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Abstract: Dietary restriction in rodents has been repeatedly shown to increase lifespan while reduc­
ing the severity and retarding the onset of both spontaneous and chemically induced neoplasms. 
These effects of dietary restriction are associated with a spectrum of biochemical and physiological 
changes that characterize the organism's adaptation to reduced caloric intake and provide the mecha­
nistic basis for dietary restriction's effect on longevity. Evidence suggests that the primary adaptation 
appears to be a rhythmic hypercorticism in the absence of elevated ACTH levels. This characteristic 
hypercorticism evokes a spectrum of responses including: decreased glucose uptake and metabo­
lism by peripheral tissues, decreased mitogenic response coupled with increased rates of apopto­
sis, reduced inflammatory response, reduced oxidative damage to proteins and DNA, reduced repro­
ductive capacity, and altered drug metabolizing enzyme expression. The net effect of these changes is 
to: (1) decrease growth and metabolism in peripheral tissues to spare energy for central functions 
and (2) increase the organism's capacity to withstand stress and chemical toxicity. These adaptations 
suggest an evolutionary mechanism that provides rodents with an adaptive advantage in conditions of 
fluctuating food supply. During periods of abundance, body growth and fecundity are favored over en-
durance and longevity. Conversely, during periods of famine, reproductive performance and growth 
are sacrificed to ensure survival of individuals to breed in better times. This phenomenon has been 
observed in rodent populations that are used in toxicity testing. Improvements in animal husbandry 
and nutrition, coupled with selective breeding for growth and fecundity, resulted in several strains ex­
hibiting larger animals with reduced survival and increased incidence of background lesions. Mecha­
nistic data from dietary restriction studies suggest that these large animals will also be more suscep­
tible to chemically induced toxicity, thus creating problems in comparing tests performed on animals 
of different weights and in comparing data generated today with the historical database. The rational 
use of dietary restriction to control body weight to within preset guidelines was proposed as a possi­
ble way of alleviating this problem. Recent data from studies testing this paradigm have demon­
strated that dietary control not only can increase animal survival in two-year studies but also can in-
crease bioassay sensitivity. 
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Introduction	 able on the biochemical and molecu­
lar mechanisms through which die-

Dietary restriction has been re- tary restriction influences cancer 
peatedly shown in rodents to in- rates and aging (3-8). Nutrient 
crease maximally achievable life stress, which is characterized by 
span and to decrease the incidence elevated glucocorticoid levels in the 
and proliferative rate of spontaneous absence of elevated ACTH or inflam­
and chemically induced neoplasia matory cytokines, appears to play a 
(1,2). During the last decade signifi- central role in mediating the effects 
cant new information became avail- of dietary restriction (3,9-11) and has 

Figure 1. Hormonal Control of Glucose and Energy Homeostasis 
Energy homeostasis and physiological blood glucose levels are maintained predominantly by 
the reciprocal actions of glucocorticoids and insulin. These hormones in turn regulate mito­
genesis and growth rate via growth hormone, IGF1 and DHEA. See text and (31) for refer­
ences. Blue lines = response to caloric deficit, red lines = response to caloric excess, black 
lines = classic stress response. AVP = arginine vasopressin, SST = somatostatin, NPY = 
neuropeptide Y, CRF = corticotropin releasing factor, CCK = cholecystokinin, DHEA = dehy­
droepiandrosterone, and IGF1 = insulin-like growth factor 1. 
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certain similarities to the stress re­
sponse elicited by many chemicals 
when administered to rodents at 
their maximally tolerated dose (3). 

While it has been known for over 
60 years that survival and neoplasm 
incidence in laboratory rodents is 
influenced profoundly by caloric in-
take and body weight (12), it was 
only during the last decade that diet 
and body weight have become major 
issues in the design and interpreta­
tion of animal toxicity and carcinoge­
nicity studies. Attention to these is-
sues was precipitated by the obser­
vation, during the early 1990s, that 
mean life span of rodents, which 
were commonly used in cancer bio­
assays had been steadily decreas­
ing, concurrently with an increase in 
mean body weight and in the back-
ground incidence of neoplastic and 
other degenerative diseases. For 
several strains it had reached a point 
where assay interpretation was be­
ing compromised due to insufficient 
animals surviving to the end of the 
study (13-15). Various symposia ad-
dressed this issue and generally rec­
ommended that some form of dietary 
control, either through dietary restric­
tion or new diet formulations, be 
used to maintain animals within a 
healthy weight range during toxicity 
testing (16,16-20). Several ap­
proaches to dietary control have now 
been tested, and there has been a 
trend among rodent breeding compa­
nies to select for smaller animals. 
This paper reviews and updates the 
current state of knowledge on how 
dietary restriction evokes its benefi­
cial effects on aging and disease 
and describes the relative success 
of dietary control techniques in in-
creasing survival while decreasing 
variability and background neoplasia 
rates in laboratory rodents. 

Hypercorticism - An Adaptive 
Response to Nutrient Stress 

Although the precise mecha­
nisms by which dietary restriction 

(Continued on page 3) 
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(Continued from page 2) 
evokes its beneficial effects on dis­
ease and longevity have not been 
fully determined, it is becoming evi­
dent that glucocorticoid hormones 
play a significant role in mediating 
these effects (10,21). It was first re-
ported over fifty years ago that ca­
loric restriction resulted in adrenal 
hypertrophy (22), and during the last 
few years a number of laboratories 
have demonstrated increased corti­
costerone concentrations in serum 
from dietary restricted rats and mice 
(10,21,23-30). 

The mechanism controlling the 
adaptive response to reduced caloric 
intake involves the complex, dy­
namic interplay between the hor­
mones that control energy balance, 
appetite, cell proliferation and apop­
tosis, stress response, metabolic 
rate, inflammation, and repair sys­
tems (3,21) [Figure 1]. Glucocorti­
coids and insulin appear to play a 
reciprocal role as the major media-
tors of energy balance and glucose 
homeostasis in mammals (31-33). 
Serum corticosterone levels rise in 
response to hypoglycemia and in-
crease blood glucose levels by inhib­
iting glucose transport into peripheral 
tissues while increasing gluconeo­
genesis and glucose output by the 
liver. In the hypoglycemic state, cor­
ticosterone also stimulates appetite 
by inducing neuropeptide Y produc­
tion in the arcuate nucleus of the 
hypothalamus (34) and stimulates 
lipolysis in adipose tissue, while re­
ducing energy expenditure in other 
peripheral tissues by decreasing 
thermogenesis and inhibiting the ef­
fects of mitogenic and excitatory 
hormones (21,32). Conversely, in the 
hyperglycemic state insulin levels 
rise and decrease blood glucose lev­
els by stimulating glucose uptake 
and glycogen synthesis in liver and 
muscle and by increasing glucose 
uptake and lipogenesis in adipose 
tissue (31,32). Insulin also stimu­
lates leptin production in adipose 
tissue, which in turn decreases ap­
petite and increases metabolism and 
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energy expenditure in peripheral tis-
sues (35-38). Glucocorticoid treat­
ment also stimulates leptin produc­
tion; but this is possibly an indirect 
effect resulting from increased insu­
lin levels, increased insulin sensitiv­
ity or functional maturity of adipo­
cytes (39). The leptin gene promoter 
region does not contain glucocorti­
coid response elements; and during 
fasting conditions, where glucocorti­
coid levels increase, while those of 
insulin decrease plasma leptin levels 
also decrease (39,40). Thus, under 
normal physiological conditions, a 
balanced opposing relationship ex­
ists between insulin and corticoster­
one, which maintains blood glucose 
levels within the normal physiological 
range (31). 

Nutrient stress, such as fasting, 
starvation or insulin-induced hypogly­
cemia results in elevated glucocorti­
coid levels, but unlike classic stress, 
hypothalamic release of corticotro­
pin-releasing factor (CRF) does not 
appear to play a major role in initiat­
ing the glucocorticoid response (41-
43). Rather arginine vasopressin 
(AVP) plays the major role in the 
hypothalamus, and the adrenal re­
sponse to ACTH appears to be am­
plified by pancreatic polypeptide, 
which is secreted by the pancreas 
during periods of hypoglycemic 
stress (44-46). In addition, adrenal 
corticosterone secretion may be fur­
ther increased by neural stimulation 
via the adrenal medulla (47,48). This 
results in elevated corticosterone 
concentrations in the absence of ele­
vated ACTH (and, by inference, CRF) 
in both starved (41) and calorically 
restricted (10,43) rats. 

