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Appendix A. (Ocean quahog) KLAMZ Assessment Model – Technical Documentation 
 
The KLAMZ assessment model is based on the Deriso-Schnute delay-difference equation (Deriso 

1980; Schnute 1985; Quinn and Deriso 1999).  The delay-difference equation is a relatively simple and 
implicitly age structured approach to counting fish in either numerical or biomass units.  It gives the same 
results as explicitly age-structured models (e.g. Leslie matrix model) if fishery selectivity is “knife-
edged”, if somatic growth follows the von Bertalanffy equation, and if natural mortality is the same for all 
age groups in each year.  Knife-edge selectivity means that all individuals alive in the model during the 
same year experience the same fishing mortality rate.d  Natural and fishing mortality rates, growth 
parameters and recruitment may change from year to year, but delay-difference calculations assume that 
all individuals share the same mortality and growth parameters within each year.  The KLAMZ model 
includes simple numerical models (e.g. Conser 1995) as special cases because growth can be turned off so 
that all calculations are in numerical units (see below). 

 
As in many other simple models, the delay difference equation explicitly distinguishes between 

two age groups.  In KLAMZ, the two age groups are called “new“ recruits (Rt in biomass or numerical 
units at the beginning of year t) and “old” recruits (St) that together comprise the whole stock (Bt).  New 
recruits are individuals that recruited at the beginning of the current year (at nominal age k).e  Old recruits 
are all older individuals in the stock (nominal ages k+1 and older, survivors from the previous year).  As 
described above, KLAMZ assumes that new and old recruits are fully vulnerable to the fishery.  The most 
important differences between the delay-difference and other simple models (e.g. Prager 1994; Conser 
1995; Jacobson et al. 1994) are that von Bertalanffy growth is used to calculate biomass dynamics and 
that the delay-difference model captures transient age structure effects due to variation in recruitment, 
growth and mortality exactly.  Transient effects on population dynamics are captured exactly because, as 
described above, the delay-difference equation is algebraically equivalent to an explicitly age-structured 
model with von Bertalanffy growth.   

 
The KLAMZ model incorporates a few extensions to Schnute’s (1985) revision of Deriso’s (1980) 

original delay difference model.  Most of the extensions facilitate tuning to a wider variety of data that 
anticipated in Schnute (1985).  The KLAMZ model is programmed in both Excel and in C++ using AD 
Model Builderf libraries.   The AD Model Builder version is faster, more reliable and probably better for 
producing “official” stock assessment results.  The Excel version is slower and implements fewer 
features, but the Excel version remains useful in developing prototype assessment models, teaching and 
for checking calculations. 

                                                 
1In applications, assumptions about knife-edge selectivity can be relaxed by assuming the model tracks “fishable”, rather that 
total, biomass (NEFSC 2000a; 2000b).  An analogous approach assigns pseudo-ages based on recruitment to the fishery so that 
new recruits in the model are all pseudo-age k.  The synthetic cohort of fish pseudo-age k may consist of more than one 
biological cohort.  The first pseudo-age (k) can be the predicted age at first, 50% or full recruitment based a von Bertalanffy 
curve and size composition data (Butler et al. 2002).  The “incomplete recruitment” approach (Deriso 1980) calculates 
recruitment to the model in each year Rt as the weighted sum of contributions from two or more biological cohorts (year-

classes) from spawning during successive years (i.e. ∑
=

−Π=
k

a
atat rR

1
where k is the age at full recruitment to the fishery, ra is 

the contribution of fish age k-a to the fishable stock, and at−Π  is the number or biomass of fish age k-a during year t).  
2In some applications, and more generally, new recruits might be defined as individuals recruiting at the beginning or at any 
time during the current time step (e.g. NEFSC 1996). 
3Otter Research Ltd., Box 2040, Sydney, BC, Canada V8L 3S3 (otter@otter-rsch.com). 
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The most significant disadvantage in using the KLAMZ model and other delay-difference 

approaches, beyond the assumption of knife-edge selectivity, is that age and length composition data are 
not used in tuning.  However, one can argue that age composition data are used indirectly to the extent 
they are used to estimate growth parameters or if survey survival ratios (e.g. based on the Heinke method) 
are used in tuning (see below). 
 
 
Population dynamics 

The assumed birth date and first day of the year are assumed the same in derivation of the delay-
difference equation.  It is therefore natural (but not strictly necessary) to tabulate catch and other data 
using annual accounting periods that start on the assumed biological birthday of cohorts. 
 
Biomass dynamics 

As implemented in the KLAMZ model, Schnute’s (1985) delay-difference equation is: 
ttt1t1-t1-tttt1t R J   - R B    - B  )  (1  B τρττρτρ ++ ++=  

where Bt is total biomass of individuals at the beginning of year t; ρ is Ford’s growth coefficient (see 
below); τt=exp(-Zt)=exp[-(Ft+Mt)] is the fraction of the stock that survived in year t, Zt, Ft, and Mt are 
instantaneous rates for total, fishing and natural mortality; and Rt is the biomass of new recruits (at age k) 
at the beginning of the year.  The natural mortality rate Mt may vary over time.  Instantaneous mortality 
rates in KLAMZ model calculations are biomass-weighted averages if von Bertalanffy growth is turned 
on in the model.  However, biomass-weighted mortality estimates in KLAMZ are the same as rates for 
numerical estimates under the assumption of knife-edge selectivity because all individuals are fully 
recruited.  The growth parameter Jt = wt-1,k-1 / wt,k is the ratio of mean weight one year before recruitment 
(age k-1 in year t-1) and mean weight at recruitment (age k in year t).  
 

It is not necessary to specify body weights at and prior to recruitment in the KLAMZ model 
(parameters vt-1 and Vt in Schnute 1985) because the ratio Jt and recruitment biomass contain the same 
information.  Schnute’s (1985) original delay difference equation is: 

t1-k1,-tt1tk1,t1-t1-tttt1t N  - N B   - B  )  (1  B ww ρτττρτρ +++ ++=  
To derive the equation used in KLAMZ, substitute recruitment biomass Rt+1 for the product wt+1,k Nt+1,k 
and adjusted recruitment biomass Jt Rt = (wt-1,k-1/wt,k) wt,k Nt,k =  
wt-1,k-1 Nt in the last term on the right hand side.  The advantage in using the alternate parameterization for 
biomass dynamic calculations in KLAMZ is that recruitment is estimated directly in units of biomass and 
the number of growth parameters is reduced.  The disadvantage is that numbers of recruits are not 
estimated directly by the model.  When required, numerical recruitments must be calculated externally as 
the ratio of estimated recruitment biomass and the average body weight for new recruits. 
 
