
Verification of PCR Anyalyte Specific Reagent (ASR) Products

Matthew J. Bankowski, Ph.D., D(ABMM) Vice President – Technical Director, Microbiology Diagnostic Laboratory Services, Inc., Honolulu, HI

1918 Flu Pandemic

"Spanish Flu" or "La Grippe" of 1918 -1919
 Swine-like
 Influenza type A (H1N1)

Genes from an avian reservoir

Morbidity
 ✓ 28% Americans infected
 ✓ Age 20-40 yrs

Mortality Vorldvide 20 million USA 675,000

 O Spread by troops from N. America to Europe
 ✓ 50% troops (43K) in Europe died of flu not by the enemy forces

> Happy Now Yoar "With every thought that's kind and true From all of us to all of you"

udde l

THERE SHEER COMPANY

FDA and Analyte Specific Reagents

- ASR's are the building blocks ("Active Ingredients") of in-house developed tests produced and sold by manufacturers
 - ASR Definition (<u>21 CFR 864.4020</u>) "Antibodies, both polyclonal and monoclonal, specific receptor proteins, ligands, nucleic acid sequences, and similar reagents which, through specific binding or chemical reaction with substances in a specimen, are intended to use in a diagnostic application for identification and quantification of an individual chemical substance or ligand in biological specimens."
- Regulation of in-house developed ("home-brew") tests Federal Register of November 21, 1997 (62 FR 62260) – Effective November 23, 1998
 - Incremental regulation of both manufacturer and clinical laboratory
 - Clarify FDA oversight for in-house tests in relation to oversight by CMS under CLIA88
 - Provide incremental controls to assure the quality of reagents made over time to the FDA's quality system regulations
 - Clinical laboratory develops, establishes and maintains test performance
 - Manufacturer provides appropriate labeling

FDA and Analyte Specific Reagents

Manufacturer

- Register and list with FDA [21 CFR Part 807]
- Follow quality system regulations [21 CFR Part 820]
- Label class I exempt as "Analyte Specific Reagent. Analytical and performance characteristics are not established."[21 CFR 809.10(e)(1)(x)]
- Only sell to high complexity CLIA laboratories
- Laboratory
 - Certified as high complexity under CLIA
 - Establish and maintain performance under CLIA
 - Label the class I ASR test result as "This test was developed and its performance characteristics determined by [Laboratory Name]. It has not been cleared or approved by the U. S. Food and Drug Administration." [21 CFR 809.30(e)]

CLIA Regulations

CLIA '88 □ Feb 28, 1992 CLIA regulations Patient test management Quality control Proficiency testing Personnel > Quality assurance Additional changes on Dec 6, 1994, May 12, 1997, Oct 14, 1998, Dec 29, 2000 The 'final final', but really 'not final' rule on Jan 24, 2003 changes concerned the following \succ Technical standards update (re-designated quality system) Revised personnel qualification requirements for high complexity laboratory director

CLIA Law

CLIA applies to all facilities that perform:

"examination of materials derived from the human body for the purpose of providing information for the diagnosis, prevention, or treatment of any disease or impairment of, or the assessment of the health of, human beings...."

CLIA is applicable to all clinical testing.

Verification and Validation*

Verification

- > (ISO 9000) Evidence that specific requirements have been met
- One-time process to confirm test performance before implementation for patient testing

Validation

- Evidence to support a specific intended use
 - (WHO-BS95.1793) "the action (or process) of proving that a procedure, process, system, equipment, or method used works as expected and achieves the intended result"
- Validation components
 - o Quality control
 - Proficiency testing
 - o Employee competency
 - Instrument calibration
 - o Clinical correlation

Method Validation and Quality Assessment

- Method validation
- Method quality assessment ("assurance")
- What is necessary for method validation?
- □ What is required for method validation?
 - CLIA '88 and the final, but never final documents
 - College of American Pathologists (CAP)
 - Clinical and Laboratory Standards Institute (CLSI)
 - Specific state requirements with exempt status (e.g. NY)
- □ When do you need to revalidate a test?
- What is the action needed if validation or revalidation fails?

