	-99	-99	-99	-99	-99	-99						
0.0325644	5	0.3486463	378	0.1701234	409	0.263616	98	0.077340	57	0.066227	305	
0.0414809	007											
0.0031266	64	0.1220953	306	0.3728344	492	0.188206	379	0.079764	07	0.082908	08	
0.1510650)33											
0.0063632	204	0.0256376	641	0.3457253	3	0.277974	336	0.082880	076	0.098669	272	
0.1627501	72											
0.0 0.4	82292237	0.161910	0718 0.16	53787038	0.1034842	0.05	7488338	0.0310374	48			
0.1256677	/82	0.3304208	39	0.3688651	146	0.057866	094	0.079834	24	0.037345	849	0

0.057474135 0.5882269 0.208669283 0.104851944 0.032215483 0.008562255 0 0.024786325 0.183042735 0.490735043 0.232444444 0.039692308 0.01408547 0.015213675 0.037182448 0.4089299460.2057736720.173826020.1199384140.013856813 0.040492687 0.045308598 0.217909383 0.557367107 0.118444524 0.034819836 0.026150553 0 0.112447459 0.241458238 0.143410046 0.343043822 0.114528278 0.015023513 0.030088643 0.050995903 0.423788671 0.211046758 0.09824834 0.10312191 0.077270801 0.035527617 0.267957158 0.167436376 0.3264223250.151321608 0 0.045494743 0.04136779 0.097391035 0.445382055 0.316095069 0.079043121 0.027792831 0.034295889 0 0.056916482 0.299203858 0.481512669 0.112340198 0.038850188 0.011176606 0 0.029781716 0.016079533 0.526950508 0.186384266 0.211281608 0.011368057 0.018154312 0.119507799 0.070784911 0.014977317 0.332732583 0.415698216 0.014977317 0.031321857 0.559564419 0.162686959 0 0.034505379 0.0 0.030569404 0.212673839 0.057981987 0.141130401 0.160579559 0.338911369 0.231327503 0.051638167 0.018431014 0.004073781 0.230689148 0.140364377 0.256919769 0.148874052 0.138915922 0.080162951 # Weight at age 1 2 3 4 5 6 7+ 0.997 0.207 0.371 0.511 0.736 1.281 1.648 # Fraction of Z Prior to Spawning Season (fraction of year) 0.083 # Maturity at age 1 2 3 4 5 6 7+ 1.00 1.00 1.00 1.00 0.05 0.98 0.62 # Likelihood emphasis: recruitment 10.0 # Likelihood emphasis: fishery age composition 1.0 # Likelihood emphasis: FALL SURVEY age composition 1.0 # Likelihood emphasis: FALL SURVEY biomass index 10.0 # Likelihood emphasis: SPRING SURVEY age composition 1.0 # Likelihood emphasis: SPRING SURVEY biomass index 10.0 # Likelihood emphasis: catch biomass 10.0 # Likelihood emphasis: fishery selectivity 10.0 # Likelihood emphasis: F penalty

1.0

Standard Deviation Parameter File

index name	value std dev
1 mean_log_rec	8.6215e+00 1.7002e-02
2 rec_dev	-8.2050e-01 1.6275e-01
3 rec_dev	-1.2486e+00 1.3983e-01
4 rec_dev	-1.0944e+00 1.5023e-01
5 rec_dev	7.4126e-01 6.7549e-02
6 rec_dev	-8.4282e-01 1.6241e-01
7 rec_dev	-1.3451e+00 1.4344e-01
8 rec_dev	-9.8949e-01 1.5730e-01
9 rec_dev	1.0137e+00 6.1918e-02
10 rec_dev	-5.8837e-01 1.7445e-01
11 rec_dev	-2.1967e-01 1.7382e-01
12 rec_dev	-1.4790e-01 1.9466e-01
13 rec_dev	5.0998e-01 1.8554e-01
14 rec dev	7.2459e-02 2.1847e-01