Under normal physiological con­
ditions, once the hypoglycemic cri­
sis has been rectified, insulin levels 
will rise and, as suggested by in vi­
tro experiments (49), may down-
regulate adrenal corticosterone se­
cretion in favor of dehydroepiandros­
terone (DHEA) secretion. DHEA, like 
insulin is generally anabolic in func­
tion, and it is reported to antagonize 
many of the effects of glucocorti-
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coids (50-53). 
During pathological conditions 

such as Cushing's syndrome or pro-
longed, excessive glucocorticoid 
therapy, natural feedback regulation 
is bypassed, and a pathological hy­
perglycemia develops, which is char­
acterized by concurrent elevated in­
sulin and glucocorticoid levels. Such 
conditions of hypercorticism concur-
rent with hyperinsulinemia, if pro-
longed, would be expected to result 
in pathological conditions such as 
atherosclerosis and mature-onset 
diabetes (54). Classic stress ap­
pears to be primarily controlled by 
the hypothalamic-pituitary-adrenal 
axis (HPA). CRF and AVP secretion 
from the hypothalamus increase in 
response to interleukins or neuro­
peptides and stimulate ACTH secre­
tion by the pituitary (55). Thus, 
plasma concentrations of both CRF 
and ACTH are increased in addition 
to serum corticosterone levels. CRF 
decreases hyperphagia (56) and is 
pyrogenic and an inflammatory me­
diator (57). 

Anti-Neoplastic Effects 
of Glucocorticoids 

The net effects of hypercorticism 
resulting from nutrient stress are, 
therefore, a reduction of glucose up-
take and energy metabolism in pe­
ripheral tissues. This, in itself, may 
provide a beneficial effect on aging 
and carcinogenesis by reducing 
rates of intracellular glycoxidation 
and oxidative damage from respira­
tory chain enzymes (58,59). How-
ever, the primary mechanism by 
which glucocorticoids impact upon 
aging and degenerative disease may 
be through their anti-mitotic and anti-
inflammatory functions. 

Anti-mitotic effects: Growth hor­
mone and glucocorticoids are mutu­
ally antagonistic in their effects on 
body growth (60) and wound healing 
(61), and some of the anti-mitogenic 
effects of glucocorticoids are medi­
ated through changes in the hypo­

(Continued on page 4) 
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(Continued from page 3) rupt the pulsatile secretory profiles of 
growth hormone (62,63) in rats and 

mone/IGF1 axis. Glucocorticoids dis- decrease hepatic IGF1 expression 
thalamic-pituitary-liver growth hor-

Figure 2. Intracellular Actions of Glucocorticoids 
Mitogenic Signal Transduction Pathways 

Glucocorticoids downregulate -kB and AP-1 signal transduction pathways at multiple 
levels. In many cell types these pathways activate inflammatory or mitogenic responses 
and inhibit apoptosis. In addition to transrepressing the interaction of activated NF-kB and 
AP-1 complexes to their DNA response elements, glucocorticoids induce proteins, which 
inhibit the activation of these complexes. 
Abbreviations used: AA = arachidonic acid, AP-1 = activator protein 1 complex (the active 
complex is composed of a dimer of a c-fos protein with a phosphorylated c-jun protein), 
cPLAα = cytosolic phospholipase A2α, COX2 = prostaglandin synthetase 
(cyclooxygenase) 2, CXC = chemokines, EGF = epidermal growth factor, GC = glucocorti­
coid, GR = glucocorticoid receptor, GRE = glucocorticoid response element, IκB = NFκB 
complex inhibitor protein, IκBK = IκB kinase, IL-1 = interleukin 1, iNOS = inducible nitric oxide 
synthase, JNK = Jun N-terminal kinase, LP-1 = lipocortin 1, LPS = lipopolysaccharide, LT = 
leukotrienes, MPK-1 = mitogen activated protein kinase phosphatase 1 (inactivates JNK by 
dephosphorylation), NF -κB = nuclear factor kappa B (the active complex is composed of a 
dimer of the P-50 and P65 proteins), PG = prostaglandins, Ps  = proteasome complex which 
degrades phosphorylated IκB, R = plasma membrane receptors for cytokines and other 
inflammatory molecules, ROS = reactive oxygen species, TNFα = tumor necrosis factor 
alpha, TPA = 12-O-tetradecanoylphorbol-12-acetate, TRE = TPA response element. 

on Inflammatory and 
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(64). They also antagonize the prolif­
erative effects of EGF and PDGF in 
various cell culture systems (65,66) 
and antagonize the stimulatory ef­
fects of Luteinizing Hormone (LH) on 
the adenyl cyclase/cAMP system in 
Leydig cells and possibly other en­
docrine tissues (67,68). Although 
high glucocorticoid levels can cause 
atrophy of skeletal muscle, they 
stimulate hypertrophy in cardiac 
muscle (69). This effect is associ­
ated with alterations in expression of 
myosin isoforms resulting in the high 
efficiency V3 isoform being favored 
over the low efficiency V1 isoform 
(69,70). Thus, the anti-mitogenic ef­
fects of glucocorticoids appear to be 
selective. 

Apoptosis plays an important 
role in inhibiting tumor development 
by eliminating damaged and geneti­
cally transformed cells from tumor 
susceptible tissues (71-76). Apopto­
sis is characterized as differing from 
tissue necrosis in that only selected 
cells are eliminated, and the result­
ing cell debris is immediately phago­
cytized by adjacent cells so that an 
inflammatory response is not initi­
ated (77,78). Glucocorticoids induce 
apoptosis in lymphatic tissues (72), 
fibroblasts (79) and, possibly, in 
mammary epithelium (77,80). Gluco­
corticoids may also selectively medi­
ate the effects of TGFß in stimulating 
apoptosis in preneoplastic hepato­
cytes (58,66). 

Anti-inflammatory effects: When 
used therapeutically, glucocorticoids 
are extremely potent anti-
inflammatory agents, which interact 
with practically every stage of the 
inflammatory response (81). Al­
though it was once proposed that 
physiological levels of endogenous 
glucocorticoids stimulated the in­
flammatory response, as part of the 
general adaptation to stress (82), it 
now appears their physiological role 
during stress is to protect the organ-
ism from an overstimulated inflam­
matory response (81,83). Glucocorti­
coids achieve this by inhibiting the 

(Continued on page 5) 
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(Continued from page 4) 
production of, or antagonizing the 
actions of, inflammatory mediators 
such as prostaglandins, leu­
kotrienes, interleukins, and atrial na­
triuretic factor (3,21,81) [Figure 2]. 
Many of the anti-inflammatory and 
anti-mitotic effects of glucocorticoids 
appear to be mediated by the gluco­
corticoid-inducible protein, lipocortin 
1 (81,84-87). Lipocortin 1 (also 
known as annexin 1) is a glycosyl­
ated 37 kDa Ca2+-dependent phos­
pholipid binding protein, which inhib­
its phospholipase A2, a key enzyme 
in the synthesis of inflammatory 
prostaglandins and leukotrienes from 
arachidonic acid (81). In addition to 
directly inhibiting phospholipase A2 

activity, lipocortin 1 recently has 
been shown to inhibit the EGF-
mediated phosphorylation of the cy­
tosolic form of this enzyme (cPLAα) 
(88,89). cPLAα is activated by phos­
phorylation as part of a G-protein 
dependent, EGF-mediated mitogenic 
response (88). Lipocortin 1 also me­
diates glucocorticoid feedback ef­
fects on the HPA-axis by inhibiting 
both basal and interleukin-induced 
release of CRF and AVP by the hy­
pothalamus (55,84,90). Glucocorti­
coids also down-regulate mRNA ex­
pression of several key inflammatory 
enzymes. These include 12-
lipoxygenase (91) and the inducible, 
but not constitutive, forms of prosta­
glandin synthase (COX2) (92-95), 
nitric oxide synthase (iNOS) (95-97) 
and intestinal phospholipase A2 

(PLA2II) (98). These enzymes gener­
ally are induced by endotoxins, tu­
mor necrosis factor, interleukins, 
phorbol esters, or growth factors. 
Although it is not known whether glu­
cocorticoids directly or indirectly re-
press transcription of these en­
zymes, lipocortin 1 appears to medi­
ate glucocorticoid-mediated down-
regulation of iNOS (99), but not 
COX2 (100). 

Lipocortin 1 has been proposed 
to be a mediator of glucocorticoid­
induced apoptosis. It is induced in 
apoptotic cells where it has been 

proposed to inhibit recognition of the 
dying cells by macrophages (77). 
Lipocortin 1 is also a substrate for 
transglutaminase. This enzyme is 
induced in apoptopic cells where it 
catalyzes the covalent linkage of 
proteins. Covalently linked lipocortin 
dimers can form polymers with other 
proteins during apoptosis potentially 
enhancing phagocytic uptake by ad­
jacent cells (77,101,102). Lipocortin 
1 was shown to protect cultured rat 
thymocytes from H2O2-elicited necro­
sis. Glucocorticoid treatment, which 
induced lipocortin 1, stimulated 
apoptosis while treatment with an 
anti-lipocortin 1 antibody enhanced 
necrosis (103). 

