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APPENDIX 5.  THE CASA LENGTH STRUCTURED STOCK ASSESSMENT 
MODEL 

  
The stock assessment model described here is based on Sullivan et al.’s (1990) 

CASA model.4  CASA is entirely length-based with population dynamic calculations in 
terms of the number of individuals in each length group during each year.  Age is largely 
irrelevant in model calculations.  Unlike many other length-based stock assessment 
approaches, CASA is a dynamic, non-equilibrium model based on a forward simulation 
approach.  CASA incorporates a very wide range of data with parameter estimation 
based, in the broadest sense, on maximum likelihood.  CASA can incorporate prior 
information about parameters such as survey catchability in a quasi-Bayesian fashion.  
The implementation described here was programmed in AD-Model Builder (Otter 
Research Ltd.).5  
 
Population dynamics 
 

Time steps in the model are the same as the time periods used to tabulate catch 
and other data.  In principle, the accuracy of calculations improves as time steps in the 
model become shorter, but data considerations often limit time steps to years.  In this 
description, time steps are referred to as “years” without loss of generality.   If time steps 
are years, then instantaneous rates have units y-1.  The number of years in the model ny is 
flexible and can be changed easily (e.g. for retrospective analyses), usually by making a 
single change to the input data file. 

 
The definition of length groups (or length “bins”) is a key element in the CASA 

model and length-structured stock assessment modeling in general.  Length bins are 
identified by their lower bound.  With 10 mm length bins, for example, the 20 mm size 
bin includes individual 20-29.9 mm.  Calculations requiring information about length 
(e.g. length-weight) use the mid-length jl of each bin.   

 
In the current implementation, the user must specify the size of length bins (Lbin) 

in the data and model, the minimum size (Lmin) at the lower bound of the first length bin 
in the data and model, and the maximum asymptotic length (L¥).  Based on these 
specifications, the model determines the number (nL) of length bins to include in 
modeling.  The last bin is a “plus-group” containing individuals L¥ and larger.  The 
number of length groups in catch at length and other data should be ≥ nL.  Based on user 
specifications, the program takes care adjusting the original data to the length groups 
used in the model. 
 

                                                 
4 Original programming in AD-Model Builder by G. Scott Boomer and Patrick J. Sullivan (Cornell 
University), who bear no responsibility for errors in the current implementation. 
5 AD-Model Builder can be used to calculate variances for any estimated or calculated quantity in a stock 
assessment model, based on the Hessian matrix with “exact” derivatives and the delta method.  Experience 
with other models (e.g. Overholtz et al., 2004) suggests that variances estimates from AD-Model Builder, 
which consider the variance of all model parameters, are similar to variances calculated by the common 
method of bootstrapping survey abundance data. 
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Growth 
 
Although age is not considered, Von Bertalanffy growth models are implicit in 

several of the configurations of the CASA model.  The growth parameter ∞L is not 
estimable because it is used in defining length bins prior to the parameter estimation 
phase.6  The von Bertalanffy growth parameter t0 is not estimable because it is irrelevant 
in length-based models that predict growth during a year based on the von Bertalanffy 
growth parameter K, ∞L and size at the beginning of the year. 

 
At the beginning of the year, scallops in each size group grow (or not) based on 

growth terms P(b,a) that measure the probability that a surviving individual that starts in 
bin a will grow to bin b by the beginning of the next year (columns index initial size and 
rows index subsequent size).  Growth probabilities do not include any adjustments for 
mortality.  In the CASA model, growth occurs immediately at the beginning of each year 
and the model assumes that no growth occurs during the year. 
   

Growth probabilities depend on growth increments because: 
 
  ι+= 12 LL  
 
where L1 is the starting length, L2 is length after one year of growth and ι is the growth 
increment. Following Sullivan et al. (1990), and for simplicity, growth probabilities are 
calculated assuming that all individuals start at the middle of their original length bin al , 
and then grow to sizes that cover the whole range of each possible subsequent size bin.  
Thus: 
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where ( )ajP l|  is the probability of increment j for an individual originally in bin a (at 
mid-length al ).  ( )aa l|ℵ  is the initial size-specific cumulative distribution function for 
growth increments.  In CASA, cumulative distributions for growth increments are 
computed by numerical integration based on Simpson’s rule (Press et al., 1990) and a 
user-specified number of steps per bin.  The user can change the number of steps to 
balance the accuracy of the calculation against time required for growth calculations. 
 

