General Principles of Software
Validation; Final Guidance for
Industry and FDA Staff

Document issued on: January 11, 2002

This document super sedes the draft document, " General Principles of
Softwar e Validation, Version 1.1, dated June 9, 1997.

CD %; U.S. Department Of Health and Human Services
R S Food and Drug Administration
" ﬂ__ﬁnﬁ’ Center for Devices and Radiological Health

Center for Biologics Evaluation and Research

Preface

Public Comment

Comments and suggestions may be submitted at any time for Agency consideration to Dockets
Management Branch, Divison of Management Systems and Policy, Office of Human Resources and
Management Services, Food and Drug Administration, 5630 Fishers Lane, Room 1061, (HFA-305),
Rockville, MD, 20852. When submitting comments, please refer to the exact title of this guidance
document. Comments may not be acted upon by the Agency until the document is next revised or
updated.

For questions regarding the use or interpretation of this guidance which involve the Center for Devices
and Radiological Health (CDRH), contact John F. Murray at (301) 594-4659 or email
jfm@cdrh.fda.gov

For questions regarding the use or interpretation of this guidance which involve the Center for Biologics
Evaluation and Research (CBER) contact Jerome Davis at (301) 827-6220 or emall
davis@cher.fda.gov.

Additional Copies

CDRH

Additiond copies are available from the Internet at:
http:/mww.fda.gov/cdrh/comp/guidance/938.pdf or via CDRH Facts-On-Demand. In order to
receive this document via your fax machine, cal the CDRH Facts-On-Demand system at 800-
899-0381 or 301-827-0111 from a touch-tone telephone. Press 1 to enter the system. At the
second voice prompt, press 1 to order a document. Enter the document number 938 followed
by the pound sign (#). Follow the remaining voice prompts to complete your request.

CBER

Additiond copies are available from the Internet at: http:/Amww.fdagov/cber/guiddineshtm, by
writing to CBER, Office of Communication, Training, and Manufacturers Assistance (HFM-
40), 1401 Rockville Pike, Rockville, Maryland 20852-1448, or by telephone request at 1-
800-835-5709 or 301-827-1800.

Pageii

SECTION 1. PURPOSE ..ottt sttt ste et et e e saesaeneeneneas 1
SECTION 2. SCOPE ..ottt ste ettt sae e b e s aeaesesse st e e s sesbe e esestesseneeneneas 1
2 I Y o] o] o= o1 Y2 PP 2
2.2, AUGIENCE ... bttt b et bbbt bt et e et et e bbb e b e neene s 2
2.3. THE LEAST BURDENSOME APPROACH......co e 2
2.4. Regulatory Requirementsfor Software Validation...........cocoeeerereienenene e 3
2.4. Quality System Regulation vs Pre-Market SUbmissions..........ccccceveevecceceeseece e 4
SECTION 3. CONTEXT FOR SOFTWARE VALIDATION.....ccciiiee e 5
3.1. Definitionsand Te MINOIOQYcceerreeeereererieseesieeeeseesieeeesseesseessesseesseesesseesseessesseessens 5
3.1.1 Requirements and SPECITICALIONS.........ccoveiiieeiieieesie et 5
3.1.2 Verification and Validation............ccceeeeiieieiieneeie e nnees 6
3.1.3 IQ/OQ/PQ.....cieiiitisieueetesieeete s e ste sttt e e be et s be et se st et sttt seste e reebe s e nentenee e erennan 7

3.2. Software Development as Part of System DeSIgN........ccocveeereeieniieneenieee e 7
3.3. Softwareis Different from HardWare..........cccceveeieeeneereee e 8
3.4. Benefits of Software Validation..........cccoveiiiineeeie e 9
3.5 DESION REVIBIW ...ttt bbbt bt e e sn et b e b e nn e e e e 9
SECTION 4. PRINCIPLES OF SOFTWARE VALIDATIONoviiiiiieeeeee e 11
I Lo UL = 0 4= 0 £ PSPPSR 11
B T = o = < o] o S 11
4.3, TIME AN EFFOrT ..ottt ettt b e 11
A4, SOFtWAr € LifE CYClO....eeieieeeee et e 11
T = 1T 12
I o 00 =0 [0 =SSOSR 12
4.7. SoftwareValidation After @ Changecooeiiriririeee e 12
VIV =T F= T Lo [@0 = = o L= 12
4.9, INAEPENENCE Of REVIEW......c.ueiiii ittt et e e sre e e neennee s 12

Table of Contents

Pageii

4.10. Flexibility and ReSpONSIDIILYcc.coiiiiiieiiecic et 13

SECTION 5. ACTIVITIESAND TASKS ..o ceeeceeieerte sttt sae e ene e 14
5.1. Software Life CYCle ACHIVITIES.......ccceieee ettt 14
5.2. Typical Tasks SUpPOrting Validation...........cccceoereiiieinnee e s 14

5.2.1. QUAITLY PlANNINGoveieiiiieiieieiee sttt 15
5.2.2. REQUITEMENES......ooiieeie ettt sttt ettt e st e e et esae e teeatesreesseenseeneesseenseeneesneennens 16
I R B 1= o [USSP UROR 17
5.2.4. CONSIrUCtioN OF COOINGvceuveiiiirieriesie ettt sa e sse e 20
5.2.5. Testing by the Software DeVEOPES ... 21
5.2.6. USEr ST TESIINGcveieiitiriieieieiie ettt b e sn e 27
5.2.7. Maintenance and Software Changes..........cccveererieceene e 28

SECTION 6. VALIDATION OF AUTOMATED PROCESS EQUIPMENT AND QUALITY

SYSTEM SOFTWARE.......c ittt sttt te s e s te s tesaesneeneensesesaestesresnessesneeneeneas 30
6.1. How Much Validation Evidence ISNeeded?..........ccocvivinininiininienese e 31
6.2. Defined USer REQUITEMENTS.cciiiiiiiiieeeeeee sttt 32
6.3. Validation of Off-the-Shelf Software and Automated Equipment...........ccccevveeveeenee. 33

APPENDIX A - REFERENCES ..ottt sttt 35
Food and Drug Administration REFENENCES........cccoiiiirieieee s 35
Other GoverNMENt REFEN ENCES........coiiiiie bbb 36
International and National ConsensUS StaNdardsccoveererieneerence e 37
Production Process Softwar € REFEr €NCES.........cccovvieiieiiiee e 38
General Software Quality REFErENCES.........ccov e 39

APPENDIX B - DEVELOPMENT TEAM ..ottt 43

Page iv

General Principles of Software Validation

This document isintended to provide guidance. It representsthe Agency’s current
thinking on thistopic. It does not create or confer any rightsfor or on any person and
does not operate to bind Food and Drug Administration (FDA) or the public. An
alternative approach may be used if such approach satisfies the requirements of the
applicable statutes and regulations.

SECTION 1. PURPOSE

This guidance outlines generd vdidation principles that the Food and Drug Adminigtration (FDA)
consdersto be applicable to the vaidation of medica device software or the vaidation of software
used to design, develop, or manufacture medica devices. Thisfind guidance document, Version 2.0,
supersedes the draft document, General Principles of Software Validation, Version 1.1, dated June
9, 1997.

SECTION 2. SCOPE

This guidance describes how certain provisions of the medical device Qudlity Systemn regulation gpply to
software and the agency’ s current approach to evauating a software vaidation system. For example,
this document lists ements that are acceptable to the FDA for the vaidation of software; however, it
doesnat lig dl of the activities and tasks that mugt, in dl ingtances, be used to comply with the law.

The scope of this guidance is somewhat broader than the scope of vaidation in the strictest definition of
that term. Planning, verification, testing, tracesbility, configuration management, and many other aspects
of good software engineering discussed in this guidance are important activities that together help to
support afina conclusion that software is vaidated.

This guidance recommends an integration of software life cycle management and risk management
activities. Based on the intended use and the safety risk associated with the software to be developed,
the software developer should determine the specific approach, the combination of techniquesto be
used, and the leve of effort to be gpplied. While this guidance does not recommend any specific life
cyclemodd or any specific technique or method, it does recommend that software validation and
verification activities be conducted throughout the entire software life cycle.

Where the software is developed by someone other than the device manufacturer (e.g., off-the-shelf
software) the software developer may not be directly responsible for compliance with FDA regulations.

Page 1

In that case, the party with regulaory responshility (i.e., the device manufacturer) needs to assessthe
adequacy of the off-the-shelf software developer’s activities and determine what additiond efforts are
needed to establish that the software is validated for the device manufacturer’ s intended use.

2.1. APPLICABILITY
This guidance gppliesto:

Software used as a component, part, or accessory of amedica device;

Software that isitself amedica device (eg., blood establishment software);

Software used in the production of adevice (e.g., programmable logic controllers in manufacturing
equipment); and

Software used in implementation of the device manufacturer's quaity system (e.g., software that
records and maintains the device history record).

This document is based on generdly recognized software vdidation principles and, therefore, can be
gpplied to any software. For FDA purposes, this guidance appliesto any software related to a
regulated medica device, as defined by Section 201(h) of the Federa Food, Drug, and Cosmetic Act
(the Act) and by current FDA software and regulatory policy. This document does not specifically
identify which softwareis or is not regul ated.

2.2. AUDIENCE

This guidance provides useful information and recommendetions to the following individuas:

* Persons subject to the medical device Quality System regulation

» Personsrespongble for the design, development, or production of medica device software

» Personsresponsble for the design, development, production, or procurement of automated
tools used for the design, development, or manufacture of medica devices or software tools
used to implement the quality system itself

* FDA Invedtigators

* FDA Compliance Officers

* FDA Scdientific Reviewers

2.3. THE LEAST BURDENSOME APPROACH

We believe we should consider the least burdensome approach in dl areas of medica device regulation.
This guidance reflects our careful review of the rdlevant scientific and lega requirements and what we
believe isthe least burdensome way for you to comply with those requirements. However, if you
believe that an dternative approach would be less burdensome, please contact us so we can consider

Page 2

your point of view. You may send your written comments to the contact person listed in the preface to
this guidance or to the CDRH Ombudsman. Comprehensive information on CDRH’s Ombudsman,
including ways to contact him, can be found on the Internet at:

http://Amwww.fdagov/cdrivresol vingdi sputes’'ombudsman.html.

2.4. REGULATORY REQUIREMENTSFOR SOFTWARE VALIDATION

The FDA'’ s analysis of 3140 medica device recalls conducted between 1992 and 1998 reved s that
242 of them (7.7%) are attributable to software faillures. Of those software related recalls, 192 (or
79%) were caused by software defects that were introduced when changes were made to the software
after itsinitid production and ditribution. Software validation and other related good software
engineering practices discussed in this guidance are a principal means of avoiding such defects and
resultant recals.

Software vdidation is a requirement of the Qudity System regulation, which was published in the
Federal Register on October 7, 1996 and took effect on June 1, 1997. (See Title 21 Code of Federa
Regulations (CFR) Part 820, and 61 Federd Register (FR) 52602, respectively.) Vdidation
requirements gpply to software used as components in medica devices, to software thet isitsdf a
medical device, and to software used in production of the device or in implementation of the device
manufacturer's quaity system.

Unless specificaly exempted in a dassfication regulation, any medica device software product
developed after June 1, 1997, regardless of its device class, is subject to applicable design control
provisons. (Seeof 21 CFR §820.30.) This requirement includes the completion of current
development projects, al new development projects, and al changes made to existing medica device
software. Specific requirements for validation of device software are found in

21 CFR 8820.30(g). Other design controls, such as planning, input, verification, and reviews, are
required for medical device software. (See 21 CFR §820.30.) The corresponding documented results
from these activities can provide additiond support for aconcluson that medica device softwareis
validated.