Requirements for Verifying or Establishing Performance Specifications

Applies to each nonwaived test system introduced on or after April 24, 2003

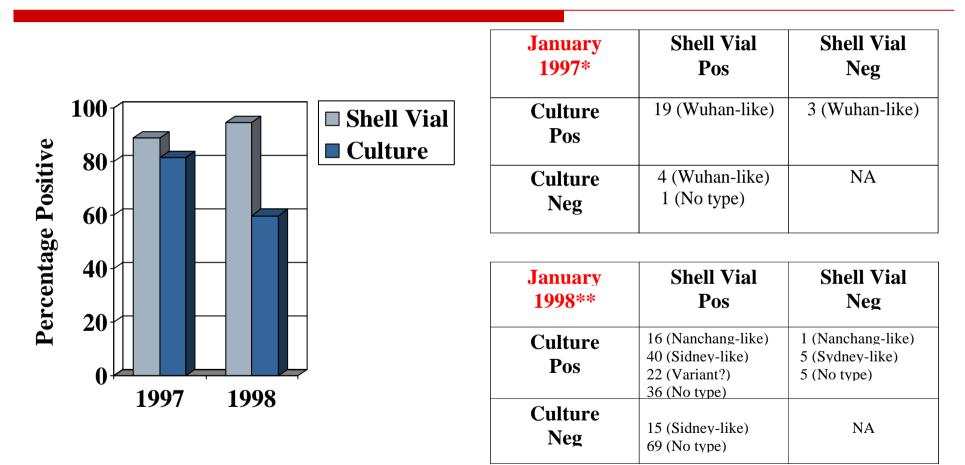
- □Requirements pertain to
 - A test system introduced for the first time
 - o New analyte
 - Analyte previously measured/detected on an alternate system
 - > An analyte added to a test system
 - > A modification to a test system

Quality Management and Quality Control (QM/QC) [10/6/2005] Assay Validation (MOL.30785 - MOL.32050)

Refers to "verification"

- Laboratory-developed (in-house) assays
- Laboratory-modified FDA-cleared assays
- Performance characteristics
 - Sensitivity, specificity, precision, linearity
 - o Analytical
 - o Clinical (Diagnostic)
 - Relative to the "Gold standard"
 - Relative to the clinical diagnosis or inter-laboratory testing
 - Genotype representation
 - Specimen representation

Challenges in Molecular Test Verification


- □ Molecular testing (e.g. PCR)
 - Increased sensitivity
 - Increased specificity
- □ Challenge the "Gold Standard" (e.g. culture)
 - Predicate device?
 - Prove <u>substantial equivalence</u> to a legally marketed device [predicate device, usually recent 510(k)]
- Specimens (samples) used in testing
 - Patient, PT, "seeded" specimens ("Matrix")

Influenza Virus - Laboratory Testing

Laboratory Test	Specimen Type	Sensitivity	Time to Result	Comments
Direct fluorescent antibody (DFA)*	Nasal or throat washing, throat	44.4 % **	1-2 hrs	Specificity 98.8%**
Shell vial Culture	swab, bronchial wash, sputum or nasopharyngeal	56 - 100%	1-2 days	-
Direct viral antigen (EIA)		nasopharyngeal	50 - 80%	4 - 20 hrs
Standard cell culture*		100% ("Gold Standard")	2-14 days (Virus isolation 2-6 day range and □==3days)**	Sensitivity could be influenced by therapy, specimen collection time and specimen handling.
Influenza antibody (serology using complement fixation [CF], haemagglutination inhibition [HAI], neutralization test [NT] or enzyme immunoassay [EIA])		94% (Influenza A by CF testing)	1-2 days	Acute and convalescent sera drawn 10-14 days apart. Expect a fourfold increase in titer for IgG levels.

Influenza Virus Type A Detection

ViroMed Laboratories (1997 – 1998)

Performance Characteristics

- Analytical sensitivity measures the smallest quantity that can be reproducibly detected, the detection limit.
 - This value can be defined at the 0.95 confidence interval \pm 2 standard deviations.
- □ Clinical sensitivity is the test "positivity" in a population of affected patients.
- Specificity is the efficiency of a test in ruling out an analyte or disease. Analytical specificity is the measure of a method to identify only the analyte the test is designed to identify.
- Clinical specificity is the percent of negative test results in a population without the specified disease.
- Positive predictive value (PPV)
 - Proportion of patients with *positive* tests who have disease
- Negative predictive value (NPV)
 - Proportion of patients with *negative* tests who *do not* have disease

Primer Sensitivity*

Table 3: Sensitivity of H5N1 primers compared to WHO recommended H5 primers.