 
Numerical population dynamics 
 Growth can be turned on off so that abundance, rather than biomass, is tracked in the KLAMZ 
model.  Set Jt=1 and ρ=0 in the delay difference equation, and use Nt (for numbers) in place of Bt to get: 

1ttt1t R N   N ++ +=τ  
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Mathematically, the assumption Jt=1 means that no growth occurs  the assumption ρ=0 means that the 
von Bertalanffy K parameter is infinitely large (Schnute 1985).  All tuning and population dynamics 
calculations in KLAMZ for biomass dynamics are also valid for numerical dynamics.   
 
Growth 

As described in Schnute (1985), biomass calculations in the KLAMZ model are based on Schnute 
and Fournier’s (1980) re-parameterization of the von Bertalanffy growth model:   

)-(1 / )  (1 ) w- (w  w w k-a1
1-kk1-ka ρρ +++=  

where wk=V and wk-1=v.  Schnute and Fournier’s (1980) growth model is the same as the traditional von 
Bertalanffy growth model {Wa= Wmax [1 - exp(-K(a-tzero)] where Wmax, K and tzero are parameters}.  The 
two growth models are the same because Wmax = (wk - ρ wk-1)/(1-ρ), K = -ln(ρ) and tzero = ln[(wk - wk-

1)/(wk - ρ wk-1)] / ln(ρ).   
 
In the KLAMZ model, the growth parameters Jt can vary with time but ρ is constant.   Use of 

time-variable Jt values with ρ is constant is the same as assuming that the von Bertalanffy parameters 
Wmax and tzero change over time.  Many growth patterns can be mimicked by changing Wmax and tzero 
(Overholtz et al., 2003).  K is a parameter in the C++ version and, in principal, estimable.  However, in 
most cases it is necessary to use external estimates of growth parameters as constants in KLAMZ. 
 
Instantaneous growth rates 

Instantaneous growth rate (IGR) calculations in the KLAMZ model are an extension to the original 
Deriso-Schnute delay difference model.  IGRs are used extensively in KLAMZ for calculating catch 
biomass and projecting stock biomass forward to the time at which surveys occur.  The IGR for new 
recruits depends only on growth parameters: 

 )1ln(ln
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= ++  

IGR for old recruits is a biomass-weighted average that depends on the current age structure and 
growth parameters.  It can be calculated easily by projecting biomass of old recruits St=Bt-Rt 
(escapement) forward one year with no mortality: 
  ( ) 11

* 1 −−−+= tttt BSS ρτρ  
where the asterisk (*) means just prior to the start of the subsequent year t+1.  By definition, the IGR for 
old recruits in year t is ( )tt

Old
t SSG *ln= .  Dividing by St gives:  
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IGR for the entire stock is the biomass weighted average of the IGR values for new and old 
recruits: 

  
t
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All IGR values are zero if growth is turned off. 
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Recruitment 
 In the Excel version of the KLAMZ model, annual recruitments are calculated teRt

Ω= where Ωt 
is a log transformed annual recruitment parameter, which is estimated in the model.   In the C++ version, 
recruitments are calculated based on log geometric mean recruitment (µ) and a set of annual log scale 
deviation parameters (ωt): 
  tt ωµ +=Ω  
The deviations ωt are constrained to average zero.g  With the constraint, estimation of µ and the set of ωt  
values (1+ n years parameters) is equivalent to estimation of the smaller set (n years) of Ωt values. 
 
Natural mortality 
 Natural mortality rates (Mt) are assumed constant in the Excel version of the KLAMZ model.  In 
the C++ version, natural mortality rates may be estimated as a constant value or as a set of values that 
vary with time.  In the model: 

tmeMt
ϖ=  

where m=exp(π) is the geometric mean natural mortality rate, π  is a model parameter that may be 
estimated (in principal but not in practical terms), and ϖt is the log scale year-specific deviation.  
Deviations may be zero (turned off) so that Mt is constant, may vary in a random fashion due to 
autocorrelated or independent process errors, or may based on a covariate.h  Model scenarios with zero 
recruitment may be initializing the parameter π to a small value (e.g. 10-16 ) and not estimating it.   
 

Random natural mortality process errors are effects due to predation, disease, parasitism, ocean 
conditions or other factors that may vary over time but are not included in the model.  Calculations are 
basically the same as for survey process errors (see below). 

 
Natural mortality rate covariate calculations are similar to survey covariate calculations (see 

below) except that the user should standardized covariates to average zero over the time period included 
in the model: 

KKtt −=κ  
where κt is the standardized covariate, Kt is the original value, and K is the mean of the original covariate 
for the years in the model.  Standardization to mean zero is important because otherwise m is not the 
geometric mean natural mortality rate (the convention is important in some calculations, see text).  
 

Log scale deviations that represent variability around the geometric mean are calculated: 

 t

n

j
jt p κϖ ∑

=

=
1

 

where n is the number of covariates and pj is the parameter for covariate j.  These conventions mean that 
the units for the covariate parameter pj are 1/units of the original covariate, the parameter pj measures the 

                                                 
g The constraint is implemented by adding 2ϖλ=L (where ϖ  is the average deviation) to the objective function, generally 
with a high weighting factor (λ = 1000) so that the constraint is binding. 
h Another approach to using time dependent natural mortality rates is to treat estimates of predator consumption as discarded 
catch (see “Predator consumption as discard data”).  In addition, estimates of predator abundance can be used in fishing effort 
calculations (see “Predator data as fishing effort”).  
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log scale effect of changing the covariate by one unit, and the parameter m is the log scale geometric 
mean. 
 
Fishing mortality and catch 
 Fishing mortality rates (Ft) are calculated so that predicted and observed catch data (landings plus 
estimated discards in units of weight) “agree” to the extent specified by the user.  It is not necessary, 
however, to assume that catches are measured accurately (see “Observed and predicted catch”).   
 