Glucocorticoids also mediate in­
flammation through interactions with 
the nuclear factor kappa B (NF-κB) 
and activator protein-1 (AP-1) signal 
transduction pathways (104-106). 
Both of these pathways play a major 
role in the inflammatory and mito­
genic responses in many cell types 
and in general protect cells from 
apoptosis when stimulated by cyto­
kines, such as tumor necrosis factor 
α (TNFα) or oxidative stress (107-
110). The NF-κB transcription factor 
complex is usually retained in the 
cell cytosol in an unstimulated state 
by an inhibitory protein (named IκB), 
which binds to the cytoplasmic NF­
κB complex and inhibits its translo­
cation into the nucleus. TNFα and 
other cytokines stimulate the phos­
phorylation of IκB, which targets the 
inhibitor protein for proteolytic degra­
dation, which then frees the NF-κB 
complex for nuclear translocation 
(Figure 2). Glucocorticoids induce 
the expression of IκB, thereby down 
regulating NF-κB activation, whereas 
insulin also stimulates IκB phospho­
rylation (111-114). This suggests 
that whether or not a cell will initiate 
apoptosis in response to TNFα will 
depend on the insulin: glucocorticoid 
ratio in its interstitial environment. 

Activated glucocorticoid receptor 
complexes are also able to inhibit 
inflammatory and mitogenic tran­
scription factors by direct protein-

protein interaction. These interac­
tions have been demonstrated for the 
NFκB complex, the AP-1 ligands c­
fos and c-jun, and several STAT pro­
teins, and are independent of gluco­
corticoid-mediated transcription 
(106,115). 

Despite their global anti-
inflammatory effects, glucocorticoids 
have been shown to potentiate cer­
tain aspects of the host defense 
system. For example, they have 
been reported to induce expression 
of heat shock proteins such as 
HSP70 (116) and increase activity of 
the DNA repair enzyme O6-
methylguarnine-DNA methyltransfer­
ase (117) in certain tissues. They 
also potentiate the effects of interleu-
kin-6 and hepatocyte-stimulating fac­
tor in inducing hepatic acute phase 
proteins, such as Mn-superoxide 
dismutase and α2-macroglobulin 
(118-122). Although both glucocorti­
coids and lymphocyte stimulatory 
agents that are mediated via intracel­
lular Ca2+ or protein kinase c (e.g., 
calcium ionophors/phorbol esters, 
antibodies to the T-cell antigen re­
ceptor) initiate apoptosis in maturing 
lymphocytes, they are mutually an­
tagonistic to the extent that gluco­
corticoids protect lymphocytes from 
activation-induced apoptosis 
(123,124). Thus, the effects of gluco­
corticoids on the inflammatory and 
immune systems are modulatory 
rather than simply suppressive. 

Inflammation, necrosis, oxidative 
damage and regenerative hyperpla­
sia all play a significant role in 
chemically induced tumor promotion, 
and glucocorticoids have been 
shown to inhibit hyperplasia and 
neoplasia in a number of systems. 
For example, glucocorticoids are 
used therapeutically as antineoplas­
tic agents in several types of leuke­
mia and lymphoma (52,125), and 
they suppress growth of certain lung 
or mammary adenocarcinomas 
(80,126-128). Dexamethasone has 
been reported to inhibit both perox­
isome proliferator-induced and lead 

(Continued on page 6) 
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(Continued from page 5) 
nitrate-induced proliferative hyperpla­
sia in rat liver (129,130). Glucocorti­
coids have also been shown to in­
duce connexin expression and 
stimulate gap junction formation in 
cultured hepatocytes and embryonic 
cells (131-133). Inflammatory 
agents, such as phorbol esters, pro-
mote, and glucocorticoids inhibit 
papilloma formation in mouse skin 
(134). 

Toxic Effects of Glucocorticoids 

Chronic and excessive elevation 
of glucocorticoid levels increases the 
risk of developing hypertension, hy­
perkalemia, diabetes, atherosclero­
sis, osteoporosis, glaucoma, and 
impairment of the immune and repro­
ductive systems (135,136). The or­
gan most susceptible to glucocorti­
coid toxicity appears to be the hip­
pocampus. High doses of corticos­
terone administered to adrenalecto­
mized rats resulted in neuronal atro­
phy in the hippocampus, but not in 
other areas of the brain (54,137,138). 
Because the hippocampus, in con-
junction with the hypothalamus, con­

trols feedback regulation of the HPA, 
it was suggested by Sapolsky and 
coworkers (138), in what has be-
come known as the glucocorticoid 
cascade hypothesis, that glucocorti­
coid-evoked hippocampal damage 
impairs the feedback regulation of 
adrenal glucocorticoid output, which 
could result in further increases in 
glucocorticoid levels and additional 
hippocampal damage. Over a life-
time, such an effect may result in 
premature aging of the brain. Evi­
dence supporting this hypothesis 
includes in vitro studies, which have 
demonstrated that glucocorticoids 
impair the ability of cultured hippo­
campal cells to withstand neurotoxic 
stresses (138). The proposed 
mechanisms responsible for these 
effects include inhibition of glucose 
transport and disruption of Ca2+ ho­
meostasis (138-140). In humans, 
patients with Cushing's syndrome 
have been reported to exhibit mem­
ory impairment, which correlated 
with serum cortisol levels (141), and 
dexamethasone treatment has been 
reported to impair declarative mem­
ory performance (142). However, al­
though hypercorticism is often mani­

fested in Alzheimer's patients (139), 
long-term treatment with glucocorti­
coids is associated with delay in the 
onset of Alzheimer's disease (143). 
Lipocortin 1 is expressed throughout 
the brain, including the hippocam­
pus, and has been shown to protect 
against neuronal damage resulting 
from either ischemia or NMDA re­
ceptor agonists (144,145). 

Exposure of adult rats to stress, 
hypercorticism or glucocorticoid 
therapy reduces reproductive hor­
mone levels in both sexes (3). In 
males, for example, glucocorticoids 
appear to inhibit LH-mediated testos­
terone synthesis by cultured rat Ley-
dig cells (146) and dexamethasone 
treatment decreases, while adrena­
lectomy increases serum testoster­
one levels in vivo (147,148). In fe­
males, glucocorticoids decrease 
FSH-stimulated aromatase activity 
and estrogen production by ovarian 
granulosa cells (149), suppress ovu­
lation and inhibit ovarian prostaglan­
din metabolism (150). They also in­
hibit the preovulatory pituitary LH 
surge in female rats (151) and estra­
diol- and gonadotropin releasing hor­

(Continued on page 7) 

Direct Effects 

Blood glucose - unchanged or decreased. 
Pancreas, insulin secretion - decreased. 
Serum corticosterone - increased. 
Plasma ACTH - decreased. 
Body temperature - decreased. 
Hepatic gluconeogenic enzymes -increased. 
Cardiac muscle, myosin V1 - decreased, myosin V3 - in-
creased. 
Pulsatile growth hormone - inhibited. 
Hepatic IGF1 synthesis - decreased. 
Hepatic sex-specific drug metabolism - decreased. 
Cell proliferation - decreased. 
Apoptosis - increased. 
Blood - leukopenia. 
Inflammatory response - decreased. 
Lipocortin production - increased. 
12-lipoxygenase - decreased. 
Male gonadal steroids - feminized. 
Reproductive function - decreased. 
HSP70 - increased. 

Aging-dependent Effects 

Neoplasia - delayed. 
Nephropathy - delayed. 
Cardiopathy - delayed. 
Hyperinsulinemia - decreased. 
Cognitive defects - decreased. 
Reproductive senescence - delayed. 
Antioxidant enzymes - increased. 
DNA repair - increased. 
Pulsatile growth hormone - maintained. 
Hepatic IGF1  synthesis - increased. 
Hepatic sex -specific drug metabolism - increased. 
Cell proliferation - increased. 
Blood - leukopenia. 

Direct effects of caloric restriction are those occurring immedi­
ately after restriction is initiated and result directly from the or­
ganism's response to caloric deficit. Aging-dependent effects of 
caloric restriction are those occurring in response to the delay in 
physiological aging that results from caloric restriction. Effects in 
italics are those which are consistent with hypercorticism. Refer­
ences given in text or in references (3, 21, 266). 

Table 1. Major Effects of Caloric Restriction 
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(Continued from page 6) 
mone-induced LH production in cul­
tured rat pituitary cells (152). In male 
rats, glucocorticoids inhibit pituitary 
secretion of prolactin (153), but not 
mean LH levels (154). However, CRF 
and stress inhibit pituitary LH secre­
tion in both sexes (155,156). 