Any software used to automate any part of the device production process or any part of the quaity
system must be vaidated for itsintended use, as required by 21 CFR 8820.70(i). This requirement
gpplies to any software used to automate device design, testing, component acceptance, manufacturing,
labeling, packaging, digtribution, complaint handling, or to automate any other aspect of the qudity
sysem.

In addition, computer systems used to create, modify, and maintain eectronic records

and to manage dectronic signatures are aso subject to the vaidation requirements.

(See 21 CFR 811.10(a).) Such computer systems must be vaidated to ensure accuracy, rdidbility,
consstent intended performance, and the ability to discern invaid or dtered records.

Page 3

http://www.fda.gov/cdrh/resolvingdisputes/ombudsman.html

Software for the above applications may be developed in-house or under contract. However, software
is frequently purchased off-the-shelf for a particular intended use. All production and/or qudity system
software, even if purchased off-the-shelf, should have documented requirements that fully define its
intended use, and information againgt which testing results and other evidence can be compared, to
show that the software is vaidated for its intended use.

The use of off-the-shelf software in automated medical devices and in automated manufacturing and
quality system operationsisincreasing. Off-the-shelf software may have many capabilities, only afew
of which are needed by the device manufacturer. Device manufacturers are responsible for the
adequacy of the software used in their devices, and used to produce devices. When device
manufacturers purchase " off-the-shelf* software, they must ensure that it will perform as intended in their
chosen application. For off-the-shelf software used in manufacturing or in the quaity system, additiona
guidanceisincluded in Section 6.3 of this document. For device software, additiona useful information
may be found in FDA’s Guidance for Industry, FDA Reviewers, and Compliance on Off-The-Shelf
Software Use in Medical Devices.

24. QUALITY SYSTEM REGULATION VSPRE-MARKET SUBMISSIONS

This document addresses Quaity System regulation issues that involve the implementation of software
vaidation. It provides guidance for the management and control of the software vaidation process.
The management and control of the software validation process should not be confused with any other
vaidation requirements, such as process vaidation for an automated manufacturing process.

Device manufacturers may use the same procedures and records for compliance with quality system and
design control requirements, as well as for pre-market submissonsto FDA. This document does not
cover any specific safety or efficacy issues related to software vaidation. Design issues and
documentation requirements for pre-market submissions of regulated software are not addressed by this
document. Specific issues reated to safety and efficacy, and the documentation required in pre-market
submissions, should be addressed to the Office of Device Evauation (ODE), Center for Devicesand
Radiological Hedth (CDRH) or to the Office of Blood Research and Review, Center for Biologics
Evauation and Research (CBER). See the referencesin Appendix A for applicable FDA guidance
documents for pre-market submissions.

Page 4

http://www.fda.gov/cdrh/ode/1252.html

SECTION 3. CONTEXT FOR SOFTWARE VALIDATION

Many people have asked for specific guidance on what FDA expects them to do to ensure compliance
with the Qudity System regulation with regard to software vaidation. Information on software
vaidation presented in this document is not new. Vdidation of software, using the principles and tasks
listed in Sections 4 and 5, has been conducted in many segments of the software industry for well over
20 years.

Dueto the great variety of medica devices, processes, and manufacturing facilities, it is not possble to
gate in one document al of the specific vaidation dements that are gpplicable. However, agenerd
gpplication of severa broad concepts can be used successfully as guidance for software validation.
These broad concepts provide an acceptable framework for building a comprehensive approach to
oftware validation. Additiona specific information is available from many of the referencesligted in
Appendix A.

3.1. DEFINITIONSAND TERMINOLOGY

Unless defined in the Qudity System regulation, or otherwise specified below, dl other terms used in
this guidance are as defined in the current edition of the FDA Glossary of Computerized System and
Software Development Terminology.

The medical device Quality System regulation (21 CFR 820.3(k)) defines "establish” to mean "define,
document, and implement.” Where it appears in this guidance, the words "establish and “ established”
should be interpreted to have this same meaning.

Some definitions found in the medica device Qudity System regulation can be confusing when
compared to commonly used terminology in the software industry. Examples are requirements,
specification, verification, and vaidation.

3.1.1 Requirementsand Specifications

While the Qudity System regulation states that design input requirements must be documented, and that
specified requirements must be verified, the regulation does not further clarify the distinction between the
terms “requirement” and “ specification.” A requirement can be any need or expectation for a system
or for its software. Requirements reflect the stated or implied needs of the customer, and may be
market-based, contractud, or statutory, aswell as an organization'sinterna requirements. There can be
many different kinds of requirements (e.g., design, functional, implementation, interface, performance, or
physica requirements). Software requirements are typically derived from the system requirements for
those aspects of system functionality that have been alocated to software. Software requirements are
typicdly stated in functiona terms and are defined, refined, and updated as a development project
progresses. Success in accuratdly and completely documenting software requirementsis acrucid factor
in successtul vaidation of the resulting software.

Page 5

A specification is defined as “a document that states requirements.” (See 21 CFR §820.3(y).) It may
refer to or include drawings, patterns, or other relevant documents and usudly indicates the means and
the criteriawhereby conformity with the requirement can be checked. There are many different kinds of
written specifications, e.g., System requirements specification, software requirements specification,
software design specification, software test specification, software integration specification, etc. All of
these documents establish “ specified requirements’ and are design outputs for which various forms of
verification are necessary.

3.1.2 Veification and Validation

The Qudlity System regulation is harmonized with 1SO 8402:1994, which treets “verification” and
“vaidation” as separate and digtinct terms. On the other hand, many software engineering journa
articles and textbooks use the terms "verification” and "validation” interchangegbly, or in some cases
refer to software "verification, vaidation, and testing (VV&T)" asif it isasngle concept, with no
distinction among the three terms.

Softwar e verification provides objective evidence that the design outputs of a particular phase of the
software development life cycle meet dl of the specified requirements for that phase. Software
verification looks for consstency, completeness, and correctness of the software and its supporting
documentation, asit is being developed, and provides support for a subsequent conclusion that software
isvdidated. Software testing is one of many verification activities intended to confirm that software
development output meets its input requirements. Other verification activities include various static and
dynamic andyses, code and document inspections, wakthroughs, and other techniques.

Softwar e validation is a part of the design vdidation for afinished device, but is not separately defined
in the Quality System regulation. For purposes of this guidance, FDA congders software vaidation to
be “confirmation by examination and provision of objective evidence that software
specifications conform to user needs and intended uses, and that the particular requirements
implemented through softwar e can be consistently fulfilled.” In practice, software vaidation
activities may occur both during, as well as a the end of the software development life cycle to ensure
that al requirements have been fulfilled. Since software isusudly part of alarger hardware system, the
vaidation of software typicaly includes evidence that al software requirements have been implemented
correctly and completely and are traceable to system requirements. A conclusion that software is
vaidated is highly dependent upon comprehengve software testing, inspections, analyses, and other
verification tasks performed at each stage of the software development life cycle. Testing of device
software functiondity in asmulated use environment, and user Ste testing are typicdly included as
components of an overdl design vaidation program for a software automated device.

Software verification and vaidation are difficult because a developer cannot test forever, and it is hard
to know how much evidence is enough. In large measure, software validation is a matter of developing
a“leve of confidence’ that the device meets dl requirements and user expectations for the software
automated functions and fesatures of the device. Measures such as defects found in specifications
documents, estimates of defects remaining, testing coverage, and other techniques are dl used to

Page 6

develop an acceptable level of confidence before shipping the product. The level of confidence, and
therefore the leve of software vaidation, verification, and testing effort needed, will vary depending
upon the safety risk (hazard) posed by the automated functions of the device. Additiona guidance
regarding safety risk management for software may be found in Section 4 of FDA’s Guidance for the
Content of Pre-market Submissions for Software Contained in Medical Devices, and in the
internationa standards 1SO/IEC 14971-1 and |EC 60601-1-4 referenced in Appendix A.

3.1.3 1Q/OQ/PQ

For many years, both FDA and regulated industry have attempted to understand and define software
vdidation within the context of process vdidation terminology. For example, industry documents and
other FDA vadidation guidance sometimes describe user Ste software vaidetion in terms of ingtalation
qudification (1Q), operationd qudification (OQ) and performance qudification (PQ). Definitions of
these terms and additiond information regarding 1Q/OQ/PQ may be found in FDA’s Guideline on
General Principles of Process Validation, dated May 11, 1987, and in FDA’s Glossary of
Computerized System and Software Development Ter minology, dated August 1995.

While 1Q/OQ/PQ terminology has served its purpose well and is one of many legitimate ways to
organize software vaidation tasks at the user Ste, this terminology may not be well understood among
many software professionals, and it is not used e sawherein this document. However, both FDA
personnel and device manufacturers need to be aware of these differences in terminology as they ask for
and provide information regarding software vaidation.

3.2. SOFTWARE DEVELOPMENT ASPART OF SYSTEM DESIGN

The decison to implement system functiondity usng software is one that is typically made during system
design. Software requirements are typicaly derived from the overal system requirements and design for
those aspectsin the system that are to be implemented using software. There are user needs and
intended uses for afinished device, but userstypicaly do not specify whether those requirements are to
be met by hardware, software, or some combination of both. Therefore, software validation must be
consdered within the context of the overdl design validation for the system.

A documented requirements specification represents the user's needs and intended uses from which the
product is developed. A primary god of software vaidation isto then demondirate that al completed
software products comply with al documented software and system requirements. The correctness and
completeness of both the system requirements and the software requirements should be addressed as
part of the design validation process for the device. Software vaidation includes confirmation of
conformance to al software specifications and confirmation that al software requirements are tracesble
to the system specifications. Confirmation is an important part of the overal desgn vdidation to ensure
that al aspects of the medical device conform to user needs and intended uses.

Page 7

http://www.fda.gov/cdrh/ode/425.pdf
http://www.fda.gov/cdrh/ode/swareval.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/cdrh/ode/57.html

3.3. SOFTWARE ISDIFFERENT FROM HARDWARE

While software shares many of the same engineering tasks as hardware, it has some very important
differences. For example:

The vast mgjority of software problems are tracegble to errors made during the design and
development process. While the quality of a hardware product is highly dependent on design,
development and manufacture, the qudity of a software product is dependent primarily on
design and development with a minimum concern for software manufacture. Software
manufacturing cons s of reproduction that can be easly verified. Itisnot difficult to
manufacture thousands of program copies that function exactly the same as the origind; the
difficulty comesin getting the original program to meet dl specifications.

One of the mogt Sgnificant feetures of software is branching, i.e., the ability to execute
dternative series of commands, based on differing inputs. This feature isamgor contributing
factor for another characteristic of software — its complexity. Even short programs can be very
complex and difficult to fully understand.

Typicdly, testing done cannot fully verify that software is complete and correct. In addition to
testing, other verification techniques and a structured and documented devel opment process
should be combined to ensure a comprehensive vaidation approach.

Unlike hardware, software is not a physical entity and does not wear out. In fact, software may
improve with age, as latent defects are discovered and removed. However, as software is
congtantly updated and changed, such improvements are sometimes countered by new defects
introduced into the software during the change.

Unlike some hardware failures, software failures occur without advanced warning. The
software s branching that dlowsit to follow differing paths during execution, may hide some
latent defects until long after a software product has been introduced into the marketplace.