Growth probabilities P(b,a) are calculated in CASA by one of four options. 
Option 1 is similar to Sullivan et al.’s (1990) approach in that growth probabilities are 
calculated by numerical integration assuming that increments follow gamma 
distributions.  The gamma distributions for growth increments are starting size-specific 

                                                 
6 “Estimable” means a potentially estimable parameter that is specified as a variable that may be estimated 
in the CASA computer program.  In practice, estimability depends on the available data and other factors.  
It may be necessary to fix certain parameters at assumed fix values or to use constraints of prior 
distributions for parameters that are difficult to estimate, particularly if data are limited. 
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and are specified in terms of mean increments and CV’s.  Mean increments aι are from 
the von Bertalanffy growth curve: 

 
 ( )( )K

aa eLi −
∞ −−= 1l  

 
where K=eχ is the von Bertalanffy growth coefficient and χ is an estimable parameter.7  
Under Option 1, CVs are a log-linear function of length: 
 

 L
L eCV λκ +=  

 
where κ and γ are estimable parameters.  Sullivan et al. 1990 assumed constant CV’s for 
growth.  This implementation of the CASA model includes the special case of constant 
CV’s when λ=0.   
 

Option 2 constructs a transition matrix directly from size-specific annual growth 
data (i.e. data records consisting of starting length, length after one year and number of 
observations).  Under Option 2: 
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where n(b|a) is the number of individuals that started at size a and grew to size b after 
one year.   
 

Under option 3, mean increments are from the von Bertalanffy growth curve as in 
option 1, but with length-specific CVs (and other model parameters) estimated in the 
model based on growth increments and other data (see below for goodness of fit 
calculations).  Under option 3, the von Bertalanffy growth parameter K, which describes 
mean growth, and parameters for variance in growth (κ and γ) are estimable.  Option 4 
uses a constant, user-specified transition matrix provided as data to the model. 

 
Growth calculations based on assumed gamma distributions (Sullivan et al. 1990) 

might be unrealistic for some species because the gamma distribution predicts growth 
increments of zero to infinity.  Therefore, with options 1-3, the user may specify 
minimum and maximum growth increments for each size.  Probabilities from truncated 
gamma distributions for growth increments between the minimum and maximum values 
are normalized to sum to one before use in population dynamics calculations.  Size bins 
outside those specified are ignored in all model calculations. 

 

                                                 
7 Most intrinsically positive or intrinsically negative parameters are estimated in log scale to ensure 
estimates do not change sign, and to enhance statistical properties of estimates. 
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Abundance, recruitment and mortality 
 

Population abundance in each length bin during the first year of the model is: 
 
  LL NN ,11,1 π=  
 
where L is the size bin, and L,1π  is the initial population length composition expressed as 

proportions so that 1
1

=∑
=

Ln

L
Lπ .  ηeN =1  is total abundance at the beginning of the first 

modeled year and η is an estimable parameter.  It is not necessary to estimate recruitment 
in the first year because recruitment is implicit in the product of N1 and πL.  The current 
implementation of CASA takes the initial population length composition as data supplied 
by the user. 
  

Abundance at length in years after the first is calculated: 
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where yN

r
is a vector (length nL) of abundance in each length bin during year y, P  is the 

matrix (nL x nL) of growth probabilities P(b,a), yS
r

is a vector of length- specific survival 

fractions for year y, ⊗  is for the element-wise product , and yR
r

 is a vector holding 
length-specific abundance of new recruits at the beginning of year y.   
 