Glucocorticoid-Mediated Effects 
of Dietary Restriction 

Dietary restriction not only evokes 
anti-inflammatory and antineoplastic 
effects that are consistent with chronic 
hypercorticism, but also protects the 
aging rodent against insulin resistant 
diabetes (29,157-159), impaired tissue 
growth and regeneration (160,161), 
certain neurological impairments 
(162,163), and reproductive senes­
cence (164,165) [Table 1]. Although 
these latter effects appear at first sight 
to be inconsistent with hypercorticism, 
on further analysis they appear to be 
the natural consequence of the nutrient 
stress that is produced by caloric re­
striction under the conditions used for 
most experimental paradigms. 

There are several factors that differ­
entiate the nutrient stress produced by 
dietary restriction from other stress 
situations or glucocorticoid therapy (3). 
Firstly, unlike treatment with pharma­
cological doses of synthetic glucocorti­
coids, hypercorticism resulting from 
nutrient stress involves the natural glu­
cocorticoids, corticosterone or cortisol. 
The effects of these natural glucocorti­
coids are mediated by serum transcor­
tin and 11ß-hydroxysteroid dehydroge­
nase, which may protect tissues from 
extreme hypercorticism (3). Further-
more, unlike synthetic steroids such 
as dexamethasone, corticosterone and 
cortisol bind to both Type I and Type II 
glucocorticoid receptors so that the 
Type I receptor response is not inhib­
ited concurrently with an excessive 
Type II receptor response (166). 

Secondly, the hypercorticism ex­
hibited by dietary restricted rodents 
differs from the continuously elevated 

(Continued on page 8) 
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Figure 3. Influence of Body Weight on Caloric Consumption in 
Calorically Restricted Fischer 344 Rats 

Fischer 344 rats, housed in a specific pathogen free barrier facility at NCTR, were 
placed on a vitamin fortified NIH-31 diet at 60% of ad libitum food consumption as 
described by Duffy et al (177). A, the weight curves for male and female rats. B, 
relative food consumption (expressed as food consumed per gram body weight by 
the calorically restricted rats as a percentage of that consumed per gram body 
weight by the ad libitum-fed rats) as a function of age. By 50 weeks for the males 
and 70 weeks for the females the calorically restricted rats consume equivalent 
amounts of food per gram body weight as their ad libitum-fed counterparts. 



in the restricted animals to an extent 
where the body weight difference be-
tween the restricted and ad libitum-
fed animals equals or exceeds the 
caloric deficit (177) [Figure 3]. Thus, 
during the latter half of a calorically 
restricted rat's life span its caloric 
consumption per gram body weight 
is equal to or greater than that of its 
ad libitum-fed counterpart. Under 
these conditions significant hyper­
corticism would not be required to 
protect the animal from potential hy­
poglycemia. As a consequence, dur­
ing senescence, when rodents are 
most susceptible to tissue degen­
eration due to reduced capacity for 
cellular proliferation and reduced out-
put of mitogenic hormones 
(161,178); serum corticosterone lev­
els are normally no longer signifi­
cantly increased in chronically calo-
rically restricted animals (3,25,28). 

The effects of dietary restriction
on biomarkers of mitogenesis are 
generally consistent with the occur-
rence of hypercorticism during the 
early, but not the late stages of ca­
loric restriction. For example, caloric 
restriction from 16 weeks of age 
abolishes growth hormone pulsatility 
in six month-old male Brown Norway 
rats, but pulsatility is restored in 

Figure 4. Age-dependent Effects of Caloric Restriction 

(A) Schematic representation of the effects of caloric restriction on mitogenic endpoints and 
reproductive function. Reduction in the early burst of activity delays the degradation of 
these systems in old age. Examples include: [BRDU], cell proliferation in kidney tubule cells 
from B6D2F1 mice, as measured by in vivo labeling with BrdU (161); [CYP] expression of 
hepatic cytochrome P450 2C11 (CYP2C11) and its dependent activity, testosterone 16"-
hydroxylase in male Fischer 344 rats (183); [IGF] expression of hepatic IGF1 mRNA in male 
Fischer 344 rats (182). Caloric restriction decreases these parameters in young rats (B) but 
maintains them in old rats (C). 
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older animals (179). In male rats, 
pulsatile growth hormone controls 
hepatic expression of both IGF1 and 
sex-specific drug metabolizing en­
zymes such as cytochrome P450 
2C11 (CYP2C11) (180,181). As ex­
pected from its effects on pulsatile 
growth hormone, caloric restriction 
decreases hepatic expression of 
both IGF1 and CYP2C11 in young 
male rats (182,183). However, as the 
rats age, hepatic IGF1 and CYP2C11 
expression decreases in the ad libi­
tum-fed rats, but is maintained by 
caloric restriction animals so that in 
old rats hepatic IGF1 and CYP2C11 
expression is greater in the calori­
cally restricted animals (182,183). 
This age-dependent biphasic effect 
of caloric restriction is illustrated in 
Figure 4 and is a common feature of 

(Continued on page 9) 
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serum corticosterone levels exhib­
ited by starved or chronically 
stressed rodents in that corticoster­
one levels are increased, above 
those of their ad libitum-fed counter-
parts, only during a limited circadian 
period that is prior to and coincident 
with feeding activity (167). This type 
of intermittent hypercorticism ap­
pears to be less damaging to mito­
genic processes than continuously 
elevated glucocorticoid levels (3). 

Thirdly, because the hypercorti­
cism is a response to caloric deficit 
and potential hypoglycemia and oc­
curs in conjunction with normal feed-
back regulatory systems, it is not 
associated with chronic hyperglyce­
mia or hyperinsulinemia (21,29,168). 
Thus, insulin resistance and protein 

glycation, which are the usual patho­
logical consequences of glucocorti­
coid-induced hyperglycemia, should 
not occur. Instead, rates of intracel­
lular glycation and oxidation of pro­
tein would be expected to decrease 
in peripheral tissues due to reduced 
glucose incorporation. Reduced col­
lagen glycoxidation has been ob­
served in skin from calorically re­
stricted rats (169), and accumulative 
oxidative damage to both protein and 
DNA is reduced by dietary restriction 
in a number of tissues (59,170-176). 

Fourthly, under the usual condi­
tions that are used for dietary restric­
tion experiments, significant hyper­
corticism only occurs during the 
early stages of restricted feeding 
(25,28). In most strains of rodents 
used in caloric restriction experi­
ments, body weight gain is reduced 
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(Continued from page 8) 
several of the reported effects of ca­
loric restriction in rodents. These 
include: cell proliferation rates in kid­
ney, pancreas and possibly liver 
from B6D2F1 mice (161), serum 
DHEA levels in Fischer 344 rats 
(184), and reproductive function in 
both rats and mice. 

The effects of caloric restriction 
on female reproductive function in­
clude delayed puberty (185,186), 
inhibition of LH pulsatility concurrent 
with hypercorticism (26), inhibition of 
ovulation (187), decreased litter size 
(188,189), increased lactational dies­
trus (190), and reduced milk produc­
tion (191) during the initial period of 
caloric restriction and delayed repro­
ductive senescence during the later 
stage (165,188). In males, the initial 
effects of caloric restriction include 
decreased LH pulsatility (192), re­
duced ratios of serum testosterone 
to estradiol (193), decreased sperm 
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motility in rats (194,195), and de-
creased prostate weight, testicular 
sperm density and fertility in mice 
(189). Long-term caloric restriction 
reduces testicular hyperplasia and 
delays Leydig cell adenoma forma­
tion in old male rats (193,196), 
whereas chronic feeding of a high 
caloric diet reduced reproductive per­
formance in old male CF-1 mice 
(197). 

The anti-inflammatory effects of 
caloric restriction are also generally 
consistent with effects resulting from 
hypercorticism. For example, caloric 
restriction has been reported to in­
duce lipocortin 1 immunoreactive 
proteins in rat liver (21), to inhibit 
carrageenan-induced inflammation in 
mice (30), to decrease 12-
lipooxygenase activity in rat liver and 
testes (3), to delay the onset of 
autoimmunity in autoimmune-prone 
mice (198), and to inhibit promotion 
of mouse skin papillomas by phorbol 

Figure 5. Association between Mean Body Weight and Liver 
Neoplasm Incidence in Male B6C3F1 Mice 

Data from control groups from nine NTP studies conducted during the 1980s 
and early 1990s that used water-based gavage for dosing. The percent liver 
neoplasm values are the survival-adjusted rates of hepatocellular adenoma 
or carcinoma. The individual studies used are listed in (251). 
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esters (199,200). In the last case, 
adrenalectomy reversed the effect of 
caloric restriction whereas the effect 
was enhanced by glucocorticoid re-
placement (11). Interestingly, caloric 
restriction both potentiates regenera­
tive hepatocyte proliferation in par­
tially hepatectomized rats (201) and 
reduces cell proliferation while stimu­
lating apoptosis in preneoplastic liver 
(202,203). Such an effect is consis­
tent with the reported dual synergis­
tic and antagonistic effects of gluco­
corticoids on TGFß in neoplastic and 
non-neoplastic hepatocytes (3,66). 
Dietary restriction also reduces lung 
inflammation in rats exposed to 
ozone (204,205) and enhances re­
sistance to gram-positive bacteria, 
while lowering the production of pro-
inflammatory mediators elicited by 
endotoxin, a component of gram-
negative bacteria. 