Another related characterigtic of softwareis the speed and ease with which it can be changed.
Thisfactor can cause both software and non-software professionas to believe that software
problems can be corrected easlly. Combined with alack of understanding of software, it can
lead managersto bdieve that tightly controlled engineering is not needed as much for software
asitisfor hardware. Infact, the oppositeistrue. Because of its complexity, the
development process for softwar e should be even moretightly controlled than for
hardware, in order to prevent problemsthat cannot be easily detected later in the
development process.

Seemingly insgnificant changes in software code can create unexpected and very sgnificant
problems el sewhere in the software program. The software development process should be
aufficiently well planned, controlled, and documented to detect and correct unexpected results
from software changes.

Page 8

Given the high demand for software professionas and the highly mohbile workforce, the software
personne who make maintenance changes to software may not have been involved in the
origina software development. Therefore, accurate and thorough documentation is essentidl.

Higtoricdly, software components have not been as frequently standardized and interchangeable
as hardware components. However, medica device software devel opers are beginning to use
component-based development tools and techniques. Object-oriented methodologies and the
use of off-the-shelf software components hold promise for faster and less expensive software
development. However, component-based approaches require very careful attention during
integration. Prior to integration, time is needed to fully define and devel op reusable software
code and to fully understand the behavior of off-the-shelf components.

For these and other reasons, softwar e engineering needs an even greater level of managerial
scrutiny and control than does har dwar e engineering.

3.4. BENEFITSOF SOFTWARE VALIDATION

Software vdidation isacritica tool used to assure the quaity of device software and software
automated operations. Software vaidation can increase the usability and rdiability of the device,
resulting in decreased failure rates, fewer recalls and corrective actions, less risk to patients and users,
and reduced liability to device manufacturers. Software validation can aso reduce long term costs by
making it eeser and less codtly to rdiably modify software and revdidate software changes. Software
mai ntenance can represent avery large percentage of the total cost of software over its entire life cycle.
An established comprehensve software vaidation process hel ps to reduce the long-term cost of
software by reducing the cost of vaidation for each subsequent release of the software.

3.5 DESIGN REVIEW

Design reviews are documented, comprehensive, and systematic examinations of a design to evauate
the adequacy of the design requirements, to evauate the capability of the design to meet these
requirements, and to identify problems. While there may be many informal technica reviews that occur
within the development team during a software project, aforma design review is more structured and
includes participation from others outside the development team. Formal design reviews may reference
or include results from other forma and informd reviews. Design reviews may be conducted separately
for the software, after the software is integrated with the hardware into the system, or both. Design
reviews should include examination of development plans, requirements specifications, design
specifications, testing plans and procedures, al other documents and activities associated with the
project, verification results from each stage of the defined life cycle, and vaidation results for the overdl
device.

Desgn review isaprimary tool for managing and eva uating development projects. For example, forma
design reviews dlow management to confirm that dl gods defined in the software vdidation plan have

Page 9

been achieved. The Qudity System regulation requires thet at least one formal design review be
conducted during the device design process. However, it is recommended that multiple design reviews
be conducted (e.g., a the end of each software life cycle activity, in preparation for proceeding to the
next activity). Forma design review is especidly important at or near the end of the requirements
activity, before mgjor resources have been committed to specific design solutions. Problems found a
this point can be resolved more easily, save time and money, and reduce the likelihood of missing a
critica issue,

Answers to some key questions should be documented during formal design reviews. These include:

Have the appropriate tasks and expected results, outputs, or products been established for each
oftware life cycle activity?

Do the tasks and expected results, outputs, or products of each software life cycle activity:

v Comply with the requirements of other software life cycle activitiesin terms of correctness,
completeness, consistency, and accuracy?

v Satisfy the standards, practices, and conventions of that activity?

v Edtablish a proper basis for initiating tasks for the next software life cycdle activity?

Page 10

SECTION 4. PRINCIPLES OF SOFTWARE VALIDATION

This section lists the generd principles that should be considered for the vdidation of software.

4.1. REQUIREMENTS

A documented software requirements specification provides a basdline for both vaidation and
verification. The software validation process cannot be completed without an established software
requirements specification (Ref: 21 CFR 820.3(z) and (aa) and 820.30(f) and (g)).

4.2. DEFECT PREVENTION

Software qudlity assurance needs to focus on preventing the introduction of defects into the software
development process and not on trying to “test qudity into” the software code after it is written.
Software testing is very limited inits ability to surface dl latent defectsin software code. For example,
the complexity of most software preventsit from being exhaustively tested. Softwar e testingisa
necessary activity. However, in most cases softwar e testing by itself is not sufficient to
establish confidence that the software isfit for itsintended use. In order to establish that
confidence, software developers should use a mixture of methods and techniques to prevent software
errors and to detect software errors that do occur. The “best mix” of methods depends on many
factors including the devel opment environment, application, size of project, language, and risk.

4.3. TIME AND EFFORT

To build a case that the software is validated requires time and effort. Preparation for software
vaidation should begin early, i.e., during design and development planning and design input. Thefina
conclusion that the software is vaidated should be based on evidence collected from planned efforts
conducted throughout the software lifecycle.

44, SOFTWARE LIFE CYCLE

Software vaidation takes place within the environment of an established software life cycle. The
software life cycle contains software engineering tasks and documentation necessary to support the
software vaidation effort. In addition, the software life cycde contains specific verification and vaidation
tasks that are appropriate for the intended use of the software. This guidance does not recommend any
particular life cycle models— only that they should be selected and used for a software development
project.

Page 11

4.5. PLANS

The software vdidation process is defined and controlled through the use of aplan. The software
vaidation plan defines “what” is to be accomplished through the software vdidetion effort. Software
vdidation plans are asignificant quaity sysemtool. Software vaidation plans pecify areas such as
scope, approach, resources, schedules and the types and extent of activities, tasks, and work items.

4.6. PROCEDURES

The software vaidation process is executed through the use of procedures. These procedures establish
“how” to conduct the software vaidation effort. The procedures should identify the specific actions or
sequence of actions that must be taken to complete individua vaidation activities, tasks, and work
items.

4.7. SOFTWARE VALIDATION AFTER A CHANGE

Due to the complexity of software, aseemingly smdl loca change may have a significant globa system
impact. When any change (even asmdl change) is made to the software, the vdidation status of the
software needs to be re-established. Whenever softwareis changed, a validation analysis should
be conducted not just for validation of the individual change, but also to deter mine the extent
and impact of that change on the entir e softwar e system. Based on this analyss, the software
developer should then conduct an appropriate level of software regression testing to show that
unchanged but vulnerable portions of the system have not been adversdy affected. Design controls and
appropriate regression testing provide the confidence that the software is validated after a software
change.

4.8. VALIDATION COVERAGE

Validation coverage should be based on the software’ s complexity and safety risk — not on firm sze or
resource condraints. The selection of vaidation activities, tasks, and work items should be
commensurate with the complexity of the software design and the risk associated with the use of the
software for the specified intended use. For lower risk devices, only basdline vaidation activities may
be conducted. Asthe risk increases additiond validation activities should be added to cover the
additiond risk. Vdidation documentation should be sufficient to demongtrate that al software vaidation
plans and procedures have been completed successfully.

4.9. INDEPENDENCE OF REVIEW

Validation activities should be conducted using the basic quality assurance precept of “independence of
review.” Sdf-vdidation isextremdy difficult. When possble, an independent evduation is dways
better, especidly for higher risk gpplications. Some firms contract out for a third-party independent

Page 12

verification and vdidation, but this solution may not dways be feasble. Another gpproach isto assign
interna staff members that are not involved in a particular design or its implementation, but who have
sufficient knowledge to evauate the project and conduct the verification and vaidation activities. Smaller
firms may need to be credtive in how tasks are organized and assigned in order to maintain internd
independence of review.

4.10. FLEXIBILITY AND RESPONSIBILITY

Specific implementation of these software vaidation principles may be quite different from one
goplication to another. The device manufacturer has flexibility in choosing how to apply these vaidation
principles, but retains ultimate responsibility for demondirating that the software has been validated.

Software is designed, devel oped, vaidated, and regulated in awide spectrum of environments, and for
awide variety of deviceswith varying levels of risk. FDA regulated medica device applicationsinclude
software that:

Is a component, part, or accessory of amedica device;
Isitself amedical device; or
Is used in manufacturing, design and development, or other parts of the qudity system.

In each environment, software components from many sources may be used to creete the application
(e.g., in-house devel oped software, off-the-shelf software, contract software, shareware). In addition,
software components come in many different forms (e.g., goplication software, operating systems,
compilers, debuggers, configuration management tools, and many more). The vaidation of softwarein
these environments can be a complex undertaking; therefore, it is appropriate that dl of these software
vaidation principles be congdered when designing the software vaidation process. The resultant
software vaidation process should be commensurate with the safety risk associated with the system,
device, or process.

Software vaidation activities and tasks may be dispersed, occurring at different locations and being
conducted by different organizations. However, regardless of the distribution of tasks, contractua
relaions, source of components, or the development environment, the device manufacturer or
specification developer retains ultimate responghbility for ensuring that the software is vaidated.

Page 13

SECTIONS5. ACTIVITIESAND TASKS

Software vdidation is accomplished through a series of activities and tasks that are planned and
executed at various stages of the software development life cycle. These tasks may be onetime
occurrences or may be iterated many times, depending on the life cycle modd used and the scope of
changes made as the software project progresses.

5.1. SOFTWARE LIFE CYCLE ACTIVITIES

This guidance does not recommend the use of any specific software life cycle model. Software
developers should establish a software life cycle model that is appropriate for their product and
organization. The software life cycle modd that is selected should cover the software from its birth to its
retirement. Activitiesin atypicd software life cycle modd include the following:

Qudity Planning

Syslem Requirements Definition

Detailed Software Requirements Specification
Software Design Specification

Congtruction or Coding

Teding

Ingtallation

Operation and Support

Maintenance

Retirement

Verification, testing, and other tasks that support software vaidation occur during each of these
activities. A life cyclemodd organizes these software development activitiesin various ways and
provides aframework for monitoring and controlling the software development project. Severd
software life cycle models (e.g., waterfdl, spird, rapid prototyping, incremental development, etc.) are
defined in FDA’s Glossary of Computerized System and Software Development Terminology,
dated August 1995. These and many other life cycle models are described in various references listed

in Appendix A.

5.2. TYPICAL TASKS SUPPORTING VALIDATION

For each of the software life cycle activities, there are certain “typica” tasks that support aconclusion
that the software isvalidated. However, the specific tasks to be performed, their order of performance,
and theiteration and timing of their performance will be dictated by the specific software life cycle
mode! that is selected and the safety risk associated with the software application. For very low risk
gpplications, certain tasks may not be needed at dl. However, the software developer should at least
consider each of these tasks and should define and document which tasks are or are not appropriate for

Page 14

http://www.fda.gov/ora/inspect_ref/igs/gloss.html

their specific application. The following discussion is generic and is not intended to prescribe any
particular software life cycle mode or any particular order in which tasks are to be performed.

5.2.1. Quality Planning

Design and development planning should culminate in a plan thet identifies necessary tasks, procedures
for anomaly reporting and resol ution, necessary resources, and management review requirements,
including forma design reviews. A software life cycle modd and associated activities should be
identified, as well as those tasks necessary for each software life cycle activity. The plan should include:

The specific tasks for each life cycle activity;

Enumeration of important qudlity factors (e.g., rdiability, maintainability, and usahility);
Methods and procedures for each task;

Task acceptance criteria;

Criteriafor defining and documenting outputs in terms that will alow evaudtion of their
conformance to input requirements,

Inputs for each task;

Outputs from each task;

Roles, resources, and responsihilities for each task;

Risks and assumptions;, and

Documentation of user needs.