Survival fractions are: 
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where Zy,L is the total instantaneous mortality rate.  The natural mortality rate M=eϖ (ϖ 
estimable) is the same for all length groups in all years.  Length-specific fishing mortality 
rates are Fy,L= Fy sy,L where sy,L is the size-specific selectivity for the fishery in year y 
(scaled to a maximum of one at fully recruited size groups), and Fy is the fishing 
mortality rate on fully selected individuals.8  Fully recruited fishing mortality rates are 

yeFy
δφ+= where φ is an estimable parameter for the log of the geometric mean of fishing 

mortality in all years, and δy is an estimable “dev” parameter.9 
 

Given abundance in each length group, natural mortality, and fishing mortality, 
                                                 
8  In this context, “selectivity” describes the combined effects of all factors that affect length composition of 
catch or landings.  These factors include gear selectivity, spatial overlap of the fishery and population, size-
specific targeting, size-specific discard, etc.   
9 Dev parameters are a special data type for estimable parameters in AD-Model Builder.  Each set of dev 
parameters (e.g. for all recruitments in the model) is constrained to sum to zero.  Because of the constraint, 
the sums φ +δy involving ny+1 terms amount to only ny parameters. 
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predicted fishery catch-at-length in numbers is: 
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catches are in effect assumed to be taken at the beginning of the year, model catches (by 
weight) will tend to be biased low, especially during years when mostly smaller scallops 
were taken. 

 
Recruitment (the sum of new recruits in all length bins) at the beginning of each 

year after the first is calculated based on estimable parameters that measure annual 
deviations yγ from the log-scale geometric mean ρ: 

  yeRy γρ+=  
 
Proportions of recruits in each length group are calculated based on a standard 

beta distribution B(w,r) over the first nr length bins.  Proportions of new recruits in each 
size group are the same from year to year.  Beta distribution coefficients must be larger 
than zero and are calculated w=eω and r=eρ, where ω and ρ are estimable parameters.  
 
Population summary variables 
 

Total abundance at the beginning of the year is the sum of abundance at length 
Ny,L at the beginning of the year.  Average annual abundance is: 
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The current implementation of the NC model assumes that weight-at-length is the 

same for the stock and fishery and a single set of length-weight conversion parameters is 
used in all calculations.  For example, total stock biomass is: 
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where wL is weight at length computed at the midpoint of each length bin using the 
length-weight relationship specified by the user.  Total catch weight is: 
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Fy estimates for two years are comparable if fishery selectivity in the model was the same 
in both years.  A simpler exploitation index is calculated for use when fishery selectivity 
changes over time: 
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where x is a user-specified length bin (usually at or below the first bin that is fully 
selected during all fishery selectivity periods).  Uy exploitation indices from different 
years with different selectivity patterns may be relatively comparable if w is chosen 
carefully. 
 

Surplus production during each year of the model can be computed approximately 
from biomass and catch estimates (Jacobson et al., 2002): 
 
  tttt CBBP δ+−= +1  
 
where δ is a correction factor that adjusts catch weight to population weight at the 
beginning of the next year by accounting for mortality and growth. The adjustment factor 
depends strongly on the rates for growth and natural mortality and only weakly on the 
natural mortality rate.  In the absence of a direct estimate, useful calculations can be 
carried out assuming δ=1. 
 
Fishery and survey selectivity  
 

The current implementation of CASA includes six options for calculating fishery 
and survey selectivity patterns.  Fishery selectivity may differ among “fishery periods” 
defined by the user. Selectivity patterns that depend on length are calculated using 
lengths at the mid-point of each bin (l ).  After initial calculations (described below), 
selectivity curves are rescaled to a maximum value of one. 

 
Option 1 is a flat with sL=1 for all length bins.  Option 2 is an ascending logistic 

curve: 
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Option 3 is an ascending logistic curve with a minimum asymptotic minimum size 

for small size bins on the left. 
 

( ) yyBAy DD
e

s
YY

+−






+

= − 1
1

1
, ll  

 
Option 4 is a descending logistic curve: 
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Option 5 is a descending logistic curve with a minimum asymptotic minimum size 

for large size bins on the right: 
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Option 6 is a double logistic curve used to represent “domed-shape” selectivity 

patterns with highest selectivity on intermediate size groups: 
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The coefficients for selectivity curves AY, BY, DY and GY carry subscripts for time 

because they may vary between fishery selectivity periods defined by the user.  All 
options are parameterized so that the coefficients AY, BY, DY and GY are positive.  Under 
options 3 and 5, Dy is a proportion that must lie between 0 and 1.  