Sample Type	Subtype	Limit of detection WHO recommended H5 primers	Limit of detection H5N1 primers described here
Human 3028	H5N I	10-1	10-3
Avian 933	H5N1	10-1	10-3
Avian 949B	H5N I	10-3	10-4

Human 3028: A/Vietnam/3028/2004 Avian 933: A/Chicken/Vietnam/933/2004 Avian 949B: A/Chicken/Vietnam/949B/2004

*Specific detection of H5N1 avian influenza A virus in field specimens by a one-step RT-PCR assay Lisa FP Ng, et.al. *BMC Infectious Diseases*2006, 6:40

Primer Specificity*

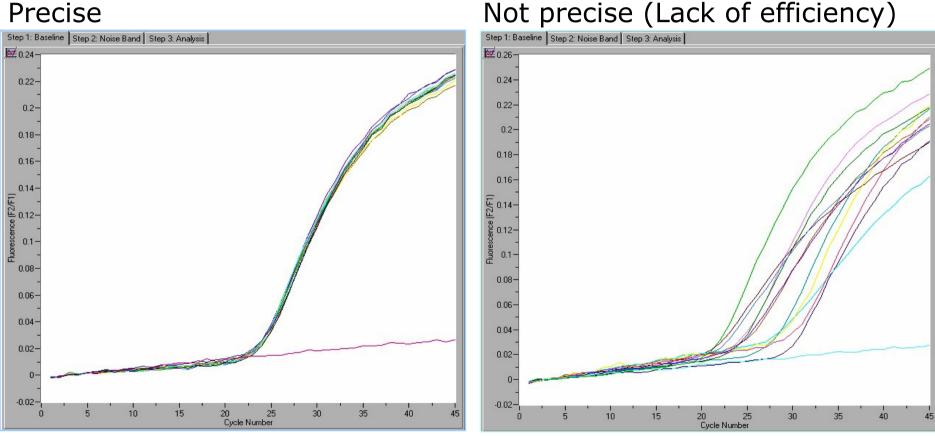
Table 1: Human specimens used as controls in one-step RT-PCR H5N1 assay

Pathogen	Early disease symptoms	n
Virus:		
Respiratory syncytial virus (RSV) B	"Flu"-like	1
Dengue I	Fever, "Flu"-like	I
Dengue 2	Fever, "Flu"-like	I
Dengue 3	Fever, "Flu"-like	1
Dengue 4	Fever, "Flu"-like	I
Severe respiratory syndrome virus (SARS)	High fever, dyspnea, malaise	2
Hepatitis B virus (HBV)	"Flu"-like, malaise	6
Bacteria:		
Haemophilus influenzae	Fever, "Flu"-like	I
Legionella pneumopnila	"Flu"-like, pneumonia	1
Klebsiella pneumoniae	"Flu"-like, pneumonia	1
Streptococcus pneumoniae	"Flu"-like, pneumonia	1
Mycoplasma pneumoniae	"Flu"-like, malaise	1
Mycobacterium	Fever, malaise, dyspnea	I

*Specific detection of H5N1 avian influenza A virus in field specimens by a one-step RT-PCR assay Lisa FP Ng, et.al. *BMC Infectious Diseases*2006, 6:40

Performance Characteristics

- Accuracy is the closeness of the measurement to the true value (reference)
 - (# correct results/# total results) x 100
- Precision is a measure of the extent to which replicate analyses of a homogeneous analyte agree with each other.
 - Precision is synonymous with reproducibility.
 - Precision is applied to quantitative assays and reproducibility to qualitative assays.
 - (# of repeated results in agreement/# total results) x 100


Performance Characteristics

- Test variation and reproducibility
 - Operator
 - Intra-run
 - Inter-run ("run-to-run")
 - o Day-to-day
- Specimens
 - > Type (site)
 - Inhibition
- Reference range
 - "Normal Range" for quantitative tests
- Demographics (if applicable)

Intra-assay Reproducibility

(Relative efficiency for a known concentration of nucleic acid)

Precise

When should we have larger N*?

- □ For studies of significant consequence
- □ If the sample is very diversified
- Minute differences are expected/anticipated
- For longitudinal studies
- □ If you are to have subgroup analyses
- □ Attrition of subjects are anticipated
- Test measures are unreliable
- Variables are complex and difficult to control

Sample Number and Testing Schedule

Parallel testing

- > 50-100 specimens
- 3-7 days
- Split specimens to reference lab using a comparable method
 - o Obtain test performance data sheet
 - Cost of testing
- Clinical specificity
 - At least 20 known isolates or clinical specimens
 - At least 40 known negative