Management must identify and provide the gppropriate software development environment and
resources. (See 21 CFR 8820.20(b)(1) and (2).) Typicaly, each task requires personnel aswell as
physical resources. The plan should identify the personnd, the facility and equipment resources for each
task, and therole that risk (hazard) management will play. A configuration management plan should be
developed that will guide and control multiple parale development activities and ensure proper
communications and documentation. Controls are hecessary to ensure positive and correct
correspondence among al approved versions of the specifications documents, source code, object
code, and test suites that comprise a software system. The controls also should ensure accurate
identification of, and access to, the currently approved versons.

Procedures should be created for reporting and resolving software anomaies found through vaidation
or other activities. Management should identify the reports and specify the contents, format, and
responsible organizationa elements for each report. Procedures aso are necessary for the review and
gpprova of software development results, including the responsible organizational eements for such
reviews and gpprovals.

Typicd Tasks— Qudity Planning

Risk (Hazard) Management Plan
Configuration Management Plan

Page 15

Software Qudity Assurance Plan

- Software Veification and Vdidation Plan
o Veification and Vdidation Tasks, and Acceptance Criteria
o Schedule and Resource Allocation (for software verification and vaidation activities)
0 Reporting Requirements

- Formd Design Review Reguirements

- Other Technicd Review Reguirements

Problem Reporting and Resolution Procedures
Other Support Activities

5.2.2. Requirements

Requirements development includes the identification, analyss, and documentation of information about
the device and itsintended use. Areas of pecia importance include dlocation of system functionsto
hardware/software, operating conditions, user characteristics, potential hazards, and anticipated tasks.
In addition, the requirements should state clearly the intended use of the software.

The software requirements specification document should contain a written definition of the software
functions. Itisnot possible to validate software without predetermined and documented software
requirements. Typica software requirements specify the following:

All software system inputs;

All software system outputs,

All functions that the software system will perform;

All performance requirements that the software will mest, (e.g., data throughput, reliability, and
timing);

The definition of al externa and user interfaces, aswell as any internd software-to-system
interfaces,

How users will interact with the system;

What condtitutes an error and how errors should be handled;

Required response times,

The intended operating environment for the software, if thisis adesign condraint (e.g.,
hardware platform, operating system);

All ranges, limits, defaults, and specific vaues that the software will accept; and

All safety rdated requirements, specifications, festures, or functions that will be implemented in
software.

Software safety requirements are derived from atechnical risk management process thet is closaly
integrated with the system requirements devel opment process. Software requirement specifications
should identify clearly the potentid hazards that can result from a software failure in the system as well
as any safety requirements to be implemented in software. The consequences of software failure should
be evaduated, aong with means of mitigating such fallures (e.g., hardware mitigation, defensve
programming, etc.). From thisanayss, it should be possible to identify the most gppropriate measures
necessary to prevent harm.

Page 16

The Qudity System regulation requires a mechanism for addressing incomplete, ambiguous, or
conflicting requirements. (See 21 CFR 820.30(c).) Each requirement (e.g., hardware, software, user,
operator interface, and safety) identified in the software requirements specification should be evauated
for accuracy, completeness, consistency, testability, correctness, and clarity. For example, software
requirements should be evauated to verify that:

There are no internd incong stencies among requirements,

All of the performance requirements for the system have been spelled out;

Fault tolerance, safety, and security requirements are complete and correct;
Allocation of software functions is accurate and complete;

Software requirements are appropriate for the system hazards; and

All requirements are expressed in terms that are mesasurable or objectively verifigble.

A software requirements tracesbility analysis should be conducted to trace software requirements to
(and from) system requirements and to risk andysis results. In addition to any other analyses and
documentation used to verify software requirements, aforma design review is recommended to confirm
that requirements are fully specified and gppropriate before extensve software design efforts begin.
Requirements can be approved and released incrementaly, but care should be taken that interactions
and interfaces among software (and hardware) requirements are properly reviewed, andyzed, and
controlled.

Typica Tasks— Requirements

Priminary Risk Andlyss

Tracegbility Andysis

- Software Requirements to System Requirements (and vice versa)
- Software Requirements to Risk Analyss

Description of User Characterigtics

Listing of Characteristics and Limitations of Primary and Secondary Memory
Software Requirements Evauation

Software User Interface Requirements Analysi's

System Test Plan Generation

Acceptance Test Plan Generation

Ambiguity Review or Andyss

5.2.3. Design

In the design process, the software requirements specification is trandated into alogicd and physica
representation of the software to be implemented. The software design specification is a description of
what the software should do and how it should do it. Due to complexity of the project or to enable

Page 17

persons with varying levels of technicd responghbilities to clearly understand design information, the
design specification may contain both a high level summary of the design and detailed design
information. The completed software design specification congrains the programmer/coder to stay
within the intent of the agreed upon requirements and design. A complete software design specification
will relieve the programmer from the need to make ad hoc design decisons.

The software design needs to address human factors. Use error caused by designs that are either
overly complex or contrary to users intuitive expectations for operation is one of the most persstent and
critical problems encountered by FDA. Frequently, the design of the softwareis afactor in such use
errors. Human factors engineering should be woven into the entire design and devel opment process,
including the device design requirements, andyses, and tests. Device safety and usability issues should
be consdered when developing flowcharts, state diagrams, prototyping tools, and test plans. Also, task
and function analyses, risk analyses, prototype tests and reviews, and full usability tests should be
performed. Participants from the user population should be included when applying these
methodologies.

The software design specification should include:

Software requirements specification, including predetermined criteria for acceptance of the
software;

Software risk andysis;

Development procedures and coding guidelines (or other programming procedures);
Systems documentation (e.g., a narrative or a context diagram) that describes the systems
context in which the program isintended to function, including the relationship of hardware,
software, and the physical environment;

Hardware to be used;

Parameters to be measured or recorded;

Logicd gructure (including control logic) and logica processng steps (e.g., agorithms);
Data structures and data flow diagrams,

Definitions of variables (control and data) and description of where they are used;

Error, darm, and warning messages,

Supporting software (e.g., operating systems, drivers, other application software);
Communication links (links among interna modules of the software, links with the supporting
software, links with the hardware, and links with the user);

Security measures (both physical and logical security); and

Any additiond congtraints not identified in the above dements.

The first four of the e ements noted above usualy are separate pre-existing documents that are included
by reference in the software design specification. Software requirements specification was discussed in
the preceding section, as was software risk analysis. Written development procedures serve as aguide
to the organization, and written programming procedures serve as aguide to individua programmers.
As software cannot be vdidated without knowledge of the context in which it isintended to function,
systems documentation is referenced. If some of the above eements are not included in the software, it

Page 18

may be helpful to future reviewers and maintainers of the software if that is clearly Sated (e.g., There are
NO error messages in this program).

The activities that occur during software design have severa purposes. Software design evauations are
conducted to determine if the design is complete, correct, consstent, unambiguous, feasible, and
maintainable. Appropriate congderation of software architecture (e.g., modular structure) during design
can reduce the magnitude of future vaidetion efforts when software changes are needed. Software
design evauations may include andyses of contral flow, data flow, complexity, timing, Szing, memory
dlocation, criticdity andyss, and many other aspects of the desgn. A tracesbility andysis should be
conducted to verify that the software design implements al of the software requirements. Asa
technique for identifying where requirements are not sufficient, the traceability analysis should dso verify
that all aspects of the design are traceable to software requirements. An analysis of communication links
should be conducted to evaluate the proposed design with respect to hardware, user, and related
software requirements. The software risk analysis should be re-examined to determine whether any
additional hazards have been identified and whether any new hazards have been introduced by the
design.

At the end of the software design activity, a Forma Design Review should be conducted to verify that
the design is correct, consstent, complete, accurate, and testable, before moving to implement the
design. Portions of the design can be gpproved and released incrementdly for implementation; but care
should be taken that interactions and communication links among various e ements are properly
reviewed, analyzed, and controlled.

Mog software development modds will beiterative. Thisislikely to result in severd versons of both
the software requirement specification and the software design specification. All approved versons
should be archived and controlled in accordance with established configuration management
procedures.

Typicd Tasks— Design

Updated Software Risk Andysis

Traceability Analyss - Design Specification to Software Requirements (and vice versa)
Software Design Evauation

Design Communication Link Andyss

Module Test Plan Generation

Integration Test Plan Generation

Test Design Generation (module, integration, system, and acceptance)

Page 19

5.24. Congtruction or Coding

Software may be congtructed either by coding (i.e., programming) or by assembling together previoudy
coded software components (e.g., from code libraries, off-the-shelf software, etc.) for usein anew
application. Coding is the software activity where the detailed design specification isimplemented as
source code. Coding isthe lowest level of abstraction for the software development process. It isthe
last stage in decompogtion of the software requirements where module specifications are trandated into

aprogramming language.

Coding usudly involves the use of ahigh-leve programming language, but may aso entail the use of
assembly language (or microcode) for time-critical operations. The source code may be either
compiled or interpreted for use on atarget hardware platform. Decisons on the selection of
programming languages and software build tools (assemblers, linkers, and compilers) should include
consderation of the impact on subsequent qudity evauation tasks (e.g., availability of debugging and
testing tools for the chosen language). Some compilers offer optiond levels and commands for error
checking to assst in debugging the code. Different levels of error checking may be used throughout the
coding process, and warnings or other messages from the compiler may or may not be recorded.
However, a the end of the coding and debugging process, the most rigorous leve of error checking is
normally used to document what compilation errors ill remain in the software. If the most rigorous
leved of error checking is not used for find trandation of the source code, then judtification for use of the
lessrigorous trandation error checking should be documented. Also, for the fina compilation, there
should be documentation of the compilation process and its outcome, including any warnings or other
messages from the compiler and their resolution, or justification for the decison to leave issues
unresolved.

Firms frequently adopt specific coding guiddines that establish qudity policies and procedures related to
the software coding process. Source code should be eva uated to verify its compliance with specified
coding guiddines. Such guidelines should include coding conventions regarding clarity, style, complexity
management, and commenting. Code comments should provide useful and decriptive information for a
module, including expected inputs and outputs, variables referenced, expected data types, and
operations to be performed. Source code should aso be evauated to verify its compliance with the
corresponding detailed design specification. Modules ready for integration and test should have
documentation of compliance with coding guiddines and any other gpplicable qudity policies and
procedures.

Source code evduations are often implemented as code ingpections and code walkthroughs. Such
dtatic andyses provide a very effective means to detect errors before execution of the code. They dlow
for examination of each error in isolaion and can dso help in focusing later dynamic testing of the
software. Firms may use manuad (desk) checking with gppropriate controls to ensure consistency and
independence. Source code eva uations should be extended to verification of interna linkages between
modules and layers (horizontal and vertica interfaces), and compliance with their design specifications.
Documentation of the procedures used and the results of source code evaluations should be maintained
as part of design verification.

Page 20

A source code traceshility andlysisis an important tool to verify that al codeis linked to established
specifications and established test procedures. A source code tracesbility andlysis should be conducted
and documented to verify that:

Each dement of the software design specification has been implemented in code;

Modules and functions implemented in code can be traced back to an eement in the software
design specification and to the risk anaysis,

Tests for modules and functions can be traced back to an eement in the software design
specification and to the risk analys's, and

Tests for modules and functions can be traced to source code for the same modules and
functions.