15	rec_dev	1.0505e+00 1.0822e-01
16	rec dev	1.2788e-01 2.0868e-01
17	rec dev	1 0310a 02 2 0705a 01
1/	iec_uev	4.03196-02 2.07936-01
18	rec_dev	1.1865e+00 9.6898e-02
19	rec_dev	-2.2321e-01 1.9630e-01
20	100_u01	
20	rec_dev	5.1868e-01 1.2550e-01
21	rec dev	4.6350e-01 1.0412e-01
22	rec_dev	$5.0984e_{-}01.7.4753e_{-}02$
22		5.09840-01 7.47550-02
23	rec_dev	5.4443e-01 5.7669e-02
24	rec dev	8.1636e-01 4.9546e-02
25	raa_day	1 16160 01 5 87720 02
25		4.10100-01 5.87750-02
26	rec_dev	-4.3253e-01 7.1735e-02
27	rec dev	2 1871e-01 4 9439e-02
20		1 5(14-01 5 2479-02
28	rec_dev	1.3014e-01 5.24/8e-02
29	rec dev	3.2470e-01 5.1051e-02
30	rec_dev	-4.0341e-01_6.2112e-02
21		4.05410 01 0.21120 02
31	rec_dev	4.5593e-01 4.34/4e-02
32	rec dev	-3.1633e-01 5.6364e-02
33	rec_dev	-5 5266e-01 6 0753e-02
24		
34	rec_dev	-4.8512e-02 4./8/1e-02
35	rec dev	-5.6973e-01 6.3774e-02
36	rec dev	2 3163 02 1 8388 02
50	icc_ucv	-2.31030-02 4.83880-02
37	rec_dev	3.7160e-02 5.0147e-02
38	rec dev	3.3298e-01 4.5074e-02
20	raa_day	1 21842 02 5 58272 02
59	icc_ucv	1.21840-02 5.58570-02
40	rec_dev	-3.2015e-01 8.0130e-02
41	rec dev	5.4326e-01 7.4621e-02
12	roo_dov	4 46252 01 1 10272 01
42	iec_uev	4.40236-01 1.10276-01
43	rec_dev	-3.5234e-01 1.8716e-01
44	aFALL	7.8547e-01 3.8040e-02
15	log gamma E	$11 18482_{2} 01 10644_{2} 02$
43	log_gamma_r/	ALL -1.84856-01 1.00446-02
46	log_beta_FAL	L 1.2829e+00 4.4374e-02
47	log a50 FALI	$1.7234_{0}+00.70717_{0}03$
		1.12340,00 1.011/0-03
18	aSDD	3 30/5e 01 1 288/e 02
48	qSPR	3.3045e-01 1.2884e-02
48 49	qSPR log_beta_SPR	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02
48 49 50	qSPR log_beta_SPR log_a50_SPR	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02
48 49 50	qSPR log_beta_SPR log_a50_SPR	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 6.4774e 01 4.0836e 02
48 49 50 51	qSPR log_beta_SPR log_a50_SPR log_avg_fmort	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02
48 49 50 51 52	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02
48 49 50 51 52 53	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02
48 49 50 51 52 53 54	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 7.6300e.01 6.2047e.02
48 49 50 51 52 53 54	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02
48 49 50 51 52 53 54 55	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02
48 49 50 51 52 53 54 55 56	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02
48 49 50 51 52 53 54 55 56 57	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02
48 49 50 51 52 53 54 55 56 57	aspr log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02
48 49 50 51 52 53 54 55 56 57 58	qSPR log_beta_SPR log_as0_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02
48 49 50 51 52 53 54 55 56 57 58 59	qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02
48 49 50 51 52 53 54 55 56 57 58 59 60	aspr log_beta_SPR log_aso_SPR log_asy_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02