Test Performance

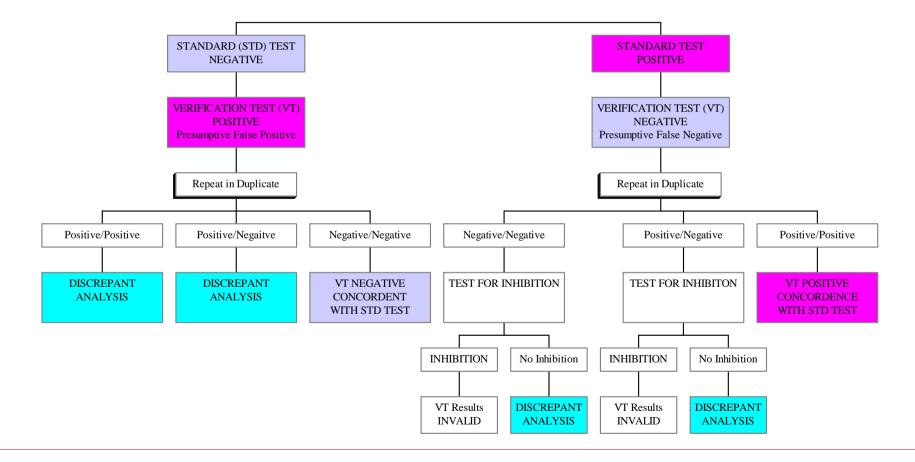
SV

Test Performance Results for Influenza Virus Type A and Type B

Test = PCR Standard = Shell Vial (SV) Culture

	401	Pos	Neg
Pos		150	0
Neg		15	236

Sensitivity=	100.00	[TP/(TP+FN)X100]
Specificity=	94.02	[TN/(FP+TN)X100]
PPV=	90.91	[TP/(TP+FP)X100]
NPV=	100.00	[TN/(TN+FN)X100]
Efficiency=	96.26	[(TP+TN)/(TP+FP+FN+TN)X100]


PCR

Test Verification

Discrepant Analysis

- Discrepant analysis is performed when the results of the new assay are in disagreement with the standard test results.
 - If the new assay result is positive and the standard assay is negative, the new assay could either be a false positive or a true positive not detected by the old assay.
 - If the new assay result is negative and the standard assay is positive the new assay is a false negative.
- Discrepant analysis should be performed as indicated in the algorithm.
- Discrepant analysis involves one or more of the following actions
 - Chart review including patient history, drug therapy, and outcome.
 - Additional <u>specific</u> laboratory test results
 - Reference laboratory using a method comparable in test performance (i.e. sensitivity, specificity, accuracy, precision)

Test Verification Discrepant Testing Algorithm

Discrepant Analysis

Test Performance Results for Influenza Virus Type A and Type B

			PCR*	
		401	Pos	Neg
Discrepant Analysis	Pos		163	0
	Neg		2	236

* Discrepant analysis results after one or more of the following:

- 1. Additional testing (Alternate target PCR)
- 2. Chart review
- 3. Epidemiology investigation
- 4. Referral to an outside laboratory

Sensitivity=	100.00	[TP/(TP+FN)X100]
Specificity=	99.16	[TN/(FP+TN)X100]
PPV=	98.79	[TP/(TP+FP)X100]
NPV=	100.00	[TN/(TN+FN)X100]
Efficiency=	99.50	[(TP+TN)/(TP+FP+FN+TN)X100]

Criteria for Acceptance

- Test sensitivity and specificity are greater than or equal to 95%
- Accuracy and reproducibility are greater than or equal to 95%
- Other considerations
 - Invalid repeat rate exceeds 5%
 - Reagent issues (e.g. instability)

Performance Characteristics

Test Development Manual

- Nucleic acid sequence characterization
 - Phylogenetic relationship
 - Microbial cross-reactivity
 - Normal flora, pathogens, similar diseases
- Test Development Protocol
- Data and analysis
- □ SOP
- Test Development Report
- Copies of references
- Test performance technical sheet

Quality Management and Quality Control (QM/QC) [10/6/2005] Procedure Manual

Quantitative molecular tests (MOL.30440 - Phase II)

- Calculation with units defined
 - Dynamic range
 - Controls (Negative, low positive, high positive)
- Melting curve interpretation (Real-time)
- □ Analytic interpretation (MOL.30555 Phase II)
 - Qualitative
 - o Band pattern, Tm, numeric c/o
 - > Quantitative
 - Run test performance verification
 - Sensitivity, linearity, inhibition