Typica Tasks— Construction or Coding

Traceability Andyses

- Source Code to Design Specification (and vice versa)

- Test Casesto Source Code and to Design Specification
Source Code and Source Code Documentation Evauation
Source Code Interface Analysis

Test Procedure and Test Case Generation (module, integration, system, and
acceptance)

5.2.5. Testing by the Softwar e Developer

Software testing entails running software products under known conditions with defined inputs and
documented outcomes that can be compared to their predefined expectations. It is atime consuming,
difficult, and imperfect activity. Assuch, it requires early planning in order to be effective and efficient.

Test plans and test cases should be created as early in the software devel opment process as feasible.
They should identify the schedules, environments, resources (personnd, toals, etc.), methodologies,
cases (inputs, procedures, outputs, expected results), documentation, and reporting criteria. The
magnitude of effort to be applied throughout the testing process can be linked to complexity, criticaity,
reliability, and/or safety issues (e.g., requiring functions or modules that produce critical outcomesto be
chdlenged with intensive testing of their fault tolerance festures). Descriptions of categories of software
and software testing effort gppear in the literature, for example:

NIST Specia Publication 500-235, Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric;

NUREG/CR-6293, Verification and Validation Guidelines for High Integrity Systems and
|EEE Computer Society Press, Handbook of Software Reliability Engineering.

Page 21

Software test plans should identify the particular tasks to be conducted at each stage of development
and include judtification of the level of effort represented by their corresponding completion criteria

Software testing has limitations that must be recognized and considered when planning the testing of a
particular software product. Except for the smplest of programs, software cannot be exhaugtively
tested. Generdly it isnot feasible to test a software product with al possible inputs, nor isit possble to
test dl possible data processing paths that can occur during program execution. There is no one type of
testing or testing methodology that can ensure a particular software product has been thoroughly tested.
Tedting of dl program functiondity does not mean dl of the program has been tested. Tegting of dl of a
program'’s code does not mean al necessary functiondity is present in the program. Testing of dl
program functionality and al program code does not mean the program is 100% correct! Software
testing that finds no errors should not be interpreted to mean that errors do not exist in the software
product; it may mean the testing was superficid.

An essentidl element of a software test case is the expected result. 1t isthe key detall that permits
objective evauation of the actud test result. This necessary testing information is obtained from the
corresponding, predefined definition or pecification. A software specification document must identify
what, when, how, why, €tc., isto be achieved with an engineering (i.e., measurable or objectively
verifiable) level of detail in order for it to be confirmed through testing. Thered effort of effective
software testing lies in the definition of what isto be tested rather than in the performance of the test.

A software testing process should be based on principles that foster effective examinations of a software
product. Applicable software testing tenets include:

The expected test outcome is predefined;

A good test case has a high probability of exposing an error;

A successful test is one that finds an error;

Thereisindependence from coding;

Both application (user) and software (programming) expertise are employed,;

Tedters use different tools from coders;

Examining only the usud caseisinaufficient;

Test documentation permits its reuse and an independent confirmation of the pass/fail satus of a
test outcome during subsequent review.

Once the prerequisite tasks (e.g., code ingpection) have been successfully completed, software testing
begins. It garts with unit leve testing and concludes with system leve testing. There may be adistinct
integration level of testing. A software product should be challenged with test cases based onitsinternd
structure and with test cases based on its externa specification. These tests should provide athorough
and rigorous examination of the software product's compliance with its functiond, performance, and
interface definitions and requirements.

Code-based testing is dso known as structurd testing or "white-box" testing. It identifies test cases
based on knowledge obtained from the source code, detailed design specification, and other
development documents. These test cases chalenge the control decisions made by the program; and
the program's data structures including configuration tables. Structura testing can identify "dead” code

Page 22

that is never executed when the program isrun. Structurd testing is accomplished primarily with unit
(module) level testing, but can be extended to other levels of software testing.

Theleve of sructura testing can be evaduated usng metrics that are designed to show what percentage
of the software structure has been evaluated during Structurd testing. These metrics are typicaly
referred to as* coverage” and are a measure of completeness with respect to test selection criteria. The
amount of structural coverage should be commensurate with the level of risk posed by the software.
Use of the term “ coverage” usualy means 100% coverage. For example, if atesting program has
achieved “ gatement coverage,” it means that 100% of the statements in the software have been
executed at least once. Common structural coverage metrics include:

Statement Coverage — This criteriarequires sufficient test cases for each program statement
to be executed at least once; however, its achievement is insufficient to provide confidencein a
software product's behavior.

Decision (Branch) Coverage — This criteria requires sufficient test cases for each program
decision or branch to be executed so that each possible outcome occurs &t least once. Itis
considered to be aminimum level of coverage for most software products, but decison
coverage doneisinsufficient for high-integrity gpplications.

Condition Coverage— This criteria requires sufficient test cases for each conditionin a
program decision to take on all possible outcomes at least once. It differs from branch
coverage only when multiple conditions must be evauated to reach a decision.

Multi-Condition Coverage — This criteriarequires sufficient test cases to exercise dl possible
combinations of conditions in a program decision.

L oop Coverage — This criteria requires sufficient test cases for dl program loopsto be
executed for zero, one, two, and many iterations covering initidization, typica running and
termination (boundary) conditions.

Path Coverage— This criteriarequires sufficient test cases for each feasible path, basis path,
etc., from start to exit of a defined program segment, to be executed at least once. Because of
the very large number of possible paths through a software program, path coverage is generdly
not achievable. The amount of path coverage is normally established based on the risk or
criticdity of the software under test.

Data Flow Coverage— This criteria requires sufficient test cases for each feasible data flow to
be executed at least once. A number of data flow testing Strategies are available.

Definition-based or specification-based testing is dso known as functiond testing or "black-box" testing.
It identifies test cases based on the definition of what the software product (whether it be aunit
(module) or a complete program) isintended to do. These test cases chalenge the intended use or
functiondity of a program, and the program'sinternd and externd interfaces. Functiona testing can be
goplied a dl levels of software testing, from unit to system level testing.

Page 23

The following types of functiond software testing involve generdly increasing levels of effort:

Normal Case— Tegting with usua inputs is necessary. However, testing a software product
only with expected, vaid inputs does not thoroughly test that software product. By itself,
norma case testing cannot provide sufficient confidence in the dependability of the software
product.

Output Forcing — Choosing test inputs to ensure that selected (or al) software outputs are
generated by testing.

Robustness — Software testing should demondirate that a software product behaves correctly
when given unexpected, invdid inputs. Methods for identifying a sufficient set of such test cases
include Equivaence Class Partitioning, Boundary Vaue Andyss, and Specid Case
Identification (Error Guessing). While important and necessary, these techniques do not ensure
that dl of the most appropriate challenges to a software product have been identified for testing.

Combinations of Inputs— The functiond testing methods identified above al emphasize
individua or sngletest inputs. Mogt software products operate with multiple inputs under their
conditions of use. Thorough software product testing should consider the combinations of
inputs a software unit or system may encounter during operation. Error guessing can be
extended to identify combinations of inputs, but it is an ad hoc technique. Cause-effect graphing
isone functiona software testing technique that systematicaly identifies combinations of inputs
to a software product for incluson in test cases.

Functiond and structura software test case identification techniques provide specific inputs for testing,
rather than random test inputs. One weskness of these techniquesis the difficulty in linking structural
and functiona test completion criteria to a software product's reliability. Advanced software testing
methods, such as satistical testing, can be employed to provide further assurance that a software
product is dependable. Statistical testing uses randomly generated test data from defined distributions
based on an operationa profile (e.g., expected use, hazardous use, or malicious use of the software
product). Large amounts of test data are generated and can be targeted to cover particular areas or
concerns, providing an increased possibility of identifying individua and multiple rare operating
conditions that were not anticipated by either the software product's designers or its testers. Statistical
testing aso provides high structura coverage. It does require a stable software product. Thus,
structurd and functiond testing are prerequisites for satistical testing of a software product.

Ancther aspect of software testing is the testing of software changes. Changes occur frequently during
software development. These changes are the result of 1) debugging thet finds an error and it is
corrected, 2) new or changed requirements ("requirements creep™), and 3) modified designs as more
effective or efficient implementations are found. Once a software product has been baselined
(approved), any change to that product should have its own “mini life cycdle,” induding testing. Testing
of a changed software product requires additiona effort. Not only should it demondtrate that the
change was implemented correctly, testing should aso demondirate that the change did not adversdly
impact other parts of the software product. Regression analyss and testing are employed to provide

Page 24

assurance that a change has not created problems esewhere in the software product. Regression
andysisisthe determination of the impact of a change based on review of the rlevant documentation
(e.g., software requirements specification, software design specification, source code, test plans, test
cases, test scripts, etc.) in order to identify the necessary regression tests to be run. Regression testing
isthe rerunning of test cases that a program has previoudy executed correctly and comparing the
current result to the previous result in order to detect unintended effects of a software change.
Regresson analysis and regression testing should aso be employed when using integration methods to
build a software product to ensure that newly integrated modules do not adversaly impact the operation
of previoudy integrated modules.

In order to provide athorough and rigorous examination of a software product, development testing is
typicdly organized into levels. As an example, a software product's testing can be organized into unit,
integration, and system levels of testing.

1) Unit (module or component) level testing focuses on the early examination of sub-program
functiondity and ensures that functiondity not visble a the system level is examined by testing. Unit
testing ensures that quality software units are furnished for integration into the finished software
product.

2) Integration leve testing focuses on the transfer of dataand control across a program'sinterna and
externd interfaces. Externd interfaces are those with other software (including operating system
software), system hardware, and the users and can be described as communications links.

3) Sysem leve testing demondtrates that al specified functionality exists and that the software product
istrusworthy. Thistesting verifies the as-built program's functiondity and performance with respect
to the requirements for the software product as exhibited on the specified operating platform(s).
System level software testing addresses functiona concerns and the following elements of a device's
software that are related to the intended use(s):

Performance issues (e.g., response times, reliability measurements);

Responses to stress conditions, e.g., behavior under maximum load, continuous use;
Operation of internal and externa security features,

Effectiveness of recovery procedures, including disaster recovery;

Usahility,

Compatibility with other software products;

Behavior in each of the defined hardware configurations, and

Accuracy of documentation.

Control measures (e.g., atraceability analysis) should be used to ensure that the intended coverage is
achieved.

System level testing aso exhibits the software product's behavior in the intended operating environmen.
The location of such testing is dependent upon the software developer's ability to produce the target
operating environment(s). Depending upon the circumstances, smulation and/or testing a (potentid)
customer locations may be utilized. Test plans should identify the controls needed to ensure that the

Page 25

intended coverageis achieved and that proper documentation is prepared when planned system leve
testing is conducted at Sites not directly controlled by the software developer. Also, for a software
product that isamedica device or a component of amedical device that is to be used on humans prior
to FDA clearance, testing involving human subjects may require an Investigational Device Exemption
(IDE) or Indtitutional Review Board (IRB) gpprova.

Tedt procedures, test data, and test results should be documented in a manner permitting objective
pass/fail decisonsto bereached. They should aso be suitable for review and objective decison
making subsequent to running the test, and they should be suitable for use in any subsequent regression
testing. Errors detected during testing should be logged, classified, reviewed, and resolved prior to
release of the software. Software error data that is collected and analyzed during a development life
cycle may be used to determine the suitability of the software product for release for commercid
digtribution. Test reports should comply with the requirements of the corresponding test plans.