48 49 50 51 52 53 54 55 56 57 58 59 60	aspr log_beta_SPR log_a50_SPR log_asp_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61	dSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62	agSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.44164e-01 5.6960e-02 -4.1164e-01 5.6296e-02 -5.1091e-01 6.3228e-02 -3.0238e-02 5.9496e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	aspanning and aspanning as	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 -3.0238e-02 5.7395e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	aspanning and approximately ap	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.7326e-02 5.795e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	agSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.440e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.7395e-02 -4.9396e-01 5.9352e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	aspanning and aspanning as	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 -3.0238e-02 5.9496e-02 3.7326e-02 5.9496e-02 3.7326e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66	agSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67	Is_as	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.4794e-01 5.6960e-02 2.7401e-01 5.6296e-02 4.1164e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ \end{array}$	aspanning and aspanning as	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.7395e-02 -3.0238e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2996e-01 5.4272e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68	aspanning and aspanning as	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 3.7326e-02 5.795e-02 -3.0238e-02 5.9496e-02 3.7326e-02 5.7352e-02 -1.2949e-01 5.9352e-02 -1.2949e-01 5.4272e-02 1.3864e-01 4.9948e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69	agSPR log_beta_SPR log_a50_SPR log_a50_SPR log_avg_fmort fmort_dev	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.4794e-01 5.0960e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 -3.0238e-02 5.7395e-02 -3.0238e-02 5.7395e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.3864e-01 4.9948e-02 1 4.762e-01 4.7535e-02
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 97	aspanning and aspanning as	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4272e-02 1.3864e-01 4.9948e-02 1.4762e-01 4.7535e-02
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ \end{array}$	aspanning and aspanning as	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 3.7326e-02 5.7395e-02 -4.3936e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.2946e-01 4.9948e-02 1.4762e-01 4.7535e-02 -2.1702e-01 4.8527e-02
$\begin{array}{r} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ \end{array}$	agSPR log_beta_SPR log_a50_SPR log_a50_SPR log_avg_fmort fmort_dev	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.474e-01 5.0960e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.9496e-02 3.7326e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.3864e-01 4.9948e-02 1.4762e-01 4.7535e-02 -2.1702e-01 4.8527e-02 3.4252e-02 4.8676e-02
$\begin{array}{r} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\end{array}$	Isas1 isas1 isas1 isas1 isas1 isas1 isass PR log_ass PR log_ass PR log_avg_fmort fmort_dev fmort_d	$\begin{array}{c} 3.3045e-01 \ 1.2884e-02\\ 9.6575e-01 \ 5.9038e-02\\ 7.0653e-01 \ 2.6172e-02\\ -6.4774e-01 \ 4.0836e-02\\ -1.3730e+00 \ 6.4691e-02\\ -1.2356e+00 \ 5.9459e-02\\ -7.6300e-01 \ 6.2047e-02\\ -3.7726e-01 \ 6.8532e-02\\ -7.5135e-01 \ 5.7105e-02\\ -3.7726e-01 \ 6.8532e-02\\ -7.5135e-01 \ 5.77105e-02\\ -6.3439e-01 \ 5.2751e-02\\ -4.1164e-01 \ 5.6966e-02\\ 2.7401e-01 \ 6.3205e-02\\ 5.1091e-01 \ 5.6296e-02\\ 4.1293e-01 \ 6.1328e-02\\ -3.0238e-02 \ 5.9496e-02\\ 3.7326e-02 \ 5.7395e-02\\ -4.9396e-01 \ 5.9352e-02\\ -1.2949e-01 \ 5.4191e-02\\ -1.2949e-01 \ 5.4272e-02\\ 1.3864e-01 \ 4.9948e-02\\ 1.4762e-01 \ 4.8527e-02\\ 3.4252e-02 \ 4.8676e-02\\ 6.2844e-01 \ 4.6381e-02\\ \end{array}$