Fishing mortality rate calculations in Schnute (1985) are exact but relating fishing mortality to 
catch in weight is complicated by continuous somatic growth throughout the year as fishing occurs.  The 
KLAMZ model uses a generalized catch equation that incorporates continuous growth through the fishing 
season.  By the definition of instantaneous rates, the catch equation expresses catch as the product: 

ttt BFC =ˆ  

where tĈ is predicted catch weight (landings plus discard) and tB is average biomass.  
Following Chapman (1971) and Zhang and Sullivan (1988), let Xt=Gt-Ft-Mt be the net 

instantaneous rate of change for biomass.i  If the rates for growth and mortality are equal, then Xt=0, 
tt BB = and ttt BFC = .  If the growth rate Gt exceeds the combined rates of natural and fishing mortality 

(Ft + Mt), then Xt > 0.  If mortality exceeds growth, then Xt < 0.  In either case, with Xt≠ 0, average 
biomass is computed:  

( )
t

t
X

t X
BeB

t−
−≈

1  

 
When Xt≠ 0, the expression for tB is an approximation because Gt approximates the rate of change 

in mean body weight due to von Bertalanffy growth.  However, the approximation is reasonably accurate 
and preferable to calculating catch biomass in the delay-difference model with the traditional catch 
equation that ignores growth during the fishing season.j Average biomass can be calculated for new 
recruits, old recruits or for the whole stock by using either New

tG , Old
tG or Gt. 

 
In the KLAMZ model, the modified catch equation may be solved analytically for Ft given Ct, Bt, 

Gt and Mt (see the “Calculating Ft” section below).  Alternatively, fishing mortality rates can be calculated 
using a log geometric mean parameter (Φ) and a set of annual log scale deviation parameters (ψt): 
  teFt

ψ+Φ=  
where the deviations ψt are constrained to average zero.  When the catch equation is solved analytically, 
catches must be assumed known without error but the analytical option is useful when catch is zero or 
very near zero, or the range of fishing mortality rates is so large (e.g. minimum F=0.000001 to maximum 
F=3) that numerical problems occur with the alternative approach.  The analytical approach is also useful 
if the user wants to reduce the number of parameters estimated by nonlinear optimization.  In any case, 
the two methods should give the same results for catches known without error. 

                                                 
i By convention, the instantaneous rates Gt, Ft and Mt are always expressed as numbers ≥  0.  
j The traditional catch equation tt

Z
tt ZBeFC t )1( −−= where Zt=Ft+Mt underestimates catch biomass for a given level of 

fishing mortality Ft and overestimates Ft for a given level of catch biomass.  The errors can be substantial for fast growing fish, 
particularly if recent recruitments were strong.  
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Surplus production 

Annual surplus production is calculated “exactly” by projecting biomass at the beginning of each 
year forward with no fishing mortality: 

 tt
-M

1-t1-t
-M

t
-M*

t R J e  -B L e  - B e )  (1  B ρρρ+=  
By definition, surplus production Pt=B*

t-Bt (Jacobson et al. 2002).   
 
Per recruit modeling 
 Per recruit model calculations in the Excel version of the KLAMZ simulate the life of a 
hypothetical cohort of arbitrary size (e.g. R=1000) starting at age k with constant Mt, F (survival) and 
growth ( ρ and J) in a population initially at zero biomass.  In the first year: 

R  B1 =  
In the second year: 
  112 R J   - B  )  (1  B τρτρ+=  
In the third and subsequent years: 

1-t
2

t1 B   - B  )  (1  B τρτρ+=+t  
This iterative calculation is carried out until the sum of lifetime cohort biomass from one iteration to the 
next changes by less than a small amount (0.0001).  Total lifetime biomass, spawning biomass and yield 
in weight are calculated by summing biomass, spawning biomass and yield over the lifetime of the cohort.  
Lifetime biomass, spawning biomass and yield per recruit are calculated by dividing totals by initial 
recruitment (R). 
 
Status determination variables 
 The user may specify a range of years (e.g. the last three years) to use in calculating recent average 
fishing mortality centFRe and biomass centBRe levels.  These status determination variables are used in 
calculation of status ratios such as MSYcent FF /Re  and centBRe /BMSY. 
 
Goodness of Fit and Parameter Estimation 

Parameters estimated in the KLAMZ model are chosen to minimize an objective function based on a 
sum of weighted negative log likelihood (NLL) components: 

 

 v

N

v
v L∑

Ξ

=

=Ξ
1
λ  

 
where NΞ is the number of NLL components (Lv) and the λv are emphasis factors used as weights.   The 
objective function Ξ  may be viewed as a NLL or a  negative log posterior (NLP) distribution, depending 
on the nature of the individual Lv components and modeling approach.  Except during sensitivity analyses, 
weighting factors for objective function components (λv) are usually set to one.  An arbitrarily large 
weighting factor (e.g. λv =1000) is used for “hard” constraints that must be satisfied in the model.  
Arbitrarily small weighting factors (e.g. λv =0.0001) can be used for “soft” model-based constraints.  For 
example, an internally estimated spawner-recruit curve or surplus production curve might be estimated 
with a small weighting factor to summarize stock-recruit or surplus production results with minimal 
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influence on biomass, fishing mortality and other estimates from the model.  Use of a small weighting 
factor for an internally estimated surplus production or stock-recruit curve is equivalent to fitting a curve 
to model estimates of biomass and recruitment or surplus production in the output file, after the model is 
fit (Jacobson et al. 2002). 
 
Likelihood component weights vs. observation-specific weights 
 Likelihood component weights (λv) apply to entire NLL components.  Entire components are often 
computed as the sum of a number of individual NLL terms.  The NLL for an entire survey, for example, is 
composed of NLL terms for each of the annual survey observations.  In KLAMZ, observation-specific 
(for data) or instance-specific (for constraints or prior information) weights (usually wj for observation or 
instance j) can be specified as well.  Observation-specific weights for a survey, for example, might be use 
to increase or decrease the importance of one or more observations in calculating goodness of fit. 
  