Software products that perform useful functionsin medica devices or their production are often
complex. Software testing tools are frequently used to ensure consstency, thoroughness, and efficiency
in the testing of such software products and to fulfill the requirements of the planned testing activities.
These tools may include supporting software built in-house to facilitate unit (modul€) testing and
subsequent integration testing (e.g., drivers and stubs) aswell as commercia software testing tools.
Such tools should have adegree of quaity no less than the software product they are used to develop.
Appropriate documentation providing evidence of the vaidation of these software tools for their
intended use should be maintained (see section 6 of this guidance).

Typicd Tasks— Testing by the Software Devel oper

Test Planning

Structurd Test Case Identification
Functiond Test Case Identification
Traceability Analyss- Testing

- Unit (Module) Teststo Detailed Design
- Integration Teststo High Level Design

- Sysem Tests to Software Requirements

Unit (Module) Test Execution
Integration Test Execution
Functiona Test Execution
System Test Execution
Acceptance Test Execution
Test Results Evauation

Error Evduation/Resolution
Final Test Report

Page 26

5.2.6. User Site Testing

Tedting at the user Steisan essentid part of software vaidation. The Quality System regulation requires
ingtalation and ingpection procedures (including testing where appropriate) as wdl as documentation of
ingpection and testing to demongtrate proper indtalation. (See 21 CFR §820.170.) Likewise,
manufacturing equipment must meet specified requirements, and automated systems must be vaidated
for their intended use. (See 21 CFR 8820.70(g) and 21 CFR 8820.70(i) respectively.)

Terminology regarding user site testing can be confusing. Terms such as betatest, Ste validation, user
acceptance test, ingalation verification, and ingtalation testing have al been used to describe user Site
testing. For purposes of this guidance, the term *user Ste testing” encompasses dl of these and any
other testing that takes place outsde of the developer’ s controlled environment. This testing should take
place at auser's site with the actua hardware and software that will be part of the ingtadled system
configuration. The tegting is accomplished through either actud or Smulated use of the software being
tested within the context in which it isintended to function.

Guidance contained hereis generd in nature and is gpplicable to any user dtetesting. However, in
some aress (e.9., blood establishment systems) there may be specific Site validation issues that need to
be considered in the planning of user Sitetesting. Test planners should check with the FDA Center(s)
with the corresponding product jurisdiction to determine whether there are any additiona regulatory
requirements for user Ste testing.

User dte testing should follow a pre-defined written plan with aforma summary of testing and arecord
of formal acceptance. Documented evidence of dl testing procedures, test input data, and test results
should be retained.

There should be evidence that hardware and software are installed and configured as specified.
Measures should ensure that al system components are exercised during the testing and that the
versions of these components are those specified. The testing plan should specify testing throughout the
full range of operating conditions and should specify continuation for a sufficient time to dlow the system
to encounter awide spectrum of conditions and events in an effort to detect any latent faults that are not
gpparent during more normd activities.

Some of the evauations that have been performed earlier by the software developer at the developer's
dte should be repeated at the Ste of actud use. These may include tests for a high volume of data,
heavy loads or stresses, security, fault testing (avoidance, detection, tolerance, and recovery), error
messages, and implementation of safety requirements. The developer may be able to furnish the user
with some of the test data sets to be used for this purpose.

In addition to an evaluation of the system's ability to properly performitsintended functions, there
should be an evauation of the ability of the users of the system to understand and correctly interface
with it. Operators should be able to perform the intended functions and respond in an appropriate and
timely manner to al darms, warnings, and error messages.

Page 27

During user Site testing, records should be maintained of both proper system performance and any
system failures that are encountered. The revision of the systemn to compensate for faults detected
during this user ste testing should follow the same procedures and controls as for any other software
change.

The developers of the software may or may not be involved in the user Site testing. If the developers
are involved, they may seamlesdy carry over to the user's Ste the last portions of design-level systems
testing. If the developers are not involved, it isal the more important that the user have persons who
understand the importance of careful test planning, the definition of expected test results, and the
recording of dl test outputs.

Typicd Tasks—User Site Testing

Acceptance Test Execution
Test Results Evauation
Error Evduation/Resolution
Final Test Report

5.2.7. Maintenance and Softwar e Changes

As applied to software, the term maintenance does not mean the same as when applied to hardware.
The operationa maintenance of hardware and software are different because their fallure/error
mechanisms are different. Hardware maintenance typicaly includes preventive hardware maintenance
actions, component replacement, and corrective changes. Software maintenance includes corrective,
perfective, and adaptive maintenance but does not include preventive maintenance actions or software
component replacement.

Changes made to correct errors and faults in the software are corrective maintenance. Changes made
to the software to improve the performance, maintainability, or other attributes of the software system
are perfective maintenance. Software changes to make the software system usable in a changed
environment are adaptive maintenance.

When changes are made to a software system, either during initia development or during post release
maintenance, sufficient regression analysis and testing should be conducted to demondrate that portions
of the software not involved in the change were not adversdy impacted. Thisisin addition to testing
that evaluates the correctness of the implemented change(s).

The specific vaidation effort necessary for each software change is determined by the type of change,
the development products affected, and the impact of those products on the operation of the software.
Careful and complete documentation of the design structure and interrel ationships of various modules,
interfaces, etc., can limit the validation effort needed when achangeis made. Theleve of effort needed

Page 28

to fully vdidate a change is aso dependent upon the degree to which vaideation of the origind software
was documented and archived. For example, test documentation, test cases, and results of previous
verification and validation testing need to be archived if they are to be available for performing
subsequent regresson testing. Fallure to archive thisinformation for later use can sgnificantly increase
the levd of effort and expense of revaidating the software after a change is made.

In addition to software verification and vaidation tasks that are part of the standard software
development process, the following additiona maintenance tasks should be addressed:

Softwar e Validation Plan Revision - For software that was previoudy vaidated, the existing
software vdidation plan should be revised to support the validation of the revised software. If
no previous software validation plan exists, such a plan should be established to support the
vaidation of the revised software.

Anomaly Evaluation — Software organizations frequently maintain documentation, such as
software problem reports that describe software anomaies discovered and the specific
corrective action taken to fix each anomaly. Too often, however, mistakes are repested
because software devel opers do not take the next step to determine the root causes of
problems and make the process and procedura changes needed to avoid recurrence of the
problem. Software anomaies should be evaluated in terms of their severity and their effectson
system operation and safety, but they should also be trested as symptoms of process
deficienciesin the quality system. A root cause andysis of anomalies can identify specific quality
system deficiencies. Where trends are identified (e.g., recurrence of smilar software
anomalies), appropriate corrective and preventive actions must be implemented and
documented to avoid further recurrence of smilar quality problems. (See 21 CFR 820.100.)

Problem Identification and Resolution Tracking - All problems discovered during
maintenance of the software should be documented. The resolution of each problem should be
tracked to ensure it isfixed, for historica reference, and for trending.

Proposed Change Assessment - All proposed modifications, enhancements, or additions
should be assessed to determine the effect each change would have on the system. This
information should determine the extent to which verification and/or vaidation tasks need to be
iterated.

Task Iteration - For gpproved software changes, al necessary verification and validation
tasks should be performed to ensure that planned changes are implemented correctly, all
documentation is complete and up to date, and no unacceptable changes have occurred in
software performance.

Documentation Updating — Documentation should be carefully reviewed to determine which
documents have been impacted by achange. All approved documents (e.g., specifications, test
procedures, user manuals, etc.) that have been affected should be updated in accordance with
configuration management procedures. Specifications should be updated before any
maintenance and software changes are made.

Page 29

SECTION 6. VALIDATION OF AUTOMATED PROCESS
EQUIPMENT AND QUALITY SYSTEM SOFTWARE

The Qudlity System regulation requires that “when computers or automated data processing systems are
used as part of production or the qudity system, the [device] manufacturer shal validate computer
software for its intended use according to an established protocol.” (See 21 CFR §820.70(i)). Thishas
been aregulatory requirement of FDA'’s medical device Good Manufacturing Practice (GMP)
regulations since 1978.

In addition to the above vaidation requirement, computer systems that implement part of a device
manufacturer’ s production processes or quality system (or that are used to create and maintain records
required by any other FDA regulation) are subject to the Electronic Records, Electronic Signatures
regulation. (See 21 CFR Part 11.) This regulation establishes additiona security, detaintegrity, and
vaidation requirements when records are created or maintained dectronicaly. These additional Part 11
requirements should be carefully considered and included in system requirements and software
requirements for any automated record “keeping systems. System validation and software validation
should demongtrate that al Part 11 requirements have been met.

Computers and automated equipment are used extensively throughout al aspects of medica device
design, laboratory testing and analysis, product inspection and acceptance, production and process
control, environmenta controls, packaging, labeling, traceability, document control, complaint
management, and many other aspects of the quality system. Increasingly, automated plant floor
operations can involve extensve use of embedded systemsin:

programmable logic controllers;

digita function controllers;

datistical process control;

supervisory control and data acquisition;
robotics,

human-machine interfaces;

input/output devices, and

computer operating systems.

Software tools are frequently used to design, build, and test the software that goes into an automated
medical device. Many other commercial software applications, such asword processors, spreadsheets,
databases, and flowcharting software are used to implement the qudity system. All of these gpplications
are subject to the requirement for software vaidation, but the validation approach used for each
goplication can vary widdy.

Whether production or qudity system software is developed in-house by the device manufacturer,
developed by a contractor, or purchased off-the-shelf, it should be developed using the basic principles

Page 30

outlined dsawherein this guidance. The device manufacturer has latitude and flexibility in defining how
vaidation of that software will be accomplished, but validation should be a key consderation in deciding
how and by whom the software will be developed or from whom it will be purchased. The software
developer defines alife cycle modd. Validation istypicaly supported by:

verifications of the outputs from each stage of that software development life cycle; and
checking for proper operation of the finished software in the device manufacturer’ s intended use
environmen.

6.1. HOW MUCH VALIDATION EVIDENCE ISNEEDED?

The level of validation effort should be commensurate with the risk posed by the automated operation.
In addition to risk other factors, such as the complexity of the process software and the degree to which
the device manufacturer is dependent upon that automated process to produce a safe and effective
device, determine the nature and extent of testing needed as part of the vaidation effort. Documented
requirements and risk andysis of the automated process help to define the scope of the evidence
needed to show that the software is validated for itsintended use. For example, an automated milling
machine may require very little testing if the device manufacturer can show that the output of the
operation is subsequently fully verified againgt the specification before rdlease. On the other hand,
extensve testing may be needed for:

a plant-wide dectronic record and eectronic signature system;

an automated controller for a sterilization cycle; or

automated test equipment used for ingpection and acceptance of finished circuit boardsin alife-
sugtaining / life-supporting device.

Numerous commercia software applications may be used as part of the qudity system (eg., a
Spreadsheet or datistical package used for quality system caculations, a graphics package used for
trend andlyss, or acommercia database used for recording device history records or for complaint
management). The extent of validation evidence needed for such software depends on the device
manufacturer’ s documented intended use of that software. For example, a device manufacturer who
chooses not to use dl the vendor-supplied capabilities of the software only needs to vaidate those
functions that will be used and for which the device manufacturer is dependent upon the software results
as part of production or the quaity sysem. However, high risk applications should not be running in the
same operating environment with non-validated software functions, even if those software functions are
not used. Risk mitigation techniques such as memory partitioning or other approaches to resource
protection may need to be consdered when high risk gpplications and lower risk gpplications are to be
used in the same operating environment. When software is upgraded or any changes are made to the
software, the device manufacturer should consider how those changes may impact the “ used portions’
of the software and must reconfirm the validation of those portions of the software that are used. (See
21 CFR 8820.70(i).)