Test Performance Technical Sheet

HSV-1/HSV-2 RealTime PCR Test Performance

Test Code	456789		
Test Description	HSV-1 and HSV-2 RealTime PCR		
Test Methodology	Polymerase chain reaction (PCR) and realtime PCR detection probe technology (LightCycler)		
PCR Target	Glycoprotein D gene		
Analytical	Limit of Detection (5 viral particles/reaction)		
Sensitivity		ticles/reaction detected 100% of the time)	
Analytical		en noted for the following viruses:	
Specificity			
	Cytomegalovirus	Varicella Zoster Virus	
	Adenovirus	Coxsackievirus B	
	Coxsackievirus A	Echovirus	
	Human Herpesvirus type 6		
Clinical Sensitivity		ire) for HSV-1 and HSV-2 detection	
Clinical Specificity	100%		
Precision	100%		
	100%		
Accuracy			
Interfering	Heparin is known to inhibit this PCR test.		
Substances	(EDTA, ACD) are not inhib	may be present in some specimens, but blood, lipids and certain anti-coagulants itory.	
Specimens	CSF, vesicular fluid, amniotic fluid, and tissue		
References	Espy, M. J., J. R. Uhl, P. S. Mitchell, J.N. Thorvilson, K. A. Svien, A. D. Wold, and T. F. Smith. 2000. Diagnosis of Herpes Simplex Virus Infections in the Clinical Laboratory by LightCycler PCR. J. Clin. Microbiol. 38:795 799.		
	Mitchell, P. S., M. J., Es 1997. Laboratory diagnost cerebrospinal fluid specim	py, T. F. Smith, D. R. Toal, P. N. Rys, E. F. Berbari, D. R. Osmon, and D. H. Persing. is of central nervous system infections with herpes simplex virus by PCR performed with ens. J. Clin. Microbiol. 35:2873-2877	

Final Checklist

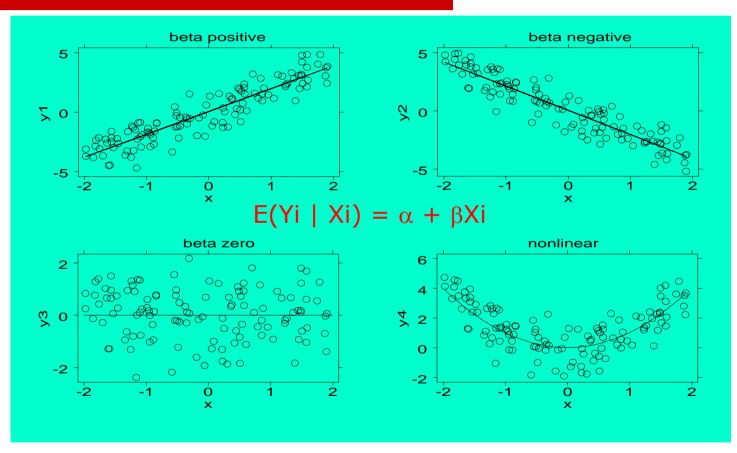
 Review and approval by Laboratory Director

✓ ASR disclaimer on all test reports

"This test was developed and its performance characteristics determined by Diagnostic Laboratory Services. It has not been cleared or approved by the U. S. Food and Drug Administration."

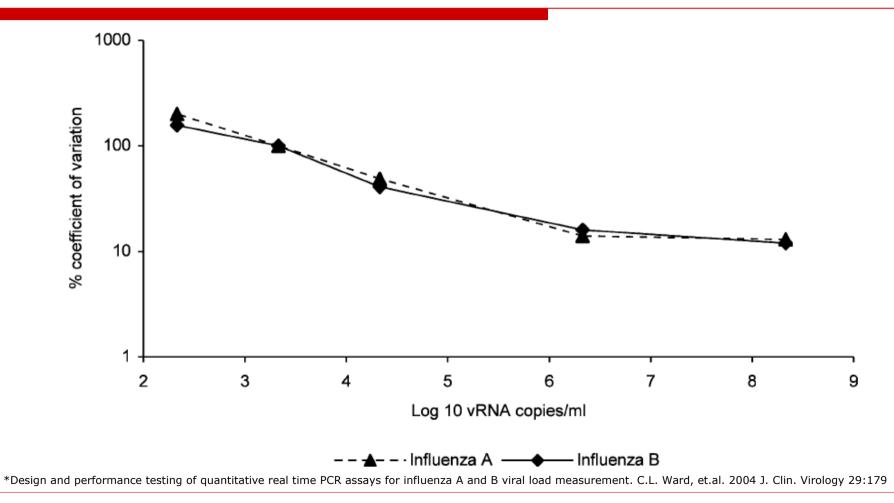
- Semi-annual test verification
- Ongoing test validation

Evaluation of a Real-Time PCR Multiplex Test (ProFlu-1[™]) for the Direct Detection of Influenza Virus Type A, Influenza Virus Type B, and RSV in Clinical Specimens