NLL kernels 
 NLL components in KLAMZ are generally programmed as “concentrated likelihoods”  to avoid 
calculation of values that do not affect derivatives of the objective function.k  For x~N(µ,σ2), the complete 
NLL for one observation is: 

  ( ) ( )
2

5.02lnln 





 −

++=
σ

πσ uxL  

The constant ( )π2ln  can always be omitted because it does not affect derivatives.  If the standard 
deviation is known or assumed known, then ln(σ) can be omitted as well because it is a constant that does 
not affect derivatives.  In such cases, the concentrated negative log likelihood is:   
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If there are N observations with possible different variances (known or assumed known) and possibly 
different expected values: 
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If the standard deviation for a normally distributed quantity is not known and is (in effect) estimated 
by the model, then one of two equivalent calculations is used.  Both approaches assume that all 
observations have the same variance and standard deviation.  The first approach is used when all 
observations have the same weight in the likelihood: 
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where N is the number of observations.  The second approach is equivalent but used when the weights for 
each observation (wi) may differ:  

                                                 
k Unfortunately, concentrated likelihood calculations cannot be used with MCMC and other Bayesian approaches to 
characterizing posterior distributions.  Therefore, in the near future, concentrated NLL calculations will be replaced by 
calculations for the entire NLL.  At present, MCMC calculations in KLAMZ are not useful.   
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In the latter case, the maximum likelihood estimator: 
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 (where x̂ is the average or predicted value from the model) is used for σ .  The maximum likelihood 
estimator is biased by N/(N-df) where df is degrees of freedom for the model.  The bias may be significant 
for small sample sizes but df is usually unknown. 
 
Landings, discards, catch  

Discards are from external estimates (dt) supplied by the user. If dt ≥  0, then the data are used as 
the ratio of discard to landed catch so that: 

ttt LD ∆=  
where t∆ =Dt/Lt is the discard ratio.  If dt < 0 then the data are treated as discard in units of weight: 

( ).tt dabsD =  
In either case, total catch is the sum of discards and landed catch (Ct = Lt + Dt).  It is possible to use 
discards in weight dt < 0 for some years and discard as proportions dt > 0 for other years in the same 
model run.  If catches are estimated (see below) so that the estimated catch tĈ  does not necessarily equal 
observed landings plus discard, then estimated landings are computed: 

 
t

t
t

CL
∆+

=
1

ˆˆ  

and estimated discards are:  
.ˆˆ

ttt LD ∆=  
 
Calculating Ft  

As described above, fishing mortality rates may be estimated based on the parameters Φ and ψt  to 
satisfy a NLL for observed and predicted catches: 
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where the standard error tcatcht CCV ˆ=κ with CVcatch and weights are wt supplied by the user.  The weights 
can be used, for example, if catch data in some years are less precise than in others.  Using observation 
specific weights, any or every catch in the time series can potentially be estimated.   
 

The other approach to calculating Ft values is by solving the generalized catch equation (see 
above) iteratively.  Subtracting predicted catch from the generalized catch equation gives:  

 ( ) ( ) 01
=

−
+= t
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X
t

tt B
X

eFCFg
t

  

where Xt=Gt-Mt-Ft.  If Xt=0, then tt BB = and  Ft=Ct/Bt.   
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If Xt≠0, then the Newton-Raphson algorithm is used to solve for Ft (Kennedy and Gentle 1980).  

At each iteration of the algorithm, the current estimate i
tF is updated using: 

  ( )
( )it

i
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t
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t Fg
FgFF
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1 −=+   

where ( )itFg '  is the derivative i
tF .  Omitting subscripts, the derivative is: 
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where γ=G-Mt.  Iterations continue until ( )itFg  and ( ) ( )[ ]11 ++ − i
t

i
t FgFgabs  are both less than a small 

number (e.g. ≤ 0.00001).   
 

Initial values are important in algorithms that solve the catch equation numerically (Sims 1982).  
If Mt+Ft > Gt so that  Xt < 0, then the initial value 0

tF is calculated according to Sims (1982).  If Mt+Ft < 
Gt so that Xt > 0, then initial values are calculated based on a generalized version of Pope’s cohort 
analysis (Zhang and Sullivan 1988): 
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F for landings versus F for discards 
 The total fishing mortality rate for each year can be partitioned into a component due to landed 

catch t
t

t
t

L F
C
DF = , and a component due to discard t

t

t
t

D F
C
LF = . 

Predator consumption as discard data 
 In modeling population dynamics of prey species, estimates of predator consumption can be 
treated like discard in the KLAMZ model as a means for introducing time dependent natural mortality.  
Consider a hypothetical example with consumption data (mt y-1) for three important predators.  If the 
aggregate consumption data are included in the model as “discards”, then the fishing mortality rate for 
discards dFt (see above) would be an estimate of the component of natural mortality due to the three 
predators.  In using this approach, the average level of natural mortality m would normally be reduced 
(e.g. so that old

d
new mFm =+ ) or estimated to account for the portion of natural mortality attributed to 

bycatch.  
 
 Surplus production calculations are harder to interpret if predator consumption is treated as discard 
data because surplus production calculations assume that Ft=0 (see above) and because surplus production 
is defined as the change in biomass from one year to the next in the absence of fishing (i.e. no landings or 
bycatch).  However, it may be useful to compare surplus production at a given level of biomass from runs 
with and without consumption data as a means of estimating maximum changes in potential fishery yield 
if the selected predators were eliminated (assuming no change in disease, growth rates, predation by other 
predators, etc.).  
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Effort calculations 
 Fishing mortality rates can be tuned to fishing effort data for the “landed” catch (i.e. excluding 
discards).  Years with non-zero fishing effort used in the model must also have landings greater than zero.  
Assuming that effort data are lognormally distributed, the NLL for fishing effort is: 
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where neff is the number of effort observations, wy is an observation-specific weight, Ey and yE are 
observed and predicted fishing effort data, and the log scale variance is estimated internally.  Predicted 
fishing effort data are calculated: 
 ϑζ yy FE =  
where ζ =eu, ϑ =eb, and u and b are parameters estimated by the model.  If the parameter b is not 
estimated, then J=1 so that the relationship between fishing effort and fishing mortality is linear.  If the 
parameter b is estimated, then J¹1 and the relationship is a power function.  
 