Page 31

6.2. DEFINED USER REQUIREMENTS

A very important key to software validation is a documented user requirements specification that
defines

the “intended use’ of the software or automated equipment; and
the extent to which the device manufacturer is dependent upon that software or equipment for
production of a qudity medica device.

The device manufacturer (user) needs to define the expected operating environment including any
required hardware and software configurations, software versions, utilities, etc. The user also needsto:

document requirements for system performance, quality, error handling, startup, shutdown,
Security, etc.;

identify any safety related functions or features, such as sensors, darms, interlocks, logical
processing steps, or command sequences, and

define objective criteriafor determining acceptable performance.

The validation must be conducted in accordance with a documented protocol, and the vaidation results
must aso be documented. (See 21 CFR §8820.70(i).) Test cases should be documented that will
exercise the system to chdlenge its performance againgt the pre-determined criteria, especidly for its
mogt critical parameters. Test cases should address error and darm conditions, startup, shutdown, all
gpplicable user functions and operator controls, potential operator errors, maximum and minimum
ranges of alowed vaues, and stress conditions applicable to the intended use of the equipment. The
test cases should be executed and the results should be recorded and evaluated to determine whether
the results support a conclusion that the software is validated for its intended use.

A device manufacturer may conduct a validation using their own personne or may depend on athird
party such as the equipment/software vendor or a consultant. In any case, the device manufacturer
retains the ultimate respongbility for ensuring that the production and quality system software:

is vaidated according to awritten procedure for the particular intended use; and
will perform asintended in the chosen gpplication.

The device manufacturer should have documentation including:

defined user requirements
vaidation protocol used;
acceptance criteria;

test cases and results; and
avdidaion summary

that objectively confirms that the software is validated for itsintended use.

Page 32

6.3. VALIDATION OF OFF-THE-SHELF SOFTWARE AND AUTOMATED EQUIPMENT

Most of the automated equipment and systems used by device manufacturers are supplied by third-
party vendors and are purchased off-the-shelf (OTS). The device manufacturer is responsible for
ensuring that the product devel opment methodologies used by the OTS software developer are
appropriate and sufficient for the device manufacturer’ s intended use of that OTS software. For OTS
software and equipment, the device manufacturer may or may not have access to the vendor’ s software
vdidation documentation. If the vendor can provide information about their system requirements,
software requirements, vaidation process, and the results of their validation, the medical device
manufacturer can use that information as a beginning point for their required vaidation documentation.
The vendor’ s life cycle documentation, such astesting protocols and results, source code, design
specification, and requirements specification, can be useful in establishing that the software has been
vaidated. However, such documentation is frequently not available from commercid equipment
vendors, or the vendor may refuse to share their proprietary information.

Where possible and depending upon the device risk involved, the device manufacturer should consider
auditing the vendor’ s design and development methodol ogies used in the condruction of the OTS
software and should assess the development and vaidation documentation generated for the OTS
software. Such audits can be conducted by the device manufacturer or by a qudified third party. The
audit should demondirate that the vendor’ s procedures for and results of the verification and vaidation
activities performed the OTS software are gppropriate and sufficient for the safety and effectiveness
requirements of the medica device to be produced using that software.

Some vendors who are not accustomed to operating in aregulated environment may not have a
documented life cycle process that can support the device manufacturer’ s validation requirement. Other
vendors may not permit an audit. Where necessary vaidation information is not available from the
vendor, the device manufacturer will need to perform sufficient system level “black box” testing to
edtablish that the software meets their “user needs and intended uses.” For many gpplications black box
testing aoneis not sufficient. Depending upon the risk of the device produced, the role of the OTS
software in the process, the ability to audit the vendor, and the sufficiency of vendor-supplied
information, the use of OTS software or equipment may or may not be appropriate, especidly if there
are suitable dternatives avallable. The device manufacturer should aso congder the implications (if any)
for continued maintenance and support of the OTS software should the vendor terminate their support.

For some off-the-shelf software development tools, such as software compilers, linkers, editors, and
operating systems, exhaudtive black-box testing by the device manufacturer may be impractical.
Without such testing — akey dement of the vaidation effort — it may not be possible to vdidate these
software tools. However, their proper operation may be satisfactorily inferred by other means. For
example, compilers are frequently certified by independent third-party testing, and commercid software
products may have “bug ligs’, system requirements and other operationd information available from the
vendor that can be compared to the device manufacturer’ s intended use to help focus the “ black-box”
testing effort. Off-the-shelf operating systems need not be validated as a separate program. However,
system-leve vdidation testing of the gpplication software should address dll the operating system
services used, including maximum loading conditions, file operations, handling of system error

Page 33

conditions, and memory congtraints that may be gpplicable to the intended use of the application
program.

For more detailed information, see the production and process software references in Appendix A.

Page 34

APPENDIX A - REFERENCES

Food and Drug Administration References

Design Control Guidance for Medical Device Manufacturers, Center for Devices and Radiological
Hedth, Food and Drug Adminigtration, March 1997.

Do It by Design, An Introduction to Human Factorsin Medical Devices, Center for Devices and
Radiologica Hedth, Food and Drug Adminigtration, March 1997.

Electronic Records; Electronic Sgnatures Final Rule, 62 Federal Register 13430 (March 20,
1997).

Glossary of Computerized System and Software Development Terminology, Divison of FHed
Investigations, Office of Regiona Operations, Office of Regulatory Affairs, Food and Drug
Adminigration, August 1995.

Guidance for the Content of Pre-market Submissions for Software Contained in Medical
Devices, Office of Device Evauation, Center for Devices and Radiologica Hedth, Food and Drug
Adminigtration, May 1998.

Guidance for Industry, FDA Reviewers and Compliance on Off-the-Shelf Software Usein
Medical Devices, Office of Device Evauation, Center for Devices and Radiological Hedth, Food and
Drug Adminigtration, September 1999.

Guideline on General Principles of Process Validation, Center for Drugs and Biologics, & Center
For Devices and Radiological Hedlth, Food and Drug Administration, May 1987.

Medical Devices; Current Good Manufacturing Practice (CGMP) Final Rule; Quality System
Reguation , 61 Federal Register 52602 (October 7, 1996).

Reviewer Guidance for a Pre-Market Notification Submission for Blood Establishment Computer
Software, Center for Biologics Evauation and Research, Food and Drug Adminigtration, January 1997

Student Manual 1, Course INV545, Computer System Validation, Divison of Human Resource
Development, Office of Regulatory Affars, Food and Drug Adminigtration, 1997.

Technical Report, Software Development Activities, Divison of Feld Investigations, Office of
Regiona Operations, Office of Regulatory Affairs, Food and Drug Adminigtration, July 1987.

Page 35

http://www.fda.gov/cdrh/comp/designgd.html
http://www.fda.gov/cdrh/humfac/doit.html
http://www.fda.gov/ora/inspect_ref/igs/gloss.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/57.html
http://www.fda.gov/cdrh/ode/1252.html
http://www.fda.gov/cdrh/ode/1252.html
http://www.fda.gov/cdrh/ode/425.pdf
http://www.fda.gov/cber/gdlns/swreview.txt

Other Government References

W. Richards Adrion, Martha A. Brangtad, John C. Cherniavsky. NBS Special Publication 500-75,
Validation, Verification, and Testing of Computer Software, Center for Programming Science and
Technology, Ingtitute for Computer Sciences and Technology, National Bureau of Standards, U.S.
Department of Commerce, February 1981.

MarthaA. Branstad, John C Cherniavsky, W. Richards Adrion, NBS Special Publication 500-56,
Validation, Verification, and Testing for the Individual Programmer, Center for Programming
Science and Technology, Ingtitute for Computer Sciences and Technology, Nationa Bureau of
Standards, U.S. Department of Commerce, February 1980.

JL. Bryant, N.P. Wilburn, Handbook of Software Quality Assurance Techniques Applicable to
the Nuclear Industry, NUREG/CR-4640, U.S. Nuclear Regulatory Commission, 1987.

H. Hecht, et.d., Verification and Validation Guidelines for High Integrity Systems NUREG/CR-
6293. Prepared for U.S. Nuclear Regulatory Commission, 1995.

H. Hecht, et.d., Review Guidelines on Software Languages for Use in Nuclear Power Plant
Safety Systems, Final Report. NUREG/CR-6463. Prepared for U.S. Nuclear Regulatory
Commission, 1996.

JD. Lawrence, W.L. Persons, Survey of Industry Methods for Producing Highly Reliable
Software, NUREG/CR-6278, U.S. Nuclear Regulatory Commission, 1994.

JD. Lawrence, G.G. Preckshot, Design Factors for Safety-Critical Software, NUREG/CR-6294,
U.S. Nuclear Regulatory Commission, 1994,

PetriciaB. Powell, Editor. NBS Special Publication 500-98, Planning for Software Validation,
Verification, and Testing, Center for Programming Science and Technology, Ingtitute for Computer
Sciences and Technology, Nationa Bureau of Standards, U.S. Department of Commerce, November
1982.

PetriciaB. Powdl, Editor. NBS Special Publication 500-93, Software Validation, Verification,
and Testing Technigue and Tool Reference Guide, Center for Programming Science and
Technology, Ingtitute for Computer Sciences and Technology, Nationa Bureau of Standards, U.S.
Department of Commerce, September 1982.

DeloresR. Wallace, Roger U. Fujii, NIST Special Publication 500-165, Software Verification and
Validation: Its Rolein Computer Assurance and Its Relationship with Software Project
Management Standards, National Computer Systems Laboratory, Nationd Ingtitute of Standards and
Technology, U.S. Department of Commerce, September 1995.

DdoresR. Wadlace, LauraM. Ippolito, D. Richard Kuhn, NIST Special Publication 500-204, High
Integrity Software, Standards and Guidelines, Computer Systems Laboratory, Nationd Ingtitute of

Page 36

Standards and Technology, U.S. Department of Commerce, September 1992.

DeoresR. Wallace, et.a. NIST Special Publication 500-234, Reference Information for the
Software Verification and Validation Process. Computer Systems Laboratory, Nationa Institute of
Standards and Technology, U.S. Department of Commerce, March 1996.

DeloresR. Wallace, Editor. NIST Special Publication 500-235, Structured Testing: A Testing
Methodol ogy Using the Cyclomatic Complexity Metric. Computer Systems L aboratory, National
Ingtitute of Standards and Technology, U.S. Department of Commerce, August 1996.

I nternational and National Consensus Standar ds

ANSI / ANS-10.4-1987, Guidelines for the Verification and Validation of Scientific and
Engineering Computer Programs for the Nuclear Industry, American National Standards Indtitute,
1987.

ANSI / ASQC Standard D1160-1995, Formal Design Reviews American Society for Qudity
Control, 1995.

ANSI / UL 1998:1998, Standard for Safety for Software in Programmable Components,
Underwriters Laboratories, Inc., 1998.

AS 3563.1-1991, Software Quality Management System, Part 1. Requirements. Published by
Standards Australia [Standards Association of Australia), 1 The Crescent, Homebush, NSW 2140.

AS 3563.2-1991, Software Quality Management System, Part 2: Implementation Guide.
Published by Standards Audtrdia [Standards Association of Australia), 1 The Crescent, Homebush,
NSW 2140.

|EC 60601-1-4:1996, Medical electrical equipment, Part 1. General requirements for safety, 4.
Collateral Sandard: Programmable electrical medical systems. Internationa Electrotechnica
Commission, 1996.

|EC 61506:1997, Industrial process measurement and control — Documentation of application
software. Internationd Electrotechnica Commission, 1997.

|EC 61508:1998, Functional safety of electrical/electronic/programmable el ectronic safety-
related systems. Internaiona Electrotechnica Commission, 1998.

|EEE Std 1012-1986, Software Verification and Validation Plans, Inditute for Electrica and
Electronics Engineers, 1986.