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72\\ 72$	aspannent of the second	3.3045e-01 1.2834e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 -3.0238e-02 5.9496e-02 3.7326e-02 5.9496e-02 3.7326e-02 5.7395e-02 -4.13736e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.2996e-01 5.4272e-02 1.3864e-01 4.9948e-02 1.4762e-01 4.8527e-02 3.4252e-02 4.8676e-02 6.2844e-01 4.6381e-02 6.1040 6.3272e-02
$\begin{array}{r} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\end{array}$	agSPR log_beta_SPR log_ato_SPR log_ato_SPR log_ayg_fmort fmort_dev	3.3045e-01 1.284e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.9496e-02 3.7326e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.2996e-01 5.4272e-02 1.3864e-01 4.9948e-02 1.4762e-01 4.7535e-02 -2.1702e-01 4.8527e-02 3.4252e-02 4.8676e-02
$\begin{array}{r} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74 \end{array}$	IND_AUDED TO A CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CONTRACT OF T	$\begin{array}{c} 1.729 \pm 0.607 1.0007 1.$
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 75\\ \end{array}$	aspannet aspann	$\begin{array}{c} 1.729e(-00,7)(-0,7)(-0,7)(-0$
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 7\end{array}$	agSPR log_beta_SPR log_a50_SPR log_a50_SPR log_avg_fmort fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.9496e-02 3.7326e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2996e-01 5.4272e-02 1.3864e-01 4.9948e-02 1.4762e-01 4.7535e-02 -2.1702e-01 4.8527e-02 3.4252e-02 4.8676e-02 6.2844e-01 4.6381e-02 5.1043e-01 5.0950e-02 9.3698e-01 5.0950e-02 9.1643e-01 5.0950e-02 9.3698e-01 5.0950e-02 9.3698e-01 5.0950e-02 9.3698e-01 5.0950e-02 9.3698e-01 5.0950e-02 9.3698e-01 5.0950e-02 9.3698e-01 5.0950e-02
$\begin{array}{r} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 99\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\end{array}$	Iso_adso_rine qSPR log_beta_SPR log_a50_SPR log_avg_fmort fmort_dev	$\begin{array}{c} 1.729e+060 \ 7.0176e03\\ 3.3045e-01 \ 1.2884e-02\\ 9.6575e-01 \ 5.9038e-02\\ 7.0653e-01 \ 2.6172e-02\\ -6.4774e-01 \ 4.0836e-02\\ -1.3730e+00 \ 6.4691e-02\\ -1.2356e+00 \ 5.9459e-02\\ -7.6300e-01 \ 6.2047e-02\\ -3.7726e-01 \ 6.8532e-02\\ -7.5135e-01 \ 5.7105e-02\\ -6.3439e-01 \ 5.2751e-02\\ -4.1164e-01 \ 5.6966e-02\\ 2.7401e-01 \ 6.3205e-02\\ 5.1091e-01 \ 5.6296e-02\\ 4.1293e-01 \ 6.1328e-02\\ -3.0238e-02 \ 5.7395e-02\\ -4.9396e-01 \ 5.9352e-02\\ -1.2949e-01 \ 5.4191e-02\\ -1.2949e-01 \ 5.4191e-02\\ -1.2996e-01 \ 5.4272e-02\\ 1.3864e-01 \ 4.9948e-02\\ 1.4762e-01 \ 4.7535e-02\\ -2.1702e-01 \ 4.8527e-02\\ 3.4252e-02 \ 4.8676e-02\\ 6.2844e-01 \ 4.6381e-02\\ 5.1043e-01 \ 5.3372e-02\\ 1.7459e-01 \ 5.2940e-02\\ 5.9198e-01 \ 5.0505e-02\\ 8.3680e-01 \ 4.6599e-02\\ \end{array}$
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\end{array}$	IND_AUDED TO A CONTRACT OF THE CONTRACT. THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT OF THE CONTRACT. THE CON	$\begin{array}{c} 1.729e+060 \ 7.0176e+03\\ 3.3045e+01 \ 1.2884e+02\\ 9.6575e+01 \ 5.9038e+02\\ 7.0653e+01 \ 2.6172e+02\\ -6.4774e+01 \ 4.0836e+02\\ -1.3730e+00 \ 6.4691e+02\\ -1.2356e+00 \ 5.9459e+02\\ -7.6300e+01 \ 6.2047e+02\\ -3.7726e+01 \ 6.8532e+02\\ -7.5135e+01 \ 5.7105e+02\\ -3.7726e+01 \ 6.8532e+02\\ -7.5135e+01 \ 5.7105e+02\\ -3.0238e+01 \ 5.2751e+02\\ -4.1164e+01 \ 5.6966e+02\\ 3.7326e+02 \ 5.7395e+02\\ -3.0238e+02 \ 5.9496e+02\\ 3.7326e+02 \ 5.7395e+02\\ -4.9396e+01 \ 5.9352e+02\\ -1.2949e+01 \ 5.4191e+02\\ -1.2949e+01 \ 5.4272e+02\\ 1.3864e+01 \ 4.9948e+02\\ 1.4762e+01 \ 4.7535e+02\\ -2.1702e+01 \ 4.8527e+02\\ 3.4252e+02 \ 4.8676e+02\\ 6.2844e+01 \ 4.6381e+02\\ 5.1043e+01 \ 5.0372e+02\\ 5.9198e+01 \ 5.0505e+02\\ 8.3680e+01 \ 4.6599e+02\\ 7.3242e+01 \ 5.1137e+02\\ \end{array}$