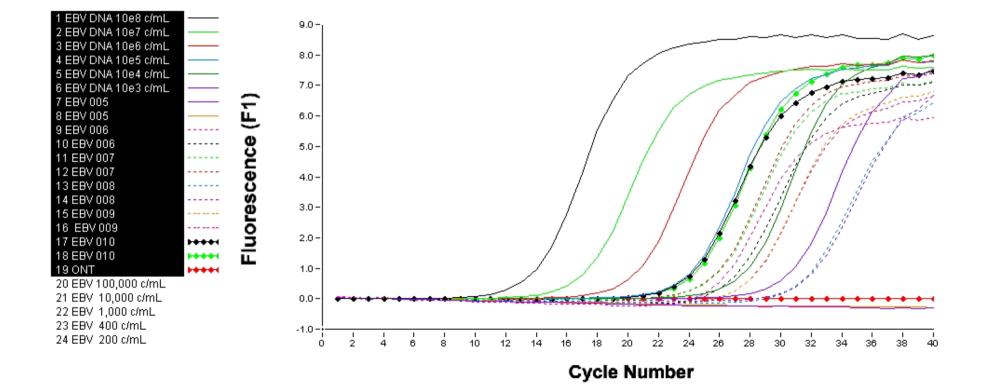

DATA PRESENTED IN SEMINAR

Validation of a Real-Time PCR Test for the Direct Detection and Subtyping of Influenza A Virus in Clinical Specimens

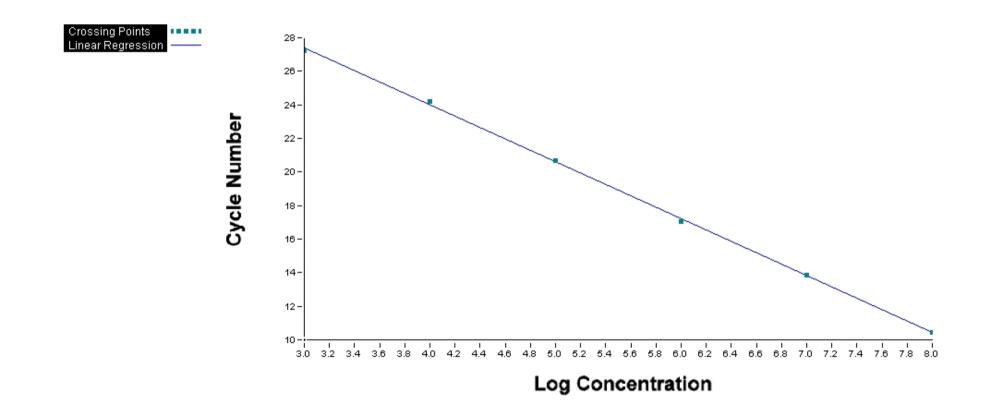
DATA PRESENTED IN SEMINAR


Quantitative Test Considerations

Linear Regression and Beta (Slope) Values



"Strength of association" between two (quantitative) variables


Variation Over the Dynamic Range for Quantitiative PCR Testing*

EBV Crossing Point (Ct)

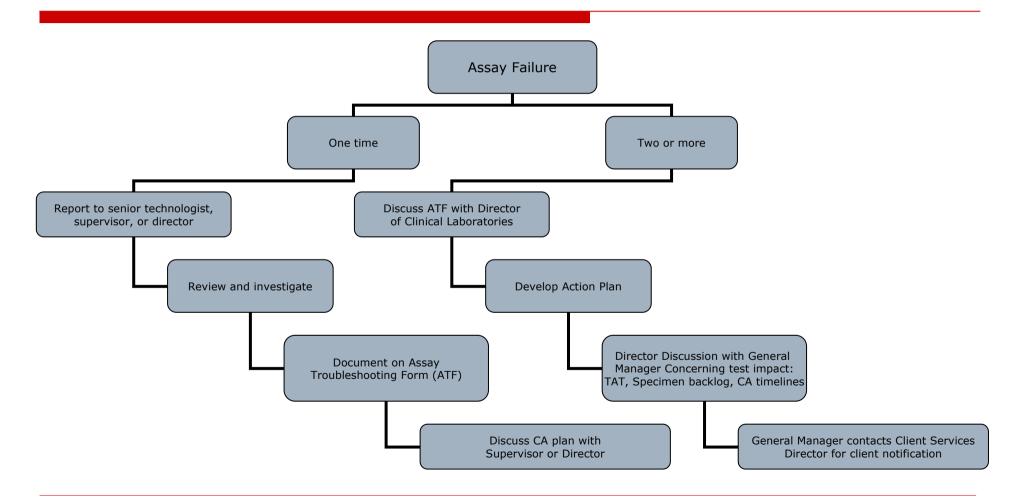
EBV Standard Curve

Evaluation of the Invader[®] HCV Genotyping Assay version 1.0 (Clinical Virology Symposium Abstract – 2005)