Predator data as fishing effort 
 As described under “Predator consumption as discard data”, predator consumption data can be 
treated as discard.  If predator abundance data are available as well, and assuming that mortality due 
predators is a linear function of the predator-prey ratio, then both types of data may be used together to 
estimate natural mortality.  The trick is to: 1) enter the predator abundance data as fishing effort; 2) enter 
the actual fishery landings as “discard”; 3) enter predator consumption estimates of the prey species as 
“landings” so that the fishing effort data in the refer to the predator consumption data; 4) use an option in 
the model to calculate the predator-prey ratio for use in place of the original predator abundance “fishing 
effort” data; and 5) tune fishing mortality rates for landings (a.k.a. predator consumption) to fishing effort 
(a.k.a. predator-prey ratio). 
 

Given the predator abundance data yκ , the model calculates the predator-prey ratio used in place 
of fishing effort (Ey) as: 

  
y

y
y B

E
κ

=     

where By is the model’s current estimate of total (a.k.a “prey”) biomass.  Subsequent calculations with Ey 
and the model’s estimates of “fishing mortality” (Fy, really a measure of natural mortality) are exactly as 
described above for effort data.  In using this approach, it is probably advisable to reduce m (the estimate 
of average mortality in the model) to account for the proportion of natural mortality due to predators 
included in the calculation.  Based on experience to date, natural mortality due to consumption by the 
suite of predators can be estimated but only if m is assumed known. 
 
Initial population age structure 
 In the KLAMZ model, old and new recruit biomass during the first year (R1 and S1 =B1-R1) and 
biomass prior to the first year (B0) are estimated as log scale parameters.  Survival in the year prior to the 
first year (“year 0”) is 10

0
MFe −−=τ with F0 chosen to obtain catch C0 (specified as data) from the estimated 

biomass B0.  IGRs during year 0 and year 1 are assumed equal (G0=G1) in catch calculations. 
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  Biomass in the second year of as series of delay-difference calculations depends on biomass (B0) 
and survival (τ0) in year 0: 

1112001112 R J   - R B    - B  )  (1  B τρττρτρ ++=  
There is, however, there is no direct linkage between B0 and escapement biomass (S1=B1-R1) at the 
beginning of the first year.  
 

The missing link between B0, S1 and B1 means that the parameter for B0 tends to be relatively free 
and unconstrained by the underlying population dynamics model.  In some cases, B0 can be estimated to 
give good fit to survey and other data, while implying unreasonable initial age composition and surplus 
production levels.  In other cases, B0 estimates can be unrealistically high or low implying, for example, 
unreasonably high or low recruitment in the first year of the model (R1). Problems arise because many 
different combinations of values for R1, S1 and B0 give similar results in terms of goodness of fit.  This 
issue is common in stock assessment models that use forward simulation calculations because initial age 
composition is difficult to estimate.  It may be exacerbated in delay-difference models because age 
composition data are not used.   
 
The KLAMZ model uses two constraints to help estimate initial population biomass and initial age 
structure.l  The first constraint links IGRs for escapement (GOld) in the first years to a subsequent value.  
The purpose of the constraint is to ensure consistency in average growth rates (and implicit age structure) 
during the first few years.  For example, if IGRs for the first nG years are constrainedm, then the NLL for 
the penalty is: 
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where the standard deviation σG is supplied by the user.  It is usually possible to use the standard 
deviation of Old

tQ for later years from a preliminary run to estimate σG for the first few years.  The 
constraint on initial IGRs should probably be “soft” and non-binding (λ≈1) because there is substantial 
natural variation in somatic growth rates due to variation in age composition. 
 

The second constraint links B0 to S1 and ensures conservation of mass in population dynamics 
between years 0 and 1.  In other words, the parameter for escapement biomass in year 1 is constrained to 
match an approximate projection of the biomass in year 0, accounting for growth, and natural and fishing 
mortality.  The constraint is intended to be binding and satisfied exactly (e.g. λ =1000) because 
incompatible values of S1 and B0 are biologically impossible.  In calculations:  

 101
01

MFGp eBS −−=  
where pS1 is the projected escapement in year 1 and B0 is the model’s estimate of total biomass in year 0.  
The instantaneous rates for growth and natural mortality from year 1 (G1 and M1) are used in place of G0 
and M0 because the latter are unavailable.  The NLL for the constraint: 
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l Quinn and Deriso (1999) describe another approach attributed to a manuscript by C. Walters. 
m Normally, nG £ 2. 
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uses a log scale sum of squares and an arithmetic sum of squares.  The former is effective when S1 is 
small while the latter is effective when S1 is large.  Constants and details in calculation of NLL for the 
constraint are not important because the constraint is binding (e.g. λ =1000).  
 
Equilibrium pristine biomass 
 It may be useful to constrain the biomass estimate for the first year in a model run towards an 
estimate of equilibrium pristine biomass if, for example, stock dynamics tend to be stable and catch data 
are available for the first years of the fishery, or as an alternative to the approach described above for 
initializing the age structure of the simulated population in the model.  Equilibrium pristine biomass 0

~B  is 
calculated based on the model’s estimate of average recruitment and with no fishing mortality 
(calculations are similar to those described under “Per-recruit modeling” except that average recruitment 
is assumed in each year).n  The NLL term for the constraint is: 
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0
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ln 
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B
BL  

Pristine equilibrium biomass is used as a hard constraint with a high emphasis factor (λ) so that the 
variance and constants normally used in NLL calculations are not important.  
 
Estimating natural mortality 
 As described above, natural mortality calculations involve a parameter for the geometric mean 
value (m) and time dependent deviations (ϖt, which may or may not be turned on). Constraints on natural 
mortality process errors and natural mortality covariates can be used to help estimate the time dependent 
deviations and overall trend. The geometric mean natural mortality rate is usually difficult to estimate and 
best treated as a known constant.  However, in the C++ version of the KLAMZ model, m=eπ (where π is 
an estimable parameter in the model) and estimates of m can be conditioned on the constraint: 

( ) 2
argln
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where wTarget is a user supplied mean or target value and σϖ is a log scale standard deviation.  The 
standard deviation is calculated from an arithmetic scale CV supplied by the user.  Upper and lower 
bounds for m may be specified as well. 
 
