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Summary
Objectives: In this paper we give an overview about
the challenge the postgenomic era poses on biomedical
informaticists. The occurrence of new (genomic) data
types necessitates new data models, new viewing
metaphors and methods to deal with the disclosure
of genomic data. We discuss integration issues when
inferring phenotype and genotype data. Another chal-
lenge is to find the right phenotype to genotype data
in order to get appropriate case numbers for sound
clinical genotype-phenotype inference studies.
Methods: Genomic data could be integrated in an
Electronic Health Record (EHR) in several ways. We de-
scribe patient-centered and pointer-based integration
strategies and the corresponding data types and data
models. The inference mechanisms for the interpre-
tation of raw data contain different agents. We
describe vertical, horizontal and temporal agents.
Results: We have to deal with several new data types,
not being standardized for EHR integration. Genomic
data tends to be more structured than phenotype data.
Beyond the development of new data models, vertical,
horizontal and temporal agents have to be developed
in order to link genotype and phenotype. As the ge-
nomic EHR will contain very sensitive data, confiden-
tiality and privacy concerns have to be addressed.
Conclusions: Given the necessity to capture both en-
vironment and genomic state of a patient and their
interaction, clinical information systems have to be
redesigned. While genotyping seems to be automatable
easily, this is not the case for clinical information. More
integration work on terminologies and ontologies
has to be done.
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Introduction

While the human genome has been se-
quenced [1, 2], the challenging part begins
now, as we still do not know the function of
many genomic regions. The post-genomic
era of medicine not only challenges pa-
tients, clinicians and the healthcare system,
but also will have a huge impact on health-
care information systems.

Genomic patient information such as
the results of genotyping disease-associated
genes will likely be part of the patient’s
healthcare record soon, while only few
clinical information systems are prepared to
deal with genomic data [3].

Historically, clinical patient data, re-
search data as well as clinical study data
were stored in different databases and sys-
tems. This separation of clinical data and re-
search data constrains new insight more
than ever before. In order to find the rela-
tionship between genotype and phenotype,
we need clinical data as well as research
data accessible for inference mechanisms
and clinical studies.

As the genotype does not solely capture
the individual patient state, we additionally
need to assess and quantify environmental
influences. This comprises the patient his-
tory, physical condition, laboratory studies
and imaging data [4, 5].

Therefore, we need new data models and
data structures to cope with the integration
of genomic data in the Electronic Health
Record (EHR) as well as inference mecha-
nisms to connect genotype and phenotype
data.

Electronic patient records have a long
history in medical informatics [6]. Mainly
dealing with billing data in the early years, a
current EHR supports many kinds of pheno-
typic patient data [7].

Currently, genomic data is not repre-
sented in the EHR standard models, but a
HL7 Special Interest Group (SIG) is creat-
ing a HL7 Clinical Genomics Model [8].
We have to deal with an inconvenient type
of data, because predictions and interpre-
tations drawn from a patient’s DNA se-
quence will have to be repeated frequently
as research gains new insights. Therefore
the raw data should be easily accessible.

Finally genomic data is considered as
highly confidential and has to be protected
from unauthorized access [9, 10]. Early ge-
nomic databases like in Iceland or Estonia
raise severe ethical concerns [11].

Methods
In the first step we had a close look at data
types and data formats in biomedical in-
formatics. We then examined the most rel-
evant standard formats for phenotype and
genotype data. Finally we assessed the
available data models for the ability to repre-
sent both genomic and phenotypic data.

Data Types and Data Formats
Genomic data are mostly presentable in
eXtensible Markup Language (XML) [12].
Nucleotide and protein sequences are
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simple ASCII streams. GenBank wraps
these data in a descriptive XML header [13].
Protein data (amino acid sequences) might
be derived from genomic data directly (an-
notation of the genome). Uniprot (formerly
SwissProt) delivers a popular format to
store protein data [14] whereas the Protein
DataBase (PDB) defines a format to de-
scribe protein structure [15]. In case of
microarray data, it can be delivered in the
MAGE-ML format [16] corresponding to
the “Minimum Information about Micro-
array Experiments” (MIAME) recommen-
dation. Falling prices of the tests for Single
Nucleotide Polymorphisms (SNPs) raises
their popularity [17]. dbSNP uses a widely
accepted XML-format for storing SNPs [18].

Biomedical databases-designers are con-
fronted with moving targets, as they
struggle from the vast amounts of data being
submitted including updates and redun-
dancy [19].

Most of the aforementioned data are
linked in so called meta-databases. Gene-
Cards [20], the genetic association database
[21] and LokusLink (will soon be trans-
formed in “Entrez Gene”), offer curated and
non-redundant, highly linked data. In gen-
eral, the NCBI databases – as well as their
European pendants [22] – are highly struc-
tured and the primary keys linked to the
corresponding databases [23].