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 8\end{array}$	agSPR log_beta_SPR log_a50_SPR log_a50_SPR log_avg_fmort fmort_dev	$\begin{array}{c} 1.7294e+06 & 7.017e+03\\ 3.3045e+01 & 1.2884e+02\\ 9.6575e+01 & 5.9038e+02\\ 7.0653e+01 & 2.6172e+02\\ -6.4774e+01 & 4.0836e+02\\ -1.3730e+00 & 6.4691e+02\\ -1.2356e+00 & 5.9459e+02\\ -7.6300e+01 & 6.2047e+02\\ -3.7726e+01 & 6.8532e+02\\ -7.6300e+01 & 6.2047e+02\\ -3.7726e+01 & 6.8532e+02\\ -7.5135e+01 & 5.7105e+02\\ -6.3439e+01 & 5.2751e+02\\ -4.1164e+01 & 5.6960e+02\\ 2.7401e+01 & 6.3205e+02\\ -3.0238e+02 & 5.9496e+02\\ 3.7326e+02 & 5.7395e+02\\ -4.9396e+01 & 5.9352e+02\\ -1.2996e+01 & 5.4976e+02\\ -2.1702e+01 & 4.8527e+02\\ 3.4252e+02 & 4.8676e+02\\ 6.2844e+01 & 4.6381e+02\\ 5.1043e+01 & 5.0305e+02\\ 8.3680e+01 & 4.6598e+02\\ 7.3242e+01 & 5.1137e+02\\ 9.8074e+01 & 4.7555e+02\\ -3.872e+02 & 5.1137e+02\\ 9.8074e+01 & 4.7555e+02\\ \end{array}$
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 71\\ 72\\ 73\\ 74\\ 75\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 22\\ 76\\ 77\\ 78\\ 76\\ 77\\ 78\\ 78\\ 76\\ 77\\ 78\\ 78\\ 76\\ 77\\ 78\\ 78\\ 78\\ 76\\ 77\\ 78\\ 78\\ 76\\ 77\\ 78\\ 78\\ 78\\ 76\\ 77\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78\\ 78$	agSPR log_beta_SPR log_ato_SPR log_ato_SPR log_ayg_fmort fmort_dev	3.3045e-01 1.2884e-02 9.6575e-01 5.9038e-02 7.0653e-01 2.6172e-02 -6.4774e-01 4.0836e-02 -1.3730e+00 6.4691e-02 -1.2356e+00 5.9459e-02 -7.6300e-01 6.2047e-02 -3.7726e-01 6.8532e-02 -7.5135e-01 5.7105e-02 -6.3439e-01 5.2751e-02 -4.1164e-01 5.6960e-02 2.7401e-01 6.3205e-02 5.1091e-01 5.6296e-02 4.1293e-01 6.1328e-02 -3.0238e-02 5.7395e-02 -4.9396e-01 5.9352e-02 -1.4176e-01 5.0880e-02 -1.2949e-01 5.4191e-02 -1.2949e-01 5.4191e-02 -1.2996e-01 5.4272e-02 1.3864e-01 4.9948e-02 1.4762e-01 4.7535e-02 -2.1702e-01 4.8527e-02 3.4252e-02 4.8676e-02 6.2844e-01 4.6381e-02 5.1043e-01 5.3372e-02 1.7459e-01 5.2940e-02 5.1043e-01 5.0505e-02 8.3680e-01 4.6599e-02 7.3242e-01 5.1137e-02 9.8974e-01 4.7055e-02 9.8974e-01 4.7055e-02 9.8974
$\begin{array}{c} 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 78\\ 70\\ 77\\ 78\\ 79\\ 79\\ 79\\ 79\\ 79\\ 79\\ 79\\ 79\\ 79\\ 79$	IND_AUDENT Construction of the second	$\begin{array}{c} 1.729e+060 \ 7.0176e+03\\ 3.3045e+01 \ 1.2884e+02\\ 9.6575e+01 \ 5.9038e+02\\ 7.0653e+01 \ 2.6172e+02\\ -6.4774e+01 \ 4.0836e+02\\ -1.3730e+00 \ 6.4691e+02\\ -1.2356e+00 \ 5.9459e+02\\ -7.6300e+01 \ 6.2047e+02\\ -3.7726e+01 \ 6.8532e+02\\ -7.5135e+01 \ 5.7105e+02\\ -3.0726e+01 \ 5.2751e+02\\ -4.1164e+01 \ 5.6960e+02\\ 2.7401e+01 \ 6.3205e+02\\ 5.1091e+01 \ 5.6296e+02\\ 4.1293e+01 \ 6.1328e+02\\ -3.0238e+02 \ 5.9496e+02\\ 3.7326e+02 \ 5.7395e+02\\ -4.9396e+01 \ 5.9352e+02\\ -1.2949e+01 \ 5.4191e+02\\ -1.2949e+01 \ 5.4191e+02\\ -1.2996e+01 \ 5.4272e+02\\ 1.3864e+01 \ 4.9948e+02\\ 1.4762e+01 \ 4.7535e+02\\ -2.1702e+01 \ 4.8527e+02\\ 3.4252e+02 \ 4.8676e+02\\ 6.2844e+01 \ 4.6381e+02\\ 5.1043e+01 \ 5.0372e+02\\ 5.9198e+01 \ 5.0505e+02\\ 8.3680e+01 \ 4.6599e+02\\ 7.3242e+01 \ 5.1137e+02\\ 9.8974e+01 \ 4.6675e+02\\ \end{array}$