Goodness of fit for trend data 

Assuming lognormal errorso, the NLL used to measure goodness-of-fit to “survey” data that measure 
trends in abundance or biomass (or survival, see below) is: 

                                                 
n Future versions of the KLAMZ model will allow equilibrium initial biomass to be calculated based on other recruitment 
values and for a user-specified level of F (Butler et al. 2003). 
o Abundance indices with statistical distributions other than log normal may be used as well, but are not currently programmed 
in the KLAMZ model.  For example, Butler et al. (2003) used abundance indices with binomial distributions in a delay-
difference model for cowcod rockfish.  The next version of KLAMZ will accommodate presence-absence data with binomial 
distributions. 
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where Iv,t is an index datum from survey v, hats “^” denote model estimates, σv,j is a log scale standard 
error (see below), and Nv is the number of observations.  There are two approaches to calculating 
standard errors for log normal abundance index data in KLAMZ and it is possible to use different 
approaches for different types of abundance index data in the same model (see below). 

 

Standard errors for goodness of fit 

In the first approach, all observations for one type of abundance index share the same standard error, 
which is calculated based on overall goodness of fit.  This approach implicitly estimates the standard 
error based on goodness of fit, along with the rest of the parameters in the model (see “NLL kernels” 
above).   

In the second approach, each observation has a potentially unique standard error that is calculated 
based on its CV.  The second approach calculates log scale standard errors from arithmetic CVs 
supplied as data by the user (Jacobson et al. 1994): 

  ( )2
,, 1ln tvtv CV+=σ  

Arithmetic CV’s are usually available for abundance data.  It may be convenient to use CVv,t=1.31 to get 
σv,t=1. 
 

There are advantages and disadvantages to both approaches.  CV’s carry information about the 
relative precision of abundance index observations.  However, CV’s usually overstate the precision of 
data as a measure of fish abundancep and may be misleading in comparing the precision of one sort of 
data to another as a measure of trends in abundance (e.g. in contrasting standardized LPUE that measure 
fishing success, but not abundance,  precisely with survey data that measure trends in fish abundance 
directly, but not precisely).  Standard errors estimated implicitly are often larger and more realistic, but 
assume that all observations in the same survey are equally reliable. 
 
 
Predicted values for abundance indices 

Predicted values for abundance indices are calculated: 

tvvtv AQI ,, =
∧

 
where Qv is a survey scaling parameter (constant here but see below) that converts units of biomass to 
units of the abundance index.  Av,t is available biomass at the time of the survey.   
 

In the simplest case, available biomass is: 

                                                 
p The relationship between data and fish populations is affected by factors (process errors) that are not accounted for in CV 
calculations. 
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where sv,New and sv,Old are survey selectivity parameters for new recruits (Rt) and old recruits (St); 
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t
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t MFGX −−= and tt

Old
t

Old
t MFGX −−= ; jv,t is the Julian date at the time of the survey, and 

∆v,t=jv,t/365 is the fraction of the year elapsed at the time of the survey.   
 
Survey selectivity parameter values (sv,New and sv,Old) are specified by the user and must be set 

between zero and one.  For example, a survey for new recruits would have sv,New=1 and sv,Old=0.  A survey 
that measured abundance of the entire stock would have sv,New=1 and sv,Old=1.   

 
Terms involving ∆v,t are used to project beginning of year biomass forward to the time of the 

survey, making adjustments for mortality and somatic growth.q  As described below, available biomass 
Av,t is adjusted further for nonlinear surveys, surveys with covariates and surveys with time variable Qv,t.  

 
 
Scaling parameters (Q) for log normal abundance data 

Scaling parameters for surveys with lognormal statistical errors were computed using the maximum 
likelihood estimator: 
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where Nv is the number of observations with individual weights greater than zero. The closed form 
maximum likelihood estimator gives the same answer as if scaling parameters are estimated as free 
parameters in the assessment model assuming lognormal survey measurement errors. 
 
 Survey covariates  
 Survey scaling parameters may vary over time based on covariates in the KLAMZ model.  The 
survey scaling parameter that measures the relationship between available biomass and survey data 
becomes time dependent: 

tvtvtv AQI ,,, =
∧

 
and 
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with nv covariates for the survey and parameters θr estimated in the model.  Covariate effects and 
available biomass are multiplied to compute an adjusted available biomass: 

                                                 
q It may be important to project biomass forward if an absolute estimate of biomass is available (e.g. from a hydroacoustic or 
daily egg production survey), if fishing mortality rates or high or if the timing of the survey varies considerably from year to 
year. 



 

38 SAW Consensus Summary  165

∑
=′ =

vn

r
rtrd

tvtv eAA 1
,

,,

θ

 
The adjusted available biomass A’

v,t is used instead of the original value Av,t in the closed form maximum 
likelihood estimator described above. 
 

Covariates might include, for example, a dummy variable that represents changes in survey 
bottom trawl doors or a continuous variable like average temperature data if environmental factors affect 
distribution and catchability of fish schools.  Dummy variables are usually either 0 or 1, depending on 
whether the effect is present in a particular year.  With dummy variables, Qv is the value of the survey 
scaling parameter with no intervention (dr,t=0).   

 
For ease in interpretation of parameter estimates for continuous covariates (e.g. temperature data), 

it is useful to center covariate data around the mean: 
  rtrtr ddd ′−′= ,,  
where d’

r,t is the original covariate.  When covariates are continuous and mean-centered, Qv is the value of 
the survey scaling parameter under average conditions (dr,t=0) and units for the covariate parameter are 
easy to interpret (for example, units for the parameter are 1/ oC if the covariate is mean centered 
temperature in oC).   
 

It is possible to use a survey covariate to adjust for differences in relative stock size from year to 
year due to changes in the timing of a survey.  However, this adjustment may be made more precisely by 
letting the model calculate ∆v,t as described above, based on the actual timing data for the survey during 
each year.  
 
Nonlinear abundance indices 
 With nonlinear abundance indices, and following Methot (1990), the survey scaling parameter is a 
function of available biomass: 
  Γ= tvvtv AQQ ,,  
so that: 

  ( ) tvtvvtv AAQI ,,,
Γ

∧

=  
Substituting eγ=Γ+1 gives the equivalent expression:  

  
γe
tvvtv AQI ,, =

∧

 
where γ is a parameter estimated by the model and the survey scaling parameter is no longer time 
dependent.  In calculations with nonlinear abundance indices, the adjusted available biomass: 
  

γe
tvtv AA ,, =′  

is computed first and used in the closed form maximum likelihood estimator described above to calculate 
the survey scaling parameter.  In cases where survey covariates are also applied to a nonlinear index, the 
adjustment for nonlinearity is carried out first. 
 