Page 37

| EEE Standards Collection, Software Engineering, Indtitute of Electrica and Electronics Engineers,
Inc., 1994. 1SBN 1-55937-442-X.

SO 8402:1994, Quality management and quality assurance — Vocabulary. Internationd
Organization for Standardization, 1994.

1 SO 9000-3:1997, Quality management and quality assurance standards - Part 3: Guidelines for
the application of 1SO 9001: 1994 to the devel opment, supply, installation and maintenance of
computer software. International Organization for Standardization, 1997.

SO 9001:1994, Quality systems— Model for quality assurance in design, development,
production, installation, and servicing. Internationd Organization for Standardization, 1994.

SO 13485:1996, Quality systems — Medical devices— Particular requirements for the application
of 1SO 9001. Internationa Organization for Standardization, 1996.

|SO/IEC 12119:1994, Information technology — Softwar e packages — Quality requirements and
testing, Joint Technical Committee ISO/IEC JTC 1, International Organization for Standardization and
Internationa Electrotechnica Commission, 1994.

|SO/IEC 12207:1995, Information technology — Software life cycle processes, Joint Technica
Committee ISO/IEC JTC 1, Subcommittee SC 7, International Organization for Standardization and
International Electrotechnica Commission, 1995.

| SO/IEC 14598:1999, Infor mation technology — Softwar e product evaluation, Joint Technicd
Committee ISO/IEC JTC 1, Subcommittee SC 7, International Organization for Standardization and
Internationa Electrotechnica Commission, 1999.

SO 14971-1:1998, Medical Devices — Risk Management — Part 1. Application of Risk Analysis.
Internationa Organization for Standardization, 1998.

Software Considerations in Airborne Systems and Equipment Certification. Specia Committee

167 of RTCA. RTCA Inc., Washington, D.C. Td: 202-833-9339. Document No. RTCA/DO-
178B, December 1992.

Production Process Softwar e Refer ences

The Application of the Principles of GLP to Computerized Systems, Environmental Monograph
#116, Organization for Economic Cooperation and Development (OECD), 1995.

George J. Grigonis, J., Edward J. Subak, Jr., and Michagl Wyrick, “Vdidation Key Practices for
Computer Systems Used in Regulated Operations,” Pharmaceutical Technology, June 1997.

Guide to Inspection of Computerized Systemsin Drug Processing, Reference Materials and

Page 38

Training Aids for Investigators, Divison of Drug Quality Compliance, Associate Director for
Compliance, Office of Drugs, National Center for Drugs and Biologics, & Divison of Fied
Investigations, Associate Director for Field Support, Executive Director of Regiona Operations, Food
and Drug Administration, February 1983.

Danid P. Olivier, “Vdidating Process Software’, FDA Investigator Course: Medical Device
Process Validation, Food and Drug Adminisiration.

GAMP Guide For Validation of Automated Systems in Pharmaceutical Manufacture,Version
V3.0, Good Automated Manufacturing Practice (GAMP) Forum, March 1998:
Volume 1, Part 1: User Guide
Part 2: Supplier Guide
Volume 2: Best Practice for User and Suppliers.

Technical Report No. 18, Validation of Computer-Related Systems. PDA Committee on
Validation of Computer-Related Systems. PDA Journd of Pharmaceutical Science and Technology,
Volume 49, Number 1, January-February 1995 Supplement.

Validation Compliance Annual 1995, Internationa Validation Forum, Inc.

General Software Quality References

Boris Beizer, Black Box Testing, Techniques for Functional Testing of Software and Systems John
Wiley & Sons, 1995. ISBN 0-471-12094-4.

Boris Beizer, Software System Testing and Quality Assurance, International Thomson Computer
Press, 1996. 1SBN 1-85032-821-8.

Boris Beizer, Software Testing Techniques, Second Edition, Van Nostrand Reinhold, 1990. 1SBN 0-
442-20672-0.

Richard Bender, Writing Testable Requirements, Version 1.0, Bender & Associates, Inc., Larkspur,
CA 94777, 1996.

Frederick P. Brooks, Jr., The Mythical Man-Month, Essays on Software Engineering, Addison-
Wedey Longman, Anniversary Edition, 1995. I1SBN 0-201-83595-9.

Sivana Castano, et.d., Database Security, ACM Press, Addison-Wedey Publishing Company, 1995.
ISBN 0-201-59375-0.

Computerized Data Systems for Nonclinical Safety Assessment, Current Concepts and Quality
Assurance, Drug Information Association, Maple Glen, PA, September 1988.

Page 39

M. S. Deutsch, Software Verification and Validation, Realistic Project Approaches, Prentice Hall,
1982.

Robert H. Dunn and Richard S. Ullman, TQM for Computer Software, Second Edition, McGraw-
Hill, Inc., 1994. 1SBN 0-07-018314-7.

Elfriede Dugtin, Jeff Rashka, and John Paul, Automated Software Testing — Introduction,
Management and Performance, Addison Wedey Longman, Inc., 1999. 1SBN 0-201-43287-0.

Robert G. Ebenau and Susan H. Strauss, Softwar e Inspection Process, McGraw-Hill, 1994.
ISBN 0-07-062166-7.

Richard E. Fairley, Software Engineering Concepts, McGraw-Hill Publishing Company, 1985.
ISBN 0-07-019902-7.

Michad A. Friedman and Jeffrey M. Voas, Software Assessment - Reliability, Safety, Testability,
Wiley- Interscience, John Wiley & Sonsinc., 1995. 1SBN 0-471-01009-X.

Tom Gilb, Dorothy Graham, Softwar e I nspection, Addison-Wed ey Publishing Company, 1993.
ISBN 0-201-63181-4.

Robert B. Grady, Practical Software Metrics for Project Management and Process
Improvement, PTR Prentice-Hall Inc., 1992. ISBN 0-13-720384-5.

Les Hatton, Safer C:. Developing Software for High-integrity and Safety-critical Systems,
McGraw-Hill Book Company, 1994. ISBN 0-07-707640-0.

Janis V. Halvorsen, A Software Requirements Specification Document Model for the Medical
Device Industry, Proceedings IEEE SOUTHEASTCON '93, Banking on Technology, April 4th -7th,
1993, Charlotte, North Carolina

Debra S. Herrmann, Softwar e Safety and Reliability: Techniques, Approaches and Sandards of
Key Industrial Sectors, IEEE Computer Society, 1999. ISBN 0-7695-0299-7.

Bill Hetzdl, The Complete Guide to Software Testing, Second Edition, A Wiley-QED Publication,
John Wiley & Sons, Inc., 1988. 1SBN 0-471-56567-9.

Watts S. Humphrey, A Discipline for Software Engineering. Addison-Wedey Longman, 1995.
ISBN 0-201-54610-8.

Watts S. Humphrey, Managing the Software Process, Addison-Wedey Publishing Company, 1989.
ISBN 0-201-18095-2.

Capers Jones, Software Quality, Analysis and Guidelines for Success, Internationd Thomson
Computer Press, 1997. I1SBN 1-85032-867-6.

Page 40

JM. Jduran, Frank M. Gryna, Quality Planning and Analysis, Third Edition, , McGraw-Hill, 1993.
ISBN 0-07-033183-9.

Stephen H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wedey Publishing
Company, 1995. 1SBN 0-201-63339-6.

Cem Kaner, Jack Falk, Hung Quoc Nguyen, Testing Computer Software, Second Edition, Vsn
Nostrand Reinhold, 1993. ISBN 0-442-01361-2.

Craig Kaplan, Ralph Clark, Victor Tang, Secrets of Software Quality, 40 Innovations from 1BM,
McGraw-Hill, 1995. ISBN 0-07-911795-3.

Edward Kit, Software Testing in the Real World, Addison-Wedey Longman, 1995. ISBN 0-201-
87756-2.

Alan Kusnitz, “ Software Vdidation’ , Current Issuesin Medical Device Quality Systems,
Association for the Advancement of Medica Instrumentation, 1997. 1SBN 1-57020-075-0.

Nancy G. Leveson, Safeware, System Safety and Computers, Addison-Wedey Publishing
Company, 1995. ISBN 0-201-11972-2.

Michad R. Lyu, Editor, Handbook of Software Reliability Engineering, IEEE Computer Society
Press, McGraw-Hill, 1996. 1SBN 0-07-039400-8.

Steven R. Mdlory, Software Development and Quality Assurance for the Healthcare
Manufacturing Industries, Interpharm Press,Inc., 1994. ISBN 0-935184-58-9.

Brian Marick, The Craft of Software Testing, Prentice Hall PTR, 1995. ISBN 0-13-177411-5.
Steve McConnell, Rapid Devel opment, Microsoft Press, 1996. ISBN 1-55615-900-5.

Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, 1979.
ISBN 0-471-04328-1.

Peter G. Neumann, Computer Related Riskss ACM Press/Addison-Wedey Publishing Co., 1995.
ISBN 0-201-55805-X.

Danid Olivier, Conducting Software Audits, Auditing Software for Conformance to FDA
Requirements, Computer Application Specidists, San Diego, CA, 1994,

William Perry, Effective Methods for Software Testing, John Wiley & Sons, Inc. 1995. 1SBN 0-
471-06097-6.

William E. Perry, Randdl W. Rice, Surviving the Top Ten Challenges of Software Testing, Dorset

Page 41

House Publishing, 1997. 1SBN 0-932633-38-2.

Roger S. Pressman, Software Engineering, A Practitioner's Approach, Third Edition, McGraw-Hill
Inc., 1992. ISBN 0-07-050814-3.

Roger S. Pressman, A Manager’ s Guide to Software Engineering, McGraw-Hill Inc., 1993
ISBN 0-07-050820-8.

A. P. Sage, J. D. Pamer, Software Systems Engineering, John Wiley & Sons, 1990.

Joc Sanders, Eugene Curran, Software Quality, Addison-Wedey Publishing Co., 1994. 1SBN 0-
201-63198-9.

Ken Shumate, Marilyn Kdler, Software Specification and Design, A Disciplined Approach for
Real-Time Systems John Wiley & Sons, 1992. ISBN 0-471-53296-7.

Dennis D. Smith, Designing Maintainable Software, Springer-Verlag, 1999.
ISBN 0-387-98783-5.

lan Sommerville, Software Engineering, Third Edition, Addison Wedey Publishing Co., 1989. ISBN
0-201-17568-1.

Karl E. Wiegers, Creating a Software Engineering Culture, Dorset House Publishing, 1996. 1SBN
0-932633-33-1.

Karl E. Wiegers, Software Inspection, Improving Quality with Software Inspections, Software
Development, April 1995, pages 55-64.

Karl E. Wiegers, Software Requirements, Microsoft Press, 1999. 1SBN 0-7356-0631-5.

Page 42

APPENDIX B - DEVELOPMENT TEAM

Center for Devices and Radiological Hedth

Office of Compliance Stewart Crumpler

Office of Device Evaudion James Cheng, Donna-Bea Tillmen
Office of Hedth and Industry Programs Bryan Benesch, Dick Sawyer
Office of Science and Technology John Murray

Office of Survelllance and Biometrics Howard Press

Center for Drug Evaluation and Research

Office of Medicd Policy Charles Snipes

Center for Biologics Evaluation and Research

Office of Compliance and Biologics Qudity Alice Godziemski

Office of Requlatory Affars

Office of Regiond Operaions David Bergeson, Joan Loreng

Page 43