Data Models
The Health Level Seven (HL7) Clinical
Genomics Special Interest Group (cgSIG)
proposed extensions to the HL7 Reference
Information Model (RIM), as well as for the
clinical study-centered Clinical Data Inter-
change Standards Consortium (CDISC)
standard [8]. The HL7 cgSIG proposes a
new RIM-based genotype model, which
will be implemented as reusable common
message element type (CMET).

A patient’s genotype consisting of indi-
vidual alleles is hooked up at the top layer of
the model with the possibility of versioning
it. The model allows storing the allele se-
quence as well as associated observations
like individual Single Nucleotide Polymor-
phisms (SNPs), mutations, and gene ex-
pression data. The alleles can furthermore

be associated with haplotypes and polymor-
phisms. The strength of the HL7 proposal is
the possibility to associate the alleles with
clinical phenotype observations like dis-
eases, risk factors and adverse drug events.

Closely related to the HL7 RIM biomedi-
cal data can be represented in Clinical
Document Architecture (CDA) documents.

Results
Integration of genomic data in an EHR
seems to be more difficult than for example
the integration of clinical chemistry lab
data. We do not only need the results, but
also the raw data, because the data has to be
reanalyzed frequently, as new insight could
lead to a different result. In the following we
focus on a strategy for the integration of ge-
nomic data, their representation and on in-
ference mechanisms towards the synthesis
of novel insights.

Integration Aspects
For a patient-centered data integration, we
need the lab meta-data such as the speci-
men, used methods and corresponding in-
terpretations. It seems to be crucial to in-
clude the unprocessed data from sequencing
labs or the results of microarray experi-
ments on patients as well.

One integration strategy could be to in-
clude genomic meta-data directly in the
EHR and to provide a pointer on the raw
data due to the huge amount of data. But this
could endanger the longitudinal character-
istic of the record, as many of the current ge-
nomic databases only have a short half-life,
especially concerning data formats.

As the above-mentioned data formats
allow wrapping the raw data and annotating
them with meta data, a good strategy could
be to include the raw data as well as the
pointer to the external resources.

Representation of Genomic Data
The HL7 clinical genomics SIG proposes an
individual genotype model; genomic data

can be represented in an EHR as a new ob-
servation class [24] in the data model.

On the communication level, a clinical
genomics report could be represented as
a self-contained document according to
the HL7 Clinical Document Architecture
(CDA). CDA Revision 1 was approved as an
ANSI standard in 2000 [25]; Revision 2 was
ANSI-approved in May 2005 [26]. CDA de-
fines three levels; in level one only the docu-
ment header is fixed with a certain set of
document and object identifiers, whereas
the document body may contain any XML
data choosing the unstructured body option.
Level 2 documents additionally contain a
structured body with certain sections, which
have to be derived from the HL7 Reference
Information Model (RIM) in Level 3 Docu-
ments.

In the CDA header the document type as
well as the universal observation identifiers
have to be defined according to the Logical
Observation Identifier Names and Codes
(LOINC) document types [27]. Fur-
thermore the data format and the current
version have to be registered and to be noted
in the document header in order to be able
to present the document accordingly. Euro-
pean projects like PICNIC [28] and
SCIPHOX [29] successfully make use of
CDA level one documents. This practice
would have the advantage to be able to rep-
resent any genomic data format without the
necessity to reinvent a new document struc-
ture. As the standardization process on ge-
nomic issues proceeds, the documents could
be refined as level three documents succes-
sively.

Integration Needs a Common
Ontology
By integration of genotype and phenotype
data we address the influx of either genomic
data on clinical data, prognosis, and therapy
or vice versa. Likely there will be two new
directions of clinical studies in the future.
The one direction would lead from pheno-
type to genotype what means, that patients
with particular clinical traits are screened
for genes known or suspected to be involved
in that disease to identify variations. The
other direction would lead from genotype to
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phenotype, suggesting a screening of large
numbers of individuals at particular genetic
loci and then looking for phenotypic com-
munalities or differences.

This approach is well known in industry,
as industry-IT has to deal with vast data
amounts from various data sources as well.
Data mining tools ease the selection of inter-
esting data in data warehouses and deliver
the appropriate slices and dices of data for
further examination. For example IBM tries
to apply this technique to healthcare to allow
some new insight [30].

However, both directions of post-ge-
nomic clinical studies and the application of
data mining methods imply standardized
patient data and standardized terminology
both on clinical and on genomic side being
accessible for knowledge-finding tools.
This could actually be the most difficult part
of the integration effort.

Though most of the described genomic
data can be accessed as XML data, the con-
tent is partially not well structured for the
purpose of automatic inference with clinical
data. Gene Expression Omnibus (GEO)
[23] for example holds an interesting set of
Microarray experiment data, but the de-
scription of used material, kind of treatment
in the affected group, and the affiliation of
the data set to treatment or control is not
standardized. All these features are com-
bined in the free text field “description”.
The Microarray Gene Expression – Markup
Language (MAGE-ML) [16] defines all the
relevant fields like “BioMaterial” and “Ex-
perimentalDesign” – but they are not in use.