  
Depending on the option, estimable selectivity parameters may include α, β, δ 

and γ.  For options 2, 4 and 6, YeAY
α= , YeBY

β= , YeDY
δ= and YeGY

γ= .  Options 3 and 5 
use the same conventions for AY and BY, however, the coefficient DY is a proportion 
estimated as a logit-transformed parameter  (i.e. δY=ln[DY /(1-Dy)]) so that: 
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The user can choose, independently of all other parameters, to either estimate 

each fishery selectivity parameter or to keep it at its initial value.  Under Option 2, for 
example, the user can estimate the intercept αY, while keep the slope βY at its initial value. 
 
Tuning and goodness of fit 
 

There are two steps in calculating the negative log likelihood (NLL) used to 
measure how well the model fits each type of data.  The first step is to calculate the 
predicted values for data.  The second step is to calculate the NLL of the data given the 
predicted value.  The overall goodness of fit measure for the model is the weighted sum 
of NLL values for each type of data and each constraint: 
 
 ∑=Λ jj Lλ  
 
where λj is a weighting factor for data set j (usually λj=1, see below), and Lj is the NLL 
for the data set.  The NLL for a particular data is itself is usually a weighted sum: 
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where nj is the number of observations, ψj,i is an observation-specific weight (usually ψj,i 
=1, see below), and Lj,i is the NLL for a single observation. 
 

Maximum likelihood approaches reduce the need to specify ad-hoc weighting 
factors (λ and φ) for data sets or single observations, because weights can often be taken 
from the data (e.g. using CVs routinely calculated for bottom trawl survey abundance 
indices) or estimated internally along with other parameters.  In addition, robust 
maximum likelihood approaches (see below) may be preferable to simply down-
weighting an observation or data set.  However, despite subjectivity and theoretical 
arguments against use of ad-hoc weights, it is often useful in practical work to 
manipulate weighting factors, if only for sensitivity analysis or to turn an observation off 
entirely.  Observation specific weighting factors are available for most types of data in 
the CASA model.    
 
Missing data 

 
Availability of data is an important consideration in deciding how to structure a 

stock assessment model.  The possibility of obtaining reliable estimates will depend on 
the availability of sufficient data.  However, NLL calculations and the general structure 
of the CASA model are such that missing data can usually be accommodated 
automatically.  With the exception of catch data (which must be supplied for each year, 
even if catch was zero), the model calculates that NLL for each datum that is available.  
No NLL calculations are made for data that are not available and missing data do not 
generally hinder model calculations. 
 
Likelihood kernels 
 

Log likelihood calculations in the current implementation of the CASA model use 
log likelihood “kernels” or “concentrated likelihoods” that omit constants.  The constants 
can be omitted because they do not affect slope of the NLL surface, final point estimates 
for parameters or asymptotic variance estimates.10    

 
For data with normally distributed measurement errors, the complete NLL for one 

observation is: 
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The constant ( )π2ln  can always be omitted.  If the standard deviation is known 

or assumed known, then ln(σ) can be omitted as well because it is a constant that does not 
affect derivatives.  In such cases, the concentrated NLL is:   
                                                 
10 Likelihood kernels in the present implementation prevent use of AD-Model Builder’s MCMC algorithms 
for Bayesian statistical approaches. 
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If there are N observations with possible different variances (known or assumed 

known) and possibly different expected values: 
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If the standard deviation for a normally distributed quantity is not known and is 

estimated (implicitly or explicitly) by the model, then one of two equivalent calculations 
is used.  Both approaches assume that all observations have the same variance and 
standard deviation.  The first approach is used when all observations have the same 
weight in the NLL: 
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The second approach is equivalent but used when the weights for each 

observation (wi) may differ:  
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In the latter case, the maximum likelihood estimator: 
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(where x̂ is the average or predicted value from the model) is used explicitly for σ .  The 
maximum likelihood estimator is biased by N/(N-df) where df is degrees of freedom for 
the model.  The bias may be significant for small sample sizes, which are common in 
stock assessment modeling, but df is usually unknown. 