While old dietary restricted mice 
exhibited improved cognitive func­
tion, motor performance, and re­
duced oxidative damage in the brain 
(162,163), dietary restriction neither 
inhibited hippocampal aging in rats, 
nor appeared to be overtly detrimen­
tal to the hippocampus (140,206). 
However, dieting and dietary restric­
tion have been reported to impair 
cognitive function in humans (207). 
Despite potential endangerment to 
the hippocampus, hypercorticism 
during nutrient stress would be ex­
pected to be beneficial, since the 
alternative, hypoglycemia in conjunc­
tion with increased inflammatory ac­
tivity, would pose a greater threat to 
the entire central nervous system. 

Taken together, dietary restric­
tion in rodents appears to produce a 
series of pleiotropic biochemical and 
physiological effects that are consis­
tent with a condition hypercorticism 
that is more severe in the early 
stages of caloric restriction than in 
the later stages and that occurs 
without concurrent hyperglycemia. 
The overall effect of this condition is 
to conserve energy by minimizing 
metabolism, proliferation and nones­

(Continued on page 10) 
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(Continued from page 9) 
sential functions in peripheral tis-
sues. This in turn appears to mini­
mize damage to the affected tissues 
so that the progression of degenera­
tive or neoplastic lesions is delayed. 

Dietary Restriction, Hypercorti­
cism and Chemical Toxicity 

Dietary restriction has been re-
ported to increase the maximum tol­
erated dose or LD50 of a number of 
chemicals (208,209) and to cause 
isoform-selective alterations in drug-
metabolizing enzyme expression 
(183). While relatively large changes 
occur in sex-specific isoforms that 
are regulated by growth hormone, 
other isoforms are either unaffected 
or show moderate, circadian-
dependent alterations (183). For ex-
ample, 40% caloric restriction in-
creased hepatic CYP1A-selective 7-
ethoxyresorufin O-deethylase and 
CYP2B-selective 7-pentoxyresorufin 
O-dealkylase activities and immu­

noreactive protein in both male and 
female 18 week-old Fischer 344 rats, 
but only at specific circadian time-
points (183,210). Conversely, caloric 
restriction decreased and eliminated 
the circadian variation of testicular 
CYP2A1-dependent testosterone 
7α--hydroxylase activity (193). In ad­
dition to altering drug metabolism, it 
is probable that caloric restriction 
may also stimulate the renal clear­
ance of drugs since caloric restric­
tion or fasting may cause polydipsia 
and increase diuresis and natriuresis 
consistent with elevated ANP levels 
(177,211-213). It is possible that 
both these effects of fasting on se­
rum ANP levels and of caloric re­
striction on polydipsia and hepatic 
CYP1A and CYP2B expression re­
sult from hypercorticism, since glu­
cocorticoids induce ANP levels 
(214), cause polydipsia (215), and 
stimulate induction of CYP1A1 and 
CYP2B isoforms (216-218). In a re-
cent study (219), caloric restriction 
was shown to enhance the induction 

Figure 6. Factors Affecting the Relationship Between Body Weight and 
Pathological Endpoints in Chronic Cancer Bioassays 

The development of pathological lesions in rodents used in chronic bioassays is influenced 
by both mitogenic and inflammatory effects. Conditions, which increase inflammation in addi­
tion to increasing mitogenesis, would be expected to increase the tumor risk to a greater 
extent than predicted by body weight alone. 

of hepatic peroxisomal marker en­
zymes in B6C3F1 mice treated with 
chloral hydrate. This was also con­
sistent with restriction-induced hy­
percorticism because glucocorti­
coids induce the hepatic peroxisome 
proliferator activated receptor 
PPARα. 

In several cases, the effects of 
dietary restriction on the metabolic 
activation of genotoxic chemicals 
have been shown to correlate with 
specific isoform expression. For ex-
ample, in vivo and in vitro binding of 
aflatoxin B1 to DNA was decreased 
in liver from caloric restricted rats 
concurrently with decreased 
CYP2C11, whereas binding of benzo 
(a)pyrene to DNA was increased 
concurrently with increased 7-
ethoxyresorufin O-deethylase activity 
(183,220,221). Dietary restriction 
has also been reported to reduce 
endogenous DNA damage in liver, 
mammary gland and other tissues 
(59,170,171). However, although 
there are several reports demonstrat­
ing that caloric restriction increases 
DNA repair activity in a number of 
cell systems, the effect is confined 
mostly to old animals (222). 

Dietary restriction has been 
shown to reduce the severity or de-
lay the onset of carcinogenesis in 
rodents exposed to a number of 
chemical carcinogens including afla­
toxin B1, polycyclic aromatic hydro-
carbons (PAH) and nitosamines 
(220,223-226). Although dietary re­
striction clearly alters the initiation 
stage of chemical carcinogenesis 
(220), it is now apparent that the ma­
jor beneficial effects of caloric re­
striction are associated with the pro-
motion and progression stages. This 
is best illustrated by experiments 
involving neonatal exposure of male 
mice to PAH (227). When mice were 
injected (ip) with 6-nitrochysene at 8 
and 15 days post partum, they ex­
hibited a 100% incidence liver ade­
nomas and carcinomas when nec­
ropsied at 12 months of age. Dietary 
restriction (40%), initiated at 14 

(Continued on page 11) 

Vtaylor




Volume 4, Issue 1 

(Continued from page 10) 
weeks of age, completely inhibited 
liver tumor formation even though the 
restriction was not started until after 
the initiation and early promotion 
stages of the carcinogenesis proc­
ess were complete (227). Such ef­
fects are consistent with the anti-
mitotic and antiproliferative effects of 
caloric restriction and hypercorticism 
that are described above. 

The observation that the body 
weight of rodents used in cancer bio­
assays directly correlates with termi­
nal incidence of background tumors 
(228-231) is also consistent with ef­
fects on growth and cell proliferation, 
playing a major role in mediating the 
antineoplastic effects of caloric re­
striction. These body weight-tumor 
correlations were demonstrated from 
analysis of the control animals from 
cancer bioassays conducted by the 
National Toxicology Program (NTP). 
In B6C3F1 mice, terminal lung tumor 
incidence exhibited a positive corre­
lation with body weight at nine 
months on test. Conversely, terminal 
liver tumor incidence correlated opti­
mally with body weight at 12 months 
on test (229,232). A typical correla­
tion graph for liver tumors in male 
mice is shown in Figure 5. In Fischer 
344 rats, terminal pituitary tumor in­
cidence exhibited a positive correla­
tion with body weight at 13 months 
on test, whereas terminal leukemia 
incidence exhibited a positive corre­
lation with body weight at 14 weeks 
(233). Interestingly, caloric restric­
tion initiated at six weeks of age in­
hibited leukemia to a much greater 
extent than restriction initiated at 14 
weeks, whereas pituitary adenoma 
formation was affected equally by 
both caloric restriction paradigms 
(233). This suggests that critical pe­
riods exist when rodents are most 
susceptible to subsequent develop­
ment of specific cancer endpoints. 
This effect can also be demonstrated 
for background liver tumors in 
B6C3F1 mice (231). 

It would appear, therefore, that 
the rate of growth during the early 
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Figure 7. Idealized Body Weight Curves for Male and 
Female B6C3F1 Mice 

Body weights for ad libitum -fed and 40% calorically restricted mice from ca­
loric restriction studies performed at NCTR are shown for comparison. Food 
consumption data from these mice were used to construct a feeding sched­
ule used for manipulating the animals’ weights to fit the idealized body weight 
curve. Taken from Leakey et al. (231), full details are given in this reference. 

adult period of an organism's life de­
termines its subsequent susceptibil­
ity to neoplastic or degenerative dis­
eases, and rates of growth are in 
part dependent on glucocorticoid 
status and caloric intake. Glucocorti­
coids are a major component of the 
stress and inflammatory responses, 
where their primary functions appear 
to be: [1] to globally reduce energy 

consumption so that energy may be 
channeled to the site of trauma or 
inflammation, and [2] to prevent ex­
cessive tissue damage due to over-
expression of the inflammatory re­
sponse (83). During severe nutrient 
stress, hypercorticism allows an or­
ganism to conserve energy so that it 
may survive, but in the process, 

(Continued on page 12) 
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used in toxicology testing. 