On the clinical side, an even bigger ob-
stacle is the lack of ontological compatibil-
ity, as the lion’s share of phenotype data is
not encoded for automated processing.
While the data is still partially captured in
paper files, electronic patient data is scat-
tered over several information systems in a
variety of different data formats. Ideally
clinical data could be encoded using ter-
minologies like LOINC [27], classifications
like the International Classification of Dis-
eases (ICD), and the appropriate mapping
to the Unified Medical Language System
(UMLS) [31].

So the first step to approach the problem
is to work on terminology and ontology and
transform the content in a uniformed repre-

sentation like UMLS. First attempts show
the complexity of this task [3, 8, 32-34].
The second step would be to build an infra-
structure to capture all phenotype data of
a patient in a place like a Personal Health
Record (PHR) [35].

Agents
The current interpretation of the raw data
for one patient has to be versioned, as with
new insights in science these interpretations
could change over time. We need electronic
agents, similar to the ideas in early Personal
Health Record papers [36] and described
in some bioinformatics integration ap-
proaches [37]. These agents frequently ana-
lyze the given data using recent scientific
knowledge, to keep the data sets and their
interpretation up to date.

Vertical agents frequently analyze the data
of one patient; horizontal inference agents
infer genotype and phenotype information
using EHR data from many patients in order
to generate new knowledge for genomic epi-
demiology. Finally temporal agents analyze
patient data to create phenotype time series
that can be related to a genotype.

Privacy
As the enriched EHR will contain very sen-
sitive genomic data, confidentiality and pri-
vacy concerns have to be addressed for two
reasons: the genomic data is much more
predictive of the patient’s health status than
any other test, and the genome is uniquely
identifiable [5, 9-11]. Possibly it is suffi-
cient to store only significant parts of the
sequences to address the privacy issues. The
difficult part will be to find the trade-off
between privacy and disclosure [38]. Addi-
tionally to the explicit patient consent to
store and to examine her or his genomic
data, the data has to be specially protected.

Discussion
The representation of genomic data in
EHRs seems to be feasible with HL7 CDA

in general. We implemented a CDA docu-
ment containing the result of a SNP test in
HL7 CDA Revision 1 Level 1 (R1 L1).

As CDA is on the leap from Revision 1 to
Revision 2 [26], there remains some uncer-
tainty in the sustainability of R1 documents.
Furthermore, the results of the Clinical Ge-
nomics Special Interest Group [8] (CG SIG)
are not yet implemented in the HL7 RIM
and therefore not in the corresponding CDA
XML schemas.

We experienced good support in the area
of billing or insurance-related document
types – i.e. phenotype data. The area of
handling genomic data is still evolving. For
example there are no LOINC codes and
Object Identifiers available yet [39] to code
genomics-related section captions.

From the viewpoint of semantic inter-
operability, UMLS-mapping of expert ter-
minology is very useful. As any CDA docu-
ment element should be specified with an
OID and a LOINC code and LOINC is rep-
resented in the UMLS Metathesaurus [31,
40], a concept mapping within different
CDA documents seems possible at least for
phenotype data at this time. Some more
work has to be done in order to get sustain-
able genomic CDA documents.

Conclusion
The opportunities of the combining ge-
nomic data with phenotype data are ob-
vious, as they allow a new type of clinical in-
vestigations in order to get new insights
concerning diagnoses, prognosis and thera-
peutics. These studies are a crucial part of
the National Institutes of Health (NIH)
roadmap, meanwhile four National Centers
for Biomedical Computing got funded in
2004 [41, 42].

The dilemma in 2005’s Biomedical In-
formatics is that the data is present, but the
enormous amounts of data are not easily
linkable with each other. Systems to capture
genotype data are thoroughly divided from
systems for clinical phenotype data capture.
Unfortunately the awareness of the neces-
sity for changes in healthcare IT-systems is
hardly to be found yet. For example a recent
issue of BMJ addressed the future of health-
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care informatics – not one article covered
the impact of the post-genomic era [43].

Given the necessity to capture both en-
vironment and genomic state of a patient
and their interaction, clinical information
systems will have to be redesigned. Early
examples of these systems can be seen in
IBM’s Genomics Messaging System [44],
being rolled out in the Mayo clinic recently
[30].

An even bigger obstacle than database
integration is the lack of terminological and
ontological compatibility, which could be
solved by means of a uniformed represen-
tation like the Unified Medical Language
System (UMLS) [31].

Beyond the development of new data
models and ontological challenges, vertical
(patient-centered), horizontal (study-cen-
tered) and temporal (time series) agents
have to be developed in order to link geno-
type and phenotype. While genotyping
seems to be automatable easily, this is not
the case for clinical information. These
agents allow applying new insights in ge-
nomic medicine to the present genomic
data.

Finally, ethical and privacy concerns
have to be addressed. Patients as well as
health providers need education on this new
methodology. Security-related procedures
like patient consent as well as access control
need to be established.
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