fmort_dev	8.0826e-01 4.7569e-02
fmort dev	2.9701e-01 5.4910e-02
fmort dev	-2.9966e-01 5.6301e-02
fmort_dev	6.5725e-02 5.5130e-02
fmort_dev	-9 7817e-02 5 6121e-02
fmort_dev	-5.2763e-01 5.2924e-02
fmort_dev	$9.0487_{0}.01 = 5.2704_{0}.02$
fmort_dev	-9.04876-01 $5.37946-02$
	-4.94436-01 3.98066-02
log_selcons_	$_{11sn} -3.7076e+00 2.5569e-01$
log_selcoffs_	$_{10}^{\text{tish}} -1.0016e+00 \ 2.2794e-01$
log_selcoffs_	_fish 2.7917e-01 2.2589e-01
log_selcoffs_	_fish 5.7593e-01 2.2597e-01
log_selcoffs_	_fish 4.1973e-01 2.2705e-01
log selcoffs	fish -1.4280e-02 2.3325e-01
spawnbiom	2.1676e+04 4.8604e+02
spawnbiom	1.8943e+04 4.9879e+02
spawnbiom	1.6296e+04.4.8540e+02
spawnbiom	1.5627e+04 5.0103e+02
spawnbiom	1.50276+04 5.01056+02 1.4772e+04 5.3400e+02
spawnoiom	1.47720+04-5.54000+02
spawnbiom	1.34336+04 5.23126+02
spawnbiom	1.2154e+04 5.2700e+02
spawnbiom	1.1504e+04 4.2093e+02
spawnbiom	9.8498e+03 3.6567e+02
spawnbiom	9.1607e+03 2.9671e+02
spawnbiom	9.0487e+03 3.1476e+02
spawnbiom	8.8685e+03 3.4346e+02
spawnbiom	1.0359e+04 3.3947e+02
spawnbiom	1.2052e+04 3.8969e+02
spawnbiom	1.1878e+04 3.8176e+02
snawnhiom	1 1649e+04 3 8238e+02
spawnbiom	$1.1630e+04 \ 3.7208e+02$
spawnbiom	1.1050e+04 = 3.7208e+02 1 1150e+04 = 3.6302e+02
spawnbiom	1.11500+04 $3.03920+02$
spawnbiom	1.12110+04 3.39880+02
spawnbiom	1.1936e+04 3.39/1e+02
spawnbiom	1.015/e+04 3.0/9/e+02
spawnbiom	6.9190e+03 2.3348e+02
spawnbiom	6.0976e+03 2.1309e+02
spawnbiom	6.3685e+03 1.9874e+02
spawnbiom	5.1865e+03 1.6603e+02
spawnbiom	4.3905e+03 1.2716e+02
spawnbiom	4.0780e+03 1.1806e+02
spawnbiom	2.7955e+03 8.4724e+01
spawnbiom	2 4671e+03 6 8815e+01
snawnhiom	25001e+03 6 9560e+01
spawnbiom	$2.50010+05 \ 0.550000+01$ $2.6058e+03 \ 7.2263e+01$
spawnbiom	2.09580+05-7.22050+01
spawnbiom	5.08558+05 9.05718+01
spawnpiom	
spunnerenn .	5.2631e+03 1.3767e+02
spawnbiom	5.9912e+03 1.7974e+02 5.9912e+03 1.7974e+02
spawnbiom spawnbiom	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02
spawnbiom spawnbiom spawnbiom	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02
spawnbiom spawnbiom spawnbiom spawnbiom	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7869e+03 4.116e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.66%e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3/6/e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.668e+03 5.0669e+03 1.2215+102
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5267e+04 6.220e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5867e+04 1.6339e+03
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5867e+04 1.6339e+03 6.3068e+03 1.3394e+03
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5867e+04 1.6339e+03 6.3068e+03 1.3394e+03 5.7781e+03 1.2133e+03
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5867e+04 1.6339e+03 6.3068e+03 1.2133e+03 1.8179e+04 1.6815e+03
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5867e+04 1.6339e+03 6.3068e+03 1.2132e+03 1.8179e+04 1.6815e+03 4.4395e+03 8.8476e+02
spawnbiom spawnbiom spawnbiom spawnbiom recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment recruitment	5.2631e+03 1.3767e+02 5.9912e+03 1.7974e+02 6.2764e+03 2.1396e+02 7.7520e+03 2.6217e+02 9.8740e+03 3.7012e+02 1.4459e+03 2.1202e+02 2.0632e+03 3.3071e+02 1.5293e+04 9.0035e+02 3.0814e+03 5.4537e+02 4.4552e+03 7.8581e+02 4.7868e+03 9.4116e+02 9.2418e+03 1.6688e+03 5.9668e+03 1.3215e+03 1.5867e+04 1.6339e+03 6.3068e+03 1.3394e+03 5.7781e+03 1.2133e+03 1.8179e+04 1.6815e+03 4.4395e+03 8.8476e+02 9.3225e+03 1.1728e+03
	Imort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev fmort_dev log_selcoffs log_selcoffs log_selcoffs log_selcoffs log_selcoffs log_selcoffs log_selcoffs spawnbiom