Toxicity Testing 

growth and reproductive immune and 
cognitive functions may be compro­
mised. However caloric excess may 
be equally detrimental resulting in 
overstimulated growth, uncontrolled 
cell proliferation, autoimmunity, in­
flammatory diseases, and neoplasia. 
Between these two extremes lies a 
physiological window where health 
and longevity is maximized. Hyper­
corticism, as a hormonal response 
to nutrient stress, appears to be 
common to most mammalian spe­
cies and most probably evolved as a 
mechanism to ensure survival of the 
species through periods of famine 
(234-237). In times of abundant food 
supply, rapid growth and fecundity 
are favored over endurance and lon­
gevity. Conversely, when food be-
comes scarce reproductive perform­
ance and growth are sacrificed in 
favor of extended total and reproduc­
tive lifespans, thus increasing the 
probability that sufficient individuals 
will survive to restore the population 
when conditions improve. This phe­
nomena can be observed in the hu­
man population, where rising living 
standards are correlated with obesity 
and increased cancer rates (4), as 
well as in rodent strains that are 

Consequences for Chronic 

Over the last three decades, im­
provements in diet formulations and 
animal husbandry techniques and 
commercial breeding considerations 
have resulted in a general drift to-
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wards heavier animals for all the ma­
jor rodent strains used in toxicity 
testing (13,14,229,230). Increase in 
body weight in these strains is fre­
quently associated with decreased 
survival and increased susceptibility 
to neoplastic and degenerative dis­
eases (13,14,165). Furthermore, in­
terlaboratory variations in mean body 
weights and tumor incidence compli­
cate comparison between studies 
(18). 

Figure 8. Liver Tumor Risk Curves for Ad Libitum-fed Male and Female, 
and Weight-Reduced Male B6C3F1 Mice at Various Ages 

Liver tumor risk curves were constructed as described in Leakey et al (231) from body 
weight values corresponding to the ages shown on each graph. They are plotted as spline 
curves rather than bar graphs. The dotted line represents the target tumor risk (17.5%) for 
the idealized weight curve. 

This effect can create problems in control B6C3F1 mice used for 
for the interpretation of chronic can- chronic bioassays, conducted by the 
cer bioassays. For example, the in- NTP, has been shown to vary be­
cidence of background liver tumors (Continued on page 14) 
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Table 2. Liver Neoplasms in Ad Libitum-Fed and Dietary-Controlled Male Mice 
in the Two-Year Gavage Study of Chloral Hydrate 

Vehicle Control 25 mg/kg 50 mg/kg 100 mg/kg 

Hepatocellular Adenoma 
Ad Libitum-Fed 

Overall rate 12/48 (25%) 19/48 (40%) 17/47 (36%) 17/48 (35%) 
Adjusted rate 25.2% 40.8% 37.8% 36.2% 
Terminal rate 9/41 (22%) 14/37 (38%) 15/36 (42%) 16/44 (36%) 
First incidence (days) 511 639 668 713 
Poly-3 test (by dose) P=0.2362 P=0.0792 P=0.1373 P=0.1722 

Dietary-Controlled 
Overall rate 9/48 (19%) 7/48 (15%) 10/48 (21%) 10/48 (21%) 
Adjusted rate 19.1% 15.2% 21.2% 21.8% 
Terminal rate 9/45 (20%) 7/44 (16%) 10/47 (21%) 9/41 (22%) 
First incidence (days) 757 (T) 757 (T) 757 (T) 625 
Poly-3 test (by dose)                           P=0.3381 P=0.4111N P=0.5013 P=0.4753 

Poly-3 test (comparison) P=0.3238 P=0.0046 P=0.0624 P=0.0951 

Hepatocellular Carcinoma 
Ad Libitum-Fed 

Overall rate 4/48 (8%) 10/48 (21%) 10/47 (21%) 7/48 (15%) 
Adjusted rate 8.5% 21.4% 22.0% 14.7% 
Terminal rate 2/41 (5%) 5/37 (14%) 5/36 (14%) 4/44 (9%) 
First incidence (days) 689 666 668 629 
Poly-3 test (by dose) P=0.3737 P=0.0716 P=0.0631 P=0.2713 

Dietary-Controlled 
Overall rate 2/48 (4%) 5/48 (10%) 4/48 (8%) 8/48 (17%) 
Adjusted rate 4.2% 10.9% 8.5% 17.3% 
Terminal rate 2/45 (4%) 5/44 (11%) 4/47 (9%) 4/41 (10%) 
First incidence (days) 757 (T) 757 (T) 757 (T) 486 
Poly-3 test (by dose) P=0.0371 P=0.2078 P=0.3382 P=0.0422 

Poly-3 test (comparison) P=0.3356 P=0.1364 P=0.0617 P=0.4740N 

Hepatocellular Adenoma or Carcinoma 
Ad Libitum-Fed 

Overall rate 16/48 (33%) 25/48 (52%) 23/47 (49%) 22/48 (46%) 
Adjusted rate 33.4% 52.6% 50.6% 46.2% 
Terminal rate 11/41 (27%) 16/37 (43%) 17/36 (47%) 19/44 (43%) 
First incidence (days) 511 639 668 629 
Poly-3 test (by dose) P=0.2154 P=0.0437 P=0.0684 P=0.1430 

Dietary-Controlled 
Overall rate 11/48 (23%) 11/48 (23%) 14/48 (29%) 18/48 (38%) 
Adjusted rate 23.4% 23.9% 29.7% 38.6% 
Terminal rate 11/45 (24%) 11/44 (25%) 14/47 (30%) 13/41 (32%) 
First incidence (days) 757 (T) 757 (T) 757 (T) 486 
Poly-3 test (by dose) P=0.0450 P=0.5728 P=0.3231 P=0.0844 

Poly-3 test (comparison) P=0.1976 P=0.0030 P=0.0309 P=0.2975 

(T) =Terminal sacrifice; Overall rate = Number of neoplasm-bearing animals/number of animals with tissue examined microscopically; 
Adjusted rate = Poly-3 estimated neoplasm incidence after adjustment for intercurrent mortality; Terminal rate = Observed incidence at 
terminal kill. Beneath the dietary-controlled group incidence are the P values corresponding to pairwise comparisons between the ad 
libitum-fed group and the corresponding dietary-controlled group. The Poly-3 test accounts for the differential mortality in animals 
that do not reach terminal sacrifice. A lower incidence in the ad libitum-fed group is indicated by N. 



when toxic responses to the test 
chemical reduce body weight gain, 
and a 10% reduction in body weight 
gain has been used as a criteria for 
achieving a maximum tolerated dose 
(240). Chemically induced body 
weight reductions can arise for a 
number of reasons, including de-
creased food consumption due to 
palatability problems in feed studies, 
anorexia due to toxic stress, dis­
rupted intestinal absorption, or toxic 
wasting syndromes due to disruption 
of metabolism or endocrine sys­
tems. In most cases, such body 
weight gain decreases would be ex­
pected to be associated with hyper­
corticism, which would result from 
either nutrient or classic, CRF-
mediated toxic stress. Nutrient 
stress resulting from reduced food 
consumption would be expected to 
decrease the inflammatory response 
in a similar manner to glucocorticoid 
administration or caloric restriction, 
whereas stress due to chemical tox­
icity would be expected to enhance 
the inflammatory response due to 
increased CRF and interleukin levels 
(Figure 6). In addition, excessive 
body weight gain in rodents may 
also involve an altered inflammatory 
response. Such animals could ex­
hibit reduced efficiency in leptin ex­
pression or function, analogous to 
the ob/ob  mouse, and this would 
result in hypothermia, hypercorti­
cism, hyperglycemia, but a generally 
reduced inflammatory response due 
to elevated corticosterone 
(37,241,242). Conversely, they could 
exhibit excessive food consumption, 
which would result in low corticoster­
one levels, excessive production of 
arachidonic acid and an increased 
inflammatory response (243). Exces­
sive inflammation exacerbates toxic 

Figure 9. Growth Curves for Ad Libitum-Fed and Dietary-Controlled 
from the Chloral Hydrate Study - Low Dose and 

Vehicle Control Groups 

The graphs show the standard deviation of each weekly mean body weight values for the 
control and 25 mg/kg chloral hydrate dose groups respectively. The idealized weight curve 
and the NCTR historical growth curve for male B6C3F1 mice are shown on each graph for 
reference. The arrow marks the time point at which 12 mice were removed for the interim 
evaluation. 
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tween 5% and 75% (238). This in-
creased variability is partly due to 
altered housing conditions, but other 
factors such as genetic drift may 
also be responsible (238,239). How-
ever, differences in mean body 

weights between treatment groups 
within individual studies pose a 
greater problem since they may re­
sult in artifactual assumptions about 
the carcinogenicity of certain test 
chemicals (228,229). 