 
If data x have lognormal measurement errors, then ln(x) is normal and L is 

calculated as above.  In some cases it is necessary to correct for bias in converting 

arithmetic scale means to log scale means (and vice-versa) because 2
2σχ +

= ex  where 
χ=ln(x).  It is often convenient to convert arithmetic scale CVs for lognormal variables to 
log scale standard deviations using ( )21ln CV+=σ .  
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For data with multinomial measurement errors, the likelihood kernel is: 

 ( )∑
=

−=
n

i
ii KpnL

1
ln θ  

where n is the known or assumed number of observations (the “effective” sample size), pi 
is the proportion of observations in bin i, and θi is the model’s estimate of the probability 
of an observation in the bin.  The constant K is used for convenience to keep L to a 
manageable number of digits.  It measures the lowest value of L that could be achieved if 
the data fit matched the model’s expectations exactly: 
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For data x that have measurement errors with expected values of zero from a 

gamma distribution: 

 ( ) ( )βββγ lnln1 −−




−= xxL  

 
where β>0 and γ>0 are gamma distribution parameters in the model.  For data that lie 
between zero and one with measurement errors from a beta distribution: 
 
 ( ) ( ) ( ) ( )xqxpL −−+−= 1ln1ln1  
 
where p>0 and q>0 are parameters in the model.  

 
In CASA model calculations, distributions are usually described in terms of the 

mean and CV.  Normal, gamma and beta distribution parameters can be calculated mean 
and CV by the method of moments.  Means, CV’s and distributional parameters may, 
depending on the situation, be estimated in the model or specified by the user.   
 
Robust methods 

 
“Robust” maximum likelihood calculations are available for noisy data in the 

CASA model that might be assumed otherwise to have normally distributed measurement 
errors.  Robust likelihood calculations assume that measurement errors are from a 
Student’s t distribution with user-specified degrees of freedom df.  Degrees of freedom 
are specified independently for each observation so that robust calculations can be carried 
out for as many (or as few) cases as required.  The t distribution is similar to the normal 
distribution for df ≥30.  As df are reduced, the tails of the t distribution become fatter so 
that small observations seem more probable (have higher probability) and have less effect 
on model estimates.  If df =0, then measurement errors are assumed in the model to be 
normally distributed. 

 
The first step in robust NLL calculations is to standardize the measurement error 

residual ( ) σxxt −=  based on the mean and standard deviation.   Then: 
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Catch weight data 
 

In the current version of the CASA model, catch data are for a single or 
“composite” fishery.  The terms “catches” and “landings” are used interchangeably in the 
current version because discard and non-landed fishery induced mortality are not 
distinguished.  In the current version, total catch and must be specified in units of weight.  
Ideally, catch data should include all fishery-induced mortality and fishery length 
composition data (if available) should be represent the size distribution of all individuals 
that suffered fishery-induced mortality. 

 
Catch data are assumed to have normally distributed measurement errors with a 

user specified CV.  The standard deviation for catch weight in a particular year is 
yY Ĉκσ = where “^” indicates that the variable is a model estimate.  The standardized 

residual used in computing NLL for a single catch observation and in making residual 
plots is ( ) YYYY CCr σˆ−= . 
 
Fishery length composition data 
 

Data describing numbers or relative numbers of individuals at length in catch data 
(fishery catch-at-length) are modeled as multinomial proportions cy,L: 
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The NLL for the observed proportions in each year is computed based on the 

kernel for the multinomial distribution, the model’s estimate of proportional catch-at-
length ( )Yĉ  and an estimate of effective sample size Y

C N  supplied by the user.  Care is 
required in specifying effective sample sizes, because catch-at-length data typically carry 
substantially less information than would be expected based on the number of individuals 
measured (Fournier and Archibald, 1982; Pennington et al., 2002).  Typical conventions 
make Y

cN ≤ 200 or set Y
C N equal to the number of trips or tows sampled.  Effective 

sample sizes are sometimes chosen based on goodness of fits in preliminary model runs 
(Methot, 2000; Butler et al., 2003). 

 
Standardized residuals are not used in computing NLL fishery length composition 

data.  However, approximate standardized residuals ( ) LyLyLyy ccr ,,, ˆ σ−= with standard 

deviations ( ) y
c

LyLyLy Ncc ,,, ˆ1ˆ −=σ based on the theoretical variance for proportions are 
computed for use in making residual plots. 
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Survey index data 
 

In CASA model calculations, “survey indices” are data from any source that 
reflect relative proportional changes in annual abundance or biomass over time.  In the 
current implementation of the CASA model, survey indices are assumed to be linear 
indices of abundance or biomass so that changes in the index (apart from measurement 
error) are assumed due to proportional changes in the population.  Nonlinear commercial 
catch rate data are handled separately (see below).   