Survey Q process errors 
 The C++ version of the KLAMZ model can be used to allow survey scaling parameters to change 
in a controlled fashion from year to year (NEFSC 2002): 
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where the deviations tv,ε  are constrained to average zero.  Variation in survey Q values is controlled by 
the NLL penalty: 
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where the log scale standard deviation σv based on an arithmetic CV supplied by the user (e.g. see NEFSC 
2002).  In practice, the user increases or decreases the amount of variability in Q by decreasing or 
increasing the assumed CV. 
 
Survival ratios as surveys 
 In the C++ version of KLAMZ, it is possible to use time series of survival data as “surveys”.   For 
example, an index of survival might be calculated using survey data and the Heinke method (Ricker 1975) 
as: 

  
tk

tk
t I

I
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,

1,1 ++=  

so that the time series of At estimates are data that may potentially contain information about scale or 
trends in survival.  Predicted values for an a survival index are calculated: 
  tZ

t eA −=ˆ  
 

After predicted values are calculated, survival ratio data are treated in the same way as abundance 
data (in particular, measurement errors are assumed to be lognormal).  Selectivity parameters are ignored 
for survival data but all other features (e.g. covariates, nonlinear scaling relationships and constraints on 
Q) are available.  
 
Recruitment models 
 Recruitment parameters in KLAMZ may be freely estimated or estimated around an internal 
recruitment model, possibly involving spawning biomass.  An internally estimated recruitment model can 
be used to reduce variability in recruitment estimates (often necessary if data are limited), to summarize 
stock-recruit relationships, or to make use of information about recruitment in similar stocks.  There are 
four types of internally estimated recruitment models in KLAMZ: 1) random variation around a constant 
mean; 2) random walk around a constant mean (autocorrelated variation); 3) random variation around a 
Beverton-Holt recruitment model; and 4) random variation around a Ricker recruitment model.  The user 
must specify a type of recruitment model but the model is not active unless the likelihood component for 
the recruitment model is turned on ( 0>λ ). 
 
 The first step in recruit modeling is to calculate the expected log recruitment level E[ln(Rt)] given 
the recruitment model.   For random variation around a constant mean, the expected log recruitment level 
is the log geometric mean recruitment: 

( )[ ] ( ) NRRE
N

j
jt ∑

=

=
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lnln    

For a random walk around a constant mean recruitment, the expected log recruitment level is the 
logarithm of recruitment during the previous year: 
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( )[ ] ( )1lnln −= tt RRE  
with no constraint on recruitment during the first year R1.  
  

For the Beverton-Holt recruitment model, the expected log recruitment level is: 
( )[ ] ( )[ ]ll −− += t

b
t

a
t TeTeRE lnln   

where a=eα and b=eβ, the parameters α  and β  are estimated in the model, Tt is spawning biomass, and 
{ is the lag between spawning and recruitment.  Spawner-recruit parameters are estimated as log 
transformed values (eα and eβ) to enhance model stability and ensure the correct sign of values used in 
calculations.  Spawning biomass is: 
  toldtnewt SmRmT +=  
where mnew and mold are maturity parameters for new and old recruits specified by the user.  For the Ricker 
recruitment model, the expected log recruitment level is: 
  ( )[ ] ( )ll

−−
−= tbSa

tt eSRE lnln  
where a=eα and b=eβ, and the parameters α  and β  are estimated in the model.  
  

Given the expected log recruitment level, log scale residuals for the recruitment model are 
calculated: 
  ( ) ( )[ ]ttt RERr lnln −=  
Assuming that residuals are log normal, the NLL for recruitment residuals is: 
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where λt is an instance-specific weight usually set equal one.  The additional term in the NLL [ln(σr)] is 
necessary because the variance 2

rσ is estimated internally, rather than specified by the user.  
   

The log scale variance for residuals is calculated using the maximum likelihood estimator: 

     
N

r
N

tj
j

r
first

∑
==2σ  

where N is the number of residuals. For the recruitment model with constant variation around a mean 
value, tfirst=1.  For the random walk recruitment model, tfirst=2. For the Beverton-Holt and Ricker models, 
tfirst= 1+l  and the recruit model imposes no constraint on variability of recruitment during years 1 to l  
(see below).  The biased maximum likelihood estimate for σ2 (with N in the divisor instead of the degrees 
of freedom) is used because actual degrees of freedom are unknown.  The variance term σ2 is calculated 
explicitly  and stored because it is used below. 
 
Constraining the first few recruitments 
 It may be useful to constrain the first { years of recruitments when using either the Beverton-Holt 
or Ricker models if the unconstrained estimates for early years are erratic.  In the KLAMZ model, this 
constraint is calculated: 
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where tfirst is the first year for which expected recruitment E(Rl) can be calculated with the spawner-recruit 
model.  In effect, recruitments that not included in spawner-recruit calculations are constrained towards 
the first spawner-recruit prediction.  The standard deviation is the same as used in calculating the NLL for 
the recruitment model. 
 
Prior information about abundance index scaling parameters (Q) 
 A constraint on one or more scaling parameters (Qv) for abundance or survival indices may be 
useful if prior information is available (e.g. NEFSC 2000; NEFSC 2001; NEFSC 2002).  In the Excel 
version, it is easy to program these (and other) constraints in an ad-hoc fashion as they are needed.  In the 
AD Model Builder version, log normal and beta distributions are preprogrammed for use in specifying 
prior information about Qv for any abundance or survival index. 
   

The user must specify which surveys have prior distributions, minimum and maximum legal 
bounds (qmin and qmax), the arithmetic mean ( )q  and the arithmetic CV for the prior the distribution. 
Goodness of fit for Qv values outside the bounds (qmin, qmax) are calculated: 
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Goodness of fit for Qv values inside the legal bounds depend on whether the distribution of potential 
values is log normal or follows a beta distribution. 
 
Lognormal case 

Goodness of fit for lognormal Qv values within legal bounds is: 

 ( ) 2
ln5.0 







 −
=

ϕ
τvQL  

where the log scale standard deviation ( )CV+= 1lnϕ  and ( )
2

ln
2ϕτ −= q  is the mean of the 

corresponding log normal distribution. 
 