Such differences usually arise 

responses to chemicals (244-246), 
directly promotes neoplasia in cer­
tain systems such as mouse skin 
(134) and can result in degenerative 
conditions such as renal inflamma­
tory disease (243). Therefore, 
whether alterations in weight gain in 

(Continued on page 15) 
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bioassay rodents are accompanied 
by changes in inflammatory re­
sponse may influence the relation-
ship between body weight and termi­
nal tumor incidence as illustrated in 
Figure 6. Such effects are not only 
relevant to two-year cancer bioas­
says, but also to the ancillary stud­
ies associated with these bioas­
says. As noted in the previous sec­
tion, diet and body weight can influ­
ence the toxicokinetics of many 
chemicals. Dietary restriction has 
also been shown to influence rates 
of tumor progression in transgenic 
mouse models that are currently be­
ing introduced for rapid carcinogene­
sis screens (247,248). This should 
be considered during the interpreta­
tion of cancer bioassay data. 

Dietary restriction has been sug­
gested as a possible means for 
eliminating background tumors from 
the bioassay control populations 
(14,15). However, as stated above, 
dietary restriction inhibits chemically 
induced carcinogenesis in rodents 
(230,238,249). Moreover, dietary re­
striction is generally implemented by 
limiting food consumption to a set 
percentage of ad libitum food con­
sumption, and this may vary be-
tween rodent populations in different 
laboratories (230,238). 

An alternative approach involves 
using dietary control to manipulate 
the body weights and growth rates of 
rodents used in bioassays so that 
they conform to strain-specific stan­
dardized weight curves. Such stan­
dardized or idealized weight curves 
have been created for male and fe­
male B6C3F1 mice and could poten­
tially be used throughout industry 
and the regulatory community to 
standardize background neoplasm 
incidences between laboratories (3). 
The body weights of mice used for 
both control and treatment groups in 
future bioassays could be manipu­
lated to fit these growth curves by 
moderate feed restriction or dietary 
supplementation. 

Testing Dietary Control 

The concept of using idealized 
weight curves has recently been 
tested as part of a standard NTP bio­
assay of chloral hydrate in B6C3F1 

mice that was conducted at the Na­
tional Center for Toxicological Re-
search [NCTR] (219,231,250-252). 
Data from mice used in NTP and 

NCTR chronic bioassays and aging 
studies were used to construct ideal­
ized weight curves for male and fe­
male B6C3F1 mice that predicted a 
liver neoplasm incidence of 15% to 
20% at 26 months of age. A 15% to 
20% liver neoplasm incidence is suf­
ficiently high to guarantee that the 
sensitivity of the mouse to chemical 
carcinogenesis has not been com-

Figure 10. Growth Curves for Ad Libitum-Fed and Dietary-
Controlled from the Chloral Hydrate Study -

Medium and High Dose Groups 

The graphs show the standard deviation of each weekly mean body weight values for the 
50 and 100 mg/kg chloral hydrate dose groups respectively. Other details are given in Fig­
ure 9. 

(Continued on page 16) 
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promised, and it is low enough to 
ensure that the spontaneous neo­
plasms will not obscure any chemi­
cally induced liver tumors, and that 
sufficient mice will survive to the end 
of a two-year study. Initially the re­
lationship between body weight and 
liver tumor incidence was calculated 
for historical control populations of 
male and female ad libitum-fed mice 
(approx. 2,750 and 2,300 animals 
respectively). However, it was deter-
mined that male B6C3F1 mice, 
which had been subjected to forced 
body weight reduction due to either 
dietary restriction or exposure to 
non-carcinogenic test chemicals, 
differed from ad libitum-fed mice in 
their relationship between body 
weight and tumor incidence. A sec­
ond weight-reduced historical control 
population (approx. 1,600 animals) 
was therefore used to construct the 
idealized weight curve for male mice 
(231). These curves are shown in 
Figure 7. 

Weight-reduced mice exhibited a 
more linear relationship between 
body weight and liver tumor inci­
dence in the low weight range than 
did ad libitum-fed mice, which exhib­

ited a J-curve profile (3,229,231). 
These differences did not occur in 
females and were less apparent in 
sexually senescent males older than 
60 weeks (Figure 8) and result in a 
larger sex-difference in liver tumor 
incidence in light mice than in heavy 
mice (231). 

It is probable that stress due to 
dietary restriction or chemical expo-
sure reduces not only the body 
weight-related liver tumors in male 
mice, but also the sex-dependent 
liver tumors which occur independ­
ently of body weight in small male 
B6C3F1 mice and cause the J-curve 
profile in the tumor risk curve. Cas­
tration studies with the parent 
strains of B6C3F1 mice, which also 
show sex differences in liver neo­
plasm risk, suggest that this in-
creased incidence of liver neoplasms 
in the small male mice is partly due 
to testicular androgens (253-255). 
As discussed above, short-term ca­
loric restriction has been reported to 
reduce the testosterone/estradiol 
ratios and impair male reproductive 
function in rodents, and restraint 
stress or food depression sup-
presses LH secretion in male mice 
(256). 

The NCTR bioassay of chloral 
hydrate compared dietary-controlled 
mice with ad libitum-fed mice. 
Groups of 120 male mice received 
chloral hydrate in distilled water by 
gavage at doses of 0, 25, 50, or 100 
mg/kg, 5 days per week for 104 to 
105 weeks; vehicle controls received 
distilled water only. Each dose group 
was divided into two dietary groups 
of 60 mice. The ad libitum-fed mice 
had feed (NIH-31 autoclaved pelleted 
diet, Purina Mills, Richmond, IN) 
available ad libitum, and the dietary-
controlled mice received the same 
feed in measured daily amounts cal­
culated to maintain body weight on a 
previously computed idealized body 
weight curve. Twelve mice from 
each diet/dose group were evaluated 
at 15 months. Weekly feed alloca­
tion values required to control body 
weight in mice to conform to the ide­
alized body weight curve were calcu­
lated as grams of NIH-31 pellets per 
day from food consumption and body 
weight data from previous NCTR 
studies using B6C3F1 mice. This is 
described in detail elsewhere (231). 
It was anticipated that individual 
mice would exhibit body weights that 

(Continued on page 17) 

Table 3. Liver-Weight-to-Body-Weight Ratios in Male Mice Evaluated at 15 Months 
in the Two-Year Study of Chloral Hydrate 

Ad Libitum-Fed Dietary-Controlled 

0 mg/kg 25 mg/kg 50 mg/kg 100 mg/kg 0 mg/kg 25 mg/kg 50 mg/kg 100 mg/kg 

n 12 12 12 12 12 12 12 12 

Meana 47.08 46.96 40.87 51.11 35.63 37.46 38.31 39.55 
SDb 17.59 17.40 4.13 19.58 1.02 1.37 2.09 2.29 
SEMc 5.08 5.02 1.19 5.65 0.30 0.39 0.60 0.66 
Tukey’s testd A A A A A AB BC C 
Dunnett’s teste 0.0001 0.0394 0.0017 0.0000 

a Ratios are given as mg liver per g body weight.

b Standard deviation

c Standard error of the mean

d Each diet group was treated on a separate ANOVA, and diet/dose groups not sharing the same letter are significantly 


different from each other (P<0.05). 
e Beneath the vehicle control group is the P value associated with the trend analysis. Beneath the dosed groups are the P 

values relative to the vehicle control group. 
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(Continued from page 16) 
differed significantly from 
the idealized body weight 
curve at certain times dur­
ing their growth. These 
mice were identified on a 
weekly basis and their 
food allocation adjusted in 
either 1.0 or 1.5 g incre­
ments to manipulate the 
body weight back onto the 
idealized body curve. 

While chloral hydrate 
was less potent than ex­
pected, it did produce a 
weak, but statistically sig­
nificant, hepatocarcino­
genic response in both 
the ad libitum-fed and the 
dietary-controlled mice 
(Table 2). In the ad libi­
tum-fed mice, this con­
sisted of a significant in-
crease in combined hepa­
tocellular adenoma and 
carcinoma incidence in 
the 25-mg/kg-dose group 
with no further increase at 
higher doses. In the die­
tary-controlled mice, the 
combined hepatocellular 
adenoma and carcinoma 
incidence increased from 
23.4% in the control group 
to 38.6% in the 100 mg/ 
kg dose group, with a sta­
tistically significant dose 
trend; this increase was 
due to a statistically sig­
nificant increase in hepa­
tocellular carcinomas in 
the high dose group. Ob­
served numbers of liver 
tumors were less in all the 
dietary-controlled dose 
groups than in the corre-

Table 4. Body Weight Derived Predictions of Liver Tumor Incidence in Dietary-
Controlled and Ad Libitum-Fed Male B6C3F1 Mice 

Administered Chloral Hydrate 

Dose 0 mg/kg 25 mg/kg 50 mg/kg 100 mg/kg 

Observed Rates - Dietary Control 

Overall rate 22.9 % 22.9 % 29.2 % 37.5 % 
Poly 3 Adjusted rate 23.4 % 23.9 % 29.7 % 38.6 % 
Number with tumors 11/48 11/48 14/48 18/48 