 
In general, survey index data give one number that summarizes relative 

abundance for a wide range of length bins.  Catch at length data from surveys are handled 
separately (see below).  For example, a survey index might consist of stratified mean 
numbers per tow for all size bins in a bottom trawl survey carried out over a series of 
years, with one observation of the index per year of sampling. 

 
NLL calculations for survey indices use predicted values calculated: 
 
  ykkyk AqI ,,

ˆ =  
 

where qk is a scaling factor for survey index k, and Ak,y is abundance or biomass available 
to the survey.   Scaling factors are calculated seqs

ϖ= where ϖs is estimable and survey-
specific.  Available abundance is: 
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where sk,L is size-specific selectivity of the survey, τk,y=Jk,y/365 where Jk,y is the mean 
Julian date of the survey, and ykyZe ,τ− is a correction for mortality prior to the survey. 
Options and procedures for estimating survey selectivity patterns are the same as for 
fishery selectivity patterns, but survey selectivity patterns are not allowed to change over 
time.  Available biomass is calculated in the same way except that body weights wL are 
included in the product on the right hand side.  

 
The range of lengths (firstk ≥ 1 to lastk ≤ nL) included in the calculation of Ak,y is 

specified by the user for each survey.  In addition, the user specifies whether firstk and 
lastk are plus-groups meant to contain smaller or larger individuals.  

 
NLL calculations for survey index data assume that log scale measurement errors 

are either normally distributed (default approach) or from a t distribution (robust 
estimation approach).  In either case, log scale measurement errors are assumed to have 
mean zero and log scale standard errors either estimated internally by the model or 
calculated from the arithmetic CVs supplied with the survey data.   

 
The standardized residual used in computing NLL for one survey index 
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observation is ( ) ykykykyk IIr ,,,, /ˆln σ=  where Ik,y is the observation.  The standard 
deviations yk ,σ will vary among surveys and years if CVs are used to specify the variance 
of measurement errors.  Otherwise a single standard deviation is estimated internally for 
the survey as a whole.    
 
Survey length composition data 

 
NLL calculations for survey length composition data are roughly analogous to 

calculations for fishery length composition data, except that measurement errors in length 
data can be modeled explicitly.  Survey length composition data represent a sample from 
the true population length composition which is modified by survey selectivity, sampling 
errors (due to having a limited number of tows) and, if applicable, errors in recording 
length data (i.e. errors in observations to size bins).  For example, with errors in length 
measurements, individuals belonging to length bin j, might be mistakenly assigned to 
adjacent length bins j-2, j-1, j+1 or j+2.  Well-tested methods for dealing with errors in 
length data can be applied if some information about the distribution of the errors is 
available (e.g. Methot 2000). 

 
Survey length composition data are treated as multinomial proportions calculated: 
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The model’s estimate of length composition for the population available to the 

survey is: 
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The expected length composition ykA ,'

r
for survey catches, including length 

measurement errors is: 
 
  kykyk EAA ,,'

rr
=  

 
where kE is an error matrix that simulates errors in collecting length data by mapping true 
length bins in the model to observed length bins in the data.   

 
The error matrix kE  has nL rows (one for each true length bin) and nL columns 

(one for each possible observed length bin).  For example, row k and column j of the 
error matrix gives the conditional probability P(k|j) of being assigned to bin k, given that 
an individual actually belongs to bin j.  More generally, column j gives the probabilities 
that an individual actually belonging to length bin j will be recorded as being in length 
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bins j-2, j-1, j, j+1, j+2 and so on.  The columns of kE add to one to account for all 
possible outcomes in assigning individuals to observed length bins.  

  
In CASA, the probabilities in the error matrix are computed from a normal 

distribution with mean zero and keCV π= , where πk is an estimable parameter.  The 
normal distribution is truncated to cover a user-specified number of observed bins. 

 
The NLL for observed proportions at length in each survey and year is computed 

with the kernel for a multinomial distribution, the model’s estimate of proportional 
survey catch-at-length ( )Lyki ,,

ˆ  and an estimate of effective sample size Y
I N  supplied by 

the user.  Standardized residuals for residual plots are computed as for fishery length 
composition data. 
 