147	recruitment	9.2405e+03 6.8942e+02
148	recruitment	9.5657e+03 5.4987e+02
149	recruitment	1.2555e+04 6.0146e+02
150	recruitment	8.4142e+03 4.9152e+02
151	recruitment	3.6011e+03 2.5964e+02
152	recruitment	6.9065e+03 3.3611e+02
153	recruitment	6.4876e+03 3.3295e+02
154	recruitment	7.6788e+03 3.7497e+02
155	recruitment	3.7074e+03 2.2646e+02
156	recruitment	8.7556e+03 3.5621e+02
157	recruitment	4.0448e+03 2.2319e+02
158	recruitment	3.1934e+03 1.9114e+02
159	recruitment	5.2870e+03 2.4584e+02
160	recruitment	3.1394e+03 2.0001e+02
161	recruitment	5.4227e+03 2.5661e+02
162	recruitment	5.7599e+03 2.8643e+02
163	recruitment	7.7426e+03 3.4616e+02
164	recruitment	5.6178e+03 3.1303e+02
165	recruitment	4.0294e+03 3.2557e+02
166	recruitment	9.5546e+03 7.2283e+02
167	recruitment	8.6711e+03 9.7608e+02
168	recruitment	3.9017e+03 7.4857e+02
169	endbiom	1.2042e+04 4.7784e+02
170	depletion_pop	onbiom 5.2754e-01 1.7868e-02
171	endspawn	9.8740e+03 3.7012e+02
172	depspawn	4.5552e-01 1.4254e-02
173	deppopnbiom	82 8.1339e-01 3.0019e-02
174	depspawn82	8.8073e-01 2.9353e-02
175	endN	3.9017e+03 7.4857e+02
176	endN	7.0786e+03 7.9681e+02
177	endN	6.1046e+03 4.6207e+02
178	endN	1.7612e+03 1.4514e+02
179	endN	1.4610e+03 9.3273e+01
180	endN	1.0872e+03 6.9742e+01
181	endN	8.1489e+02 5.9018e+01
182	endF	3.1912e-01 2.3925e-02