Jeffrey J. Germer, David W. Majewski, Billy Yung, P. Shawn Mitchell, Joseph D. C. Yao Mayo Clinic, Rochester, Minnesota

HCV RNA concentration (IU/mL)	No. of replicates tested (each assay)	% Replicates successfully genotyped (95% CI)			
		COBAS MONITOR ^a	COBAS AMPLICOR ^b	COBAS TaqMan ^c	
5,000	10	100 (69 - 100)	100 (69 - 100)	100 (69 - 100)	
1,000	10	100 (69 - 100)	100 (69 - 100)	100 (69 - 100)	
500	10	ND	100 (69 - 100)	100 (69 - 100)	
100	10	ND	100 (69 - 100)	100 (69 - 100)	
50	10	ND	ND	100 (69 - 100)	
10	10	ND	ND	100 (69 - 100)	
0	10	0 (0 - 31)	0 (0 - 31)	0 (0 - 31)	

ND, not done.


^a Amplification products diluted 1:20.

^b Amplification products diluted 1:100.

^c Amplification products diluted 1:500.

Troubleshooting a Verified Test

Assay Failure – Protocol for Assay Troubleshooting

Assay Troubleshooting Form (ATF)

- □ Assay, date and signatures
- □ Assay problem description
 - Control failure
 - Excessive background
 - Excessive sample positivity
 - > Other problem
- Investigation
- Action plan
- Results of troubleshooting
- Review by laboratory supervisor and clinical director with date of review

Qualitative Test Considerations

Reagents and Validation

Reagents (MOL.34065 - MOL.34188)

Verify and document purchased or prepared reagents (MOL.34065 - Phase II)

- Direct analysis with reference materials
- Parallel testing (prior or concurrent)
 - Qualitative testing
 - Known positive and negative patient from old lot
 - o Quantitative testing
 - Several patient samples at different levels
 - Weakly positive (if reported)
- Check against routine controls
 - o Awareness of "matrix interference"

Reagents (MOL.34065 - MOL.34188)

Expiration date (MOL.34147 - Phase II)

- Provided by manufacturer
- Assigned by laboratory
 - Known stability
 - Frequency of use
 - Storage conditions
 - Risk of contamination
- Examples of assigned expiration dates
 - BK Virus Real-time PCR (3 months)
 - o *B. microtii* Real-time PCR (9 months)

DATA PRESENTED IN SEMINAR

Controls (MOL.34229 - MOL.34557)

- Controls are "surrogates" for patient specimens
 Validation for type of testing
 - > Qualitative
 - Positive, negative and low level positive (some cases)
 - When available, appropriate and practical (MOL.34229 Phase II)
 - Cystic fibrosis (CF) panel
 - Quantitative
 - o Two or more levels
 - Relevant" analytic and clinical decision points (MOL.34270 Phase II)
- Result verification prior to reporting
 - Unacceptable controls (MOL.34352 Phase II)
 - Corrective action (MOL.34393 Phase II)

Quality Management and Quality Control (QM/QC) [10/6/2005] Controls (MOL.34229 - MOL.34557)

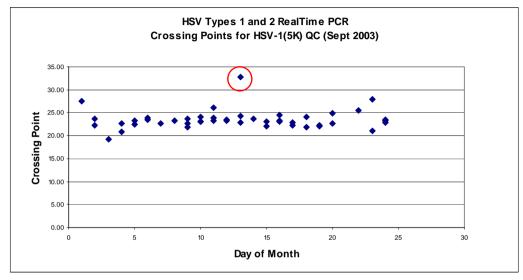
□ Controls processed in the same manner and by the same personnel as patient samples (MOL.34434 - Phase II)

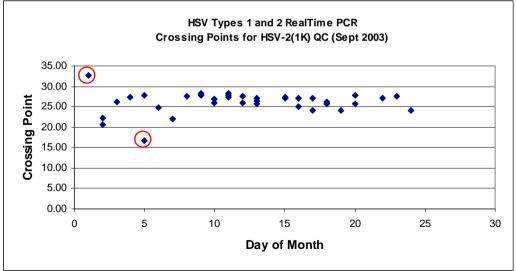
- Control all steps
 - Pre-analytic
 - Specimen preparation
 - Post-analytic
- Monitor trends
 - > Quantitative (MOL.34475 Phase II)
 - Variance (SD, CV)