LPUE data 
 

Commercial landings per unit of fishing effort (LPUE) data are modeled in the 
current implementation of the CASA model as a linear function of average biomass 
available to the fishery, and as a nonlinear function of average available abundance.  The 
nonlinear relationship with abundance is meant to reflect limitations in “shucking” 
capacity for sea scallops.11  Briefly, tows with large numbers of scallops require more 
time to sort and shuck and therefore reduce LPUE from fishing trips when abundance is 
high.  The effect is exaggerated when the catch is composed of relatively small 
individuals.  In other words, at any given level of stock biomass, LPUE is reduced as the 
number of individuals in the catch increases or, equivalently, as the mean size of 
individuals in the catch is reduced.   
 

Average available abundance in LPUE calculations is: 

  ∑
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and average available biomass is: 

  ∑
=

=
Ln

L
LyLLyy

a NwsB
1

,,  

 
Predicted values for LPUE data are calculated: 
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Measurement errors in LPUE data are assumed normally distributed with standard 

deviations yyy LCV
)

=σ .  Standardized residuals are ( ) yyyy LLr σˆ−= . 

                                                 
11 D. Hart, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA, pers. 
comm. 
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Growth data 
 

Growth data in CASA consist of records giving initial length, length after one 
year of growth, and number of corresponding observations.  Growth data may be used to 
help estimate growth parameters that determine the growth matrix P .  The first step is to 
convert the data for each starting length to proportions: 
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where n(b,a) is the number of individuals starting at size that grew to size b after one 
year.  The NLL is computed assuming that observed proportions p(a|b) at each starting 
size are a sample from a multinomial distribution with probabilities given by the 
corresponding column in the models estimated growth matrix P .  The user must specify 
an effective sample size j

PN based, for example, on the number of observations in each 
bin or the number of individuals contributing data to each bin.  Observations outside bin 
ranges specified by the user are ignored.  Standardized residuals for plotting are 
computed based on the variance for proportions. 
 
Survey gear efficiency data 
 

Survey gear efficiency for towed trawls and dredges is the probability of capture 
for individuals anywhere in the water column or sediments along the path swept by the 
trawl.  Ideally, the area surveyed and the distribution of the stock coincide so that: 
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where A is the area of the stock, ak is the area swept during one tow and 0<ek≤  1 is 
efficiency of the survey gear.  Efficiency estimates from studies outside the CASA model 
may be used as prior information in CASA.  The user supplies the mean and CV for the 
prior estimate of efficiency, along with estimates of Ak and ak.   Then, at each iteration of 
the model, the gear efficiency implied by the current estimate of qk is computed.  The 
model then calculates the NLL of the implied efficiency estimate assuming it was 
sampled from a beta distribution with the user-specified mean and CV.  Alternatively, in 
Bayesian jargon, the prior probability of the implied efficiency estimate is computed and 
added to the overall objective function. 
 

Care should be taken in using prior information from field studies designed to 
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estimate survey gear efficiency.  Field studies usually estimate efficiency with respect to 
individuals on the same ground (e.g. by sampling the same grounds exhaustively or with 
two types of gear).  It seems reasonable to use an independent efficiency estimate and the 
corresponding survey index to estimate abundance in the area surveyed.  However, stock 
assessment models are usually applied to the entire stock, which is probably distributed 
over a larger area than the area covered by the survey.  Thus the simple abundance 
calculation based on efficiency and the survey index will be biased low for the stock as a 
whole.   

 
Maximum fishing mortality rate 
 

Stock assessment models occasionally estimate absurdly high fishing mortality 
rates because abundance estimates are too small.  The NLL component used to prevent 
this potential problem is: 
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where: 

  
otherwise

FtifFt
dt 0

Φ>Φ−
=  

 
and  
 

( )
otherwise

FtifFt
qt 0

/ln Φ>Φ
=  

 
 
with the user-specified threshold value Φ set larger than the largest value of Ft that might 
possibly be expected (e.g. Φ=3).  The weighting factor λ is normally set to a large value 
(e.g. 1000). 
 
 