Research Communications Unit Northeast Fisheries Science Center National Marine Fisheries Service, NOAA 166 Water St. Woods Hole, MA 02543-1026

STANDARD MAIL A

Publications and Reports of the Northeast Fisheries Science Center

The mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "planning, developing, and managing multidisciplinary programs of basic and applied research to: 1) better understand the living marine resources (including marine mammals) of the Northwest Atlantic, and the environmental quality essential for their existence and continued productivity; and 2) describe and provide to management, industry, and the public, options for the utilization and conservation of living marine resources and maintenance of environmental quality which are consistent with national and regional goals and needs, and with international commitments." Results of NEFSC research are largely reported in primary scientific media (*e.g.*, anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Those media are in four categories:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of long-term or large area studies; synthesis reports for major resources or habitats; annual reports of assessment or monitoring programs; documentary reports of oceanographic conditions or phenomena; manuals describing field and lab techniques; literature surveys of major resource or habitat topics; findings of task forces or working groups; summary reports of scientific or technical workshops; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab observations or experiments; progress reports on continuing experiments, monitoring, and assessments; background papers for scientific or technical workshops; and simple bibliographies. Issues receive internal scientific review, but no technical or copy editing.

Fishermen's Report -- This information report is a quick-turnaround report on the distribution and relative abundance of commercial fisheries resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. There is no scientific review, nor any technical or copy editing, of this report.

The Shark Tagger -- This newsletter is an annual summary of tagging and recapture data on large pelagic sharks as derived from the NMFS's Cooperative Shark Tagging Program; it also presents information on the biology (movement, growth, reproduction, etc.) of these sharks as subsequently derived from the tagging and recapture data. There is internal scientific review, but no technical or copy editing, of this newsletter.

OBTAINING A COPY: To obtain a copy of a *NOAA Technical Memorandum NMFS-NE* or a *Northeast Fisheries Science Center Reference Document*, or to subscribe to the *Fishermen's Report* or the *The Shark Tagger*, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2228) or consult the NEFSC webpage on "Reports and Publications" (*http://www.nefsc.nmfs.gov/nefsc/publications/*).

ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.