Test Validation and Trend Analysis

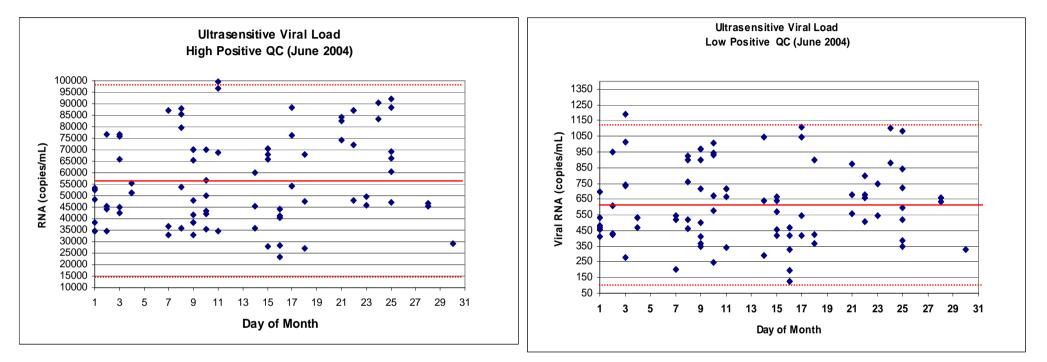
- The documentation that a verified in-house developed test is repeatedly performing according to expectations over time
- □ Check for biases and changes
 - Crossing point (Ct)
 - ≻ Tm
 - > New lot compared to old lot of reagents
 - Validation at least semi-annually

Analysis (MOL.34600 - MOL.35766)

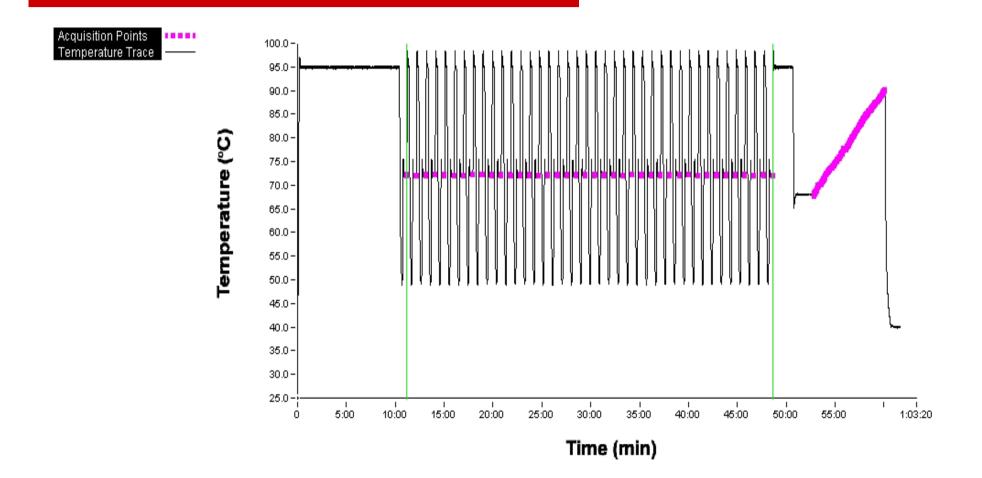

□ Real-time PCR


- Monitor and record
 - T_m result range $\leq +/- 2.5^{\circ}C$
 - Calibrator range (quantitative)
- Concurrent or pretest of oligo reagents
- Repeat or investigate IC failures
 - R/O target and IC competition
- Validate new software against known controls

Arrays


- Endogenous positive target
- Exogenous spiked control
- Array quality verification

HSV-1/2 RealTime PCR Controls


HIV-1 Monitor PCR Viral Load Controls

	High Pos	Low Pos
Ave	56667	623
SD	20342	245
Low (-2SD)	15984	133
Hi (+2 SD)	97350	1113

		High Pos		Low Pos	
Date of Testing	Tech.	Ave	SD	Ave	SD
June 1-4	BK	51443	14076	608	239
June 7-9, 21-30	LJ	60999	22380	653	227
June 10.	AF	49592	12241	729	291
June 11-18	RW	55675	21968	563	264

Real-time Amplification Profile

References

- CLIA The Federal Register
 - www.phppo.cdc.gov/clia/default.asp
- College of American Pathologists (CAP)
 - http://www.cap.org/apps/docs/laboratory_accreditation/checklis ts/checklistftp.html
- CLSI Documents (http://www.clsi.org/)
 - MM3-A Molecular Diagnostic Methods for Infectious Diseases
 - MM3-A2 Molecular Diagnostic Methods for Infectious Diseases; Approved Guideline – Second Edition. CLSI. 2006
 - MM6-A Quantitative Molecular Methods for Infectious Diseases
- Cumitec 31 Verification and Validation of Procedures in the Clinical Microbiology Laboratory
 - http://estore.asm.org/productsearch.asp