Predicted Rates - sorted for < 5% ad libitum 

Poly 3 - Overall rate 22.4 ± 2.3 % 22.3 ± 3.0 % 23.1 ± 2.2 % 21.5 ± 2.3 % 
Adjusted rate 22.9 ± 2.3 % 23.3 ± 3.0 % 23.1 ± 2.2 % 22.8 ± 2.0 % 
Number with tumors 11/48 11/48 11/48 10/48 
Zh Statistic 0.229 0.226 2.98 8.030 
Significance P = 0.4094 0.4145 0.0014 < 0.00001 

Predicted Rates - sorted by body weight decrease 

Poly 3 - Overall rate 23.2 ± 3.2 % 24.0 ± 3.2 % 22.7 ± 3.3 % 21.6 ± 3.7 % 
Adjusted rate 23.6 ± 3.2 % 25.1 ± 3.1 % 23.1 ± 3.3 % 23.0 ± 3.5 % 
Number with tumors 11/48 12/48 11/48 10/48 
Ztr  Statistic 0.073 0.376 2.001 4.493 
Significance P = 0.4710 0.3534 0.0227 < 0.00001 

Observed Rates - Ad Libitum-fed 

Overall rate 33.3 % 52.1 % 48.9 % 45.8 % 
Poly 3 Adjusted rate 33.4 % 52.6 % 50.6 % 46.2 % 
Number with tumors 16/48 25/48 23/47 22/48 

Predicted Rates - sorted by body weight decr ease 

Poly 3 - Overall rate 33.8 ± 8.9 % 33.7 ± 9.5 % 33.6 ± 9.6 % 33.1 ± 7.8 % 
Adjusted rate 34.5 ± 8.9 % 35.8 ± 9.6 % 35.9 ± 9.6 % 34.1 ± 7.9 % 
Number with tumors 16/48 16/48 16/48 16/48 
Ztr  Statistic 0.176 1.751 1.524 1.542 
Significance P = 0.4303 0.0400 0.0637 0.0616 

Tumor risk was assigned to each mouse for each week of evaluation by specific sort criteria as de-
scribed in (231). The Ztr statistics describe comparisons between the predicted survival adjusted back-
ground tumor rate and the observed survival adjusted rate. The predicated rates refer here to back-
ground liver tumor incidence predicted by the body weight profiles of the individual mice in each dose 
group. Thus, significant differences between predicted and observed rates in the groups receiving chlo­
ral hydrate imply a carcinogenic effect due to the chemical. 

sponding ad libitum-fed 
dose groups. Dietary control also 
significantly increased survival in the 
control, 25 and 50 mg/kg dose 
groups and decreased body weight 
variability in all groups. Dietary con­
trol reduced individual body weight 
variation in all four-dose groups 
(Figures 9 & 10). This was associ­

ated with smaller variation in related 
parameters. For example, a signifi­
cant dose-response in liver per body 
weight values was observed in die­
tary-controlled mice used for an in­
terim evaluation in the study (252), 
whereas a significant dose-response 
was not observed in the ad libitum-

fed mice, which exhibited much 
greater individual variation (Table 3). 

The dietary control procedures 
were relatively easy to run in this 
study and did not generate a large 
amount of extra labor once the feed 
allocation software had been devel­

(Continued on page 18) 
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Figure 11. Cumulative Tumor Risk Plots for the Chloral Hydrate Study 

The mice from each experimental group were sorted by tumor risk into sequential 2% incre­
mental groups. Tumor risk was calculated for the ad libitum-fed mice by sorting by body 
weight decrease and for the dietary controlled mice by sorting by "<5% ad libitum" (see 
Table 4). Each mouse is represented in the incremental group by its a value to adjust for 
intercurrent mortality. The Gaussian distributions for each experimental group are calculated 
from the means and standard deviations of the adjusted tumor risk values given in Table 4. 
Taken from Leakey et al (231), full details are given in this reference. 

(Continued from page 17) 

oped. Access to a feed pellet sorter 
and prior experience with caloric re­
striction studies also facilitated diet 
preparation. Since the study used 

gavage dosing, weekly weights were 
readily available. The procedure 
would be potentially more expensive 
and complicated for studies, which 
dose via the feed because these ani­

mals are generally not weighed every 
week, and the variable amounts of 
feed required for dietary control 
would result in variable dose levels. 
However, dose variation occurs in all 
feed studies since individual animals 
consume different amounts of feed. 
Dietary control could in fact stan­
dardize dosing to a more defined 
level if the required level of dietary 
restriction is relatively high and each 
animal consumes its entire daily 
feed allowance (231, 250). 

During the course of this study, a 
procedure was developed to use the 
historical control data from ad libi­
tum-fed and weight-reduced mice to 
calculate predicted background liver 
tumor rates for individual mice based 
on their body weight values between 
21 and 68-weeks of age. Full details 
of this procedure are given elsewhere 
(231). Using this procedure, it was 
possible to predict background liver 
tumor rates for each experimental 
group in the chloral hydrate study. 
As shown in Table 4 and Figure 11, 
this procedure was able to accu­
rately predict the background tumor 
rates in both the dietary-controlled 
and the ad libitum-fed dose-control 
groups. As illustrated in Figure 11, 
the variation in predicted background 
liver tumor risk of individual mice in 
each dose group was much less for 
the dietary-controlled mice than for 
the ad libitum-fed mice. Further-
more, the technique showed the ob­
served liver tumor incidence in the 
dietary-controlled 50 mg/kg and 100 
mg/kg dose groups were signifi­
cantly greater than predicted back-
ground tumor incidence even though 
these groups did not show a statisti­
cally significant increase on the 
Poly-3 test (Table 2). This is be-
cause the Ztr statistic used in Table 
4 is an estimate of the probability 
that the observed tumor rate is an 
acceptable background tumor rate 
for the body weight-adjusted histori­
cal control population and is depend­
ent on the variance of calculated tu­
mor risk of the mice in each group 

(Continued on page 19) 
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(Continued from page 18) 
rather than assuming a fixed bino­
mial variance (231). As such it can 
give valuable supportive evidence on 
the relevance of test chemically 
induced increases in tumor inci­
dence, but it assumes that no other 
factors significantly influence tumor 
incidence between studies other 
than body weight, survival and the 
test chemical. 

Dietary control, therefore, can 
potentially improve both the sensitiv­
ity and reproducibility of cancer bio­
assays in mice. However, mouse 
liver neoplasms are frequently in­
duced epigenetically by chemicals, 
which appear to not be carcinogenic 
for humans (257-259). Moreover, al­
though incidence of liver cancer is 
increasing in the U.S. and other 
Western countries, the primary risk 
factor appears to be chronic inflam­
mation resulting from hepatitis C or 
B infection rather than linked to the 
ongoing rise in obesity or exposure 
to chemical carcinogens (260-262). 
It could therefore be argued that a 
more sensitive mouse bioassay 
would merely compound the problem 
of accumulating misleading or false 
positive animal data that are irrele­
vant to human risk. Thus, it might 

Regulatory Research Perspectives 

not be useful to the regulatory com­
munity. 

There are two main answers to 
this. First, it must be remembered 
that most other neoplastic lesions 
are also reduced by caloric restric­
tion and related stress responses. 
For example, in B6C3F1 mice posi­
tive correlations have been reported 
between body weight and incidence 
of tumors of the pituitary gland, lung 
and Harderian gland and of heman­
giomas/hemangiosarcomas in addi­
tion to liver tumors (229,232). Caloric 
restriction has also been shown to 
delay or inhibit the development of 
these tumor types in B6C3F1 mice 
(263). Reducing variability and body 
weight artifacts will therefore in-
crease sensitivity to detect a wide 
range of neoplastic responses in ad­
dition to liver tumors. 

Second, many potent genotoxic 
chemicals also cause liver tumors in 
B6C3F1 mice, and several are hepa­
tocarcinogenic in humans (264,265). 
Evidence as to whether a positive 
tumor response has relevance to hu­
mans and whether safe exposure 
levels can be determined depends 
on mechanistic data ancillary to bio­
assay tumor data. The emerging 
revolution in “-omics “ technology 
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holds promise that such mechanistic 
data will become more comprehen­
sive and informative, but it is depend­
ent on the quality and reproducibility 
of available tissue samples. Microar­
ray techniques are especially vulner­
able to sample variation, because of 
the large number of interactive end-
points that have to be measured si­
multaneously. Dietary control offers 
an approach to greatly reduce both 
variability within studies and be-
tween studies. 
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Apoptosis: Apoptosis is a process of 
programmed cell death triggered by 
either external hormonal signals or 
internal damage, which is character­
ized by ordered degradation of chro­
matin and the rapid phagocytosis of