Beta distribution case 
 The first step in calculation goodness of fit for Qv values with beta distributions is to calculate the 
mean and variance of the corresponding “standardized” beta distribution: 
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where the range of the standardized beta distribution is D=qmax-qmin.  Equating the mean and variance to 
the estimators for the mean and variance for the standardized beta distribution (the “method of moments”) 
gives the simultaneous equations: 
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where a and b are parameters of the standardized beta distribution.r  Solving the simultaneous equations 
gives: 
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and: 
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Goodness of fit for beta Qv values within legal bounds is calculated with the NLL: 
 ( ) ( ) ( ) )'1ln(1'ln1 vv QbQaL −−+−=  

where ( )minqQQQ vvv −=′ is the standardized value of the survey scaling parameter Qv. 
 
Surplus production modeling 

Surplus production models can be fit internally to biomass and surplus production estimates in the 
model (Jacobson et al. 2002).  Models fit internally can be used to constrain estimates of biomass and 
recruitment, to summarize results in terms of surplus production, or as a source of information in tuning 
the model.  The NLL for goodness of fit assumes normally distributed process errors in the surplus 
production process: 
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where Np is the number of surplus production estimates (number of years less one), tP~  is a predicted value 
from the surplus production curve, Pt is the assessment model estimate, and the standard deviation σ  is 
supplied by the user based, for example, on preliminary variances for surplus production estimates.s  
Either the symmetrical Schaefer (1957) or asymmetric Fox (1970) surplus production curve may be used 
to calculate tP~ (Quinn and Deriso 1999).   
 

It may be important to use a surplus production curve that is compatible with recruitment patterns 
or assumptions about the underlying spawner-recruit relationship.  More research is required, but the 
asymmetric shape of the Fox surplus production curve appears reasonably compatible with the 
assumption that recruitment follows a Beverton-Holt spawner-recruit curve (Mohn and Black 1998).  In 
contrast, the symmetric Schaefer surplus production model appears reasonably compatible with the 
assumption that recruitment follows a Ricker spawner-recruit curve. 
                                                 

r If x has a standardized beta distribution with parameters a and b, then the probability of x is ( ) ( )
( )ba

xxxP
ba

,
1 11

Γ
−

=
−−
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s Variances in NLL for surplus production-biomass models are a subject of ongoing research.  The advantage in assuming 
normal errors is that negative production values (which occur in many stocks, e.g. Jacobson et al. 2001) are accommodated.  In 
addition, production models can be fit easily by linear regression of Pt on Bt and Bt

2 with no intercept term.  However, variance 
of production estimate residuals increases with predicted surplus production.  Therefore, the current approach to fitting 
production curves in KLAMZ is not completely satisfactory. 
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The Schaefer model has two log transformed parameters that are estimated in KLAMZ: 

  2~
ttt BeBeP βα −=  

The Fox model also has two log transformed parameters: 
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See Quinn and Deriso (1999) for formulas used to calculate reference points (FMSY, BMSY, MSY, and K) for 
both surplus production models. 
 
Catch/biomass 

Forward simulation models like KLAMZ may tend to estimate absurdly high fishing mortality 
rates, particularly if data are limited.  The likelihood constraint used to prevent this potential problem is: 
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with the threshold value κ normally set by the user to about 0.95.  Values for κ can be linked to maximum 
F values using the modified catch equation described above.  For example, to use a maximum fishing 
mortality rate of about F»4 with M=0.2 and G=0.1 (maximum X=4+0.2-0.1=4.1), set κ≈F/X(1-e-X)=4 / 
4.1 (1-e-4)=0.96. 
 
 
Uncertainty 

The AD Model Builder version of the KLAMZ model automatically calculates variances for 
parameters and quantities of interest (e.g. Rt, Ft, Bt, FMSY, BMSY, centFRe , centBRe , MSYcent FF /Re , 

MSYcent BB /Re , etc.) by the delta method using exact derivatives.  If the objective function is the log of a 
proper posterior distribution, then Markov Chain Monte Carlo (MCMC) techniques implemented in AD 
Model Builder libraries can be used estimate posterior distributions representing uncertainty in the same 
parameters and quantities.t   

                                                 
t MCMC calculations are not available in the current version because objective function calculations use concentrated 
likelihood formulas.  However, the C++ version of KLAMZ is programmed in other respects to accommodate Bayesian 
estimation. 
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Bootstrapping 

A FORTRAN program called BootADM can be used to bootstrap survey and survival index data 
in the KLAMZ model.  Based on output files from a “basecase” model run, BootADM extracts 
standardized residuals: 
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along with log scale standard deviations ( jv,σ , originally from survey CV’s or estimated from goodness 

of fit), and predicted values ( )jvI ,
ˆ  for all active abundance and survival observations.  The original 

standardized residuals are pooled and then resampled (with replacement) to form new sets of bootstrapped 
survey “data”: 
  jvr

jvjv
x eII .

,,
ˆ σ=  

where r is a resampled residual.  Residuals for abundance and survival data are combined in bootstrap 
calculations.  BootADM builds new KLAMZ data files and runs the KLAMZ model repetitively, 
collecting the bootstrapped parameter and other estimates at each iteration and writing them to a comma 
separated text file that can be processed in Excel to calculate bootstrap variances, confidence intervals, 
bias estimates, etc. for all parameters and quantities of interest (Efron 1982). 
 
Projections 
 Stochastic projections can be carried out using another FORTRAN program called SPROJDDF 
based on bootstrap output from BootADM.  Basically, bootstrap estimates of biomass, recruitment, 
spawning biomass, natural and fishing mortality during the terminal years are used with recruit model 
parameters from each bootstrap run to start and carryout projections.u  Given a user-specified level of 
catch or fishing mortality, the delay-difference equation is used to project stock status for a user-specified 
number of years.  Recruitment during each projected year is based on simulated spawning biomass, log 
normal random numbers, and spawner-recruit parameters (including the residual variance) estimated in 
the bootstrap run.  This approach is similar to carrying out projections based on parameters and state 
variables sampled from a posterior distribution for the basecase model fit.  It differs from most current 
approaches because the spawner-recruit parameters vary from projection to projection. 

                                                 
u At present, only Beverton-Holt recruitment calculations are available in SPROJDDF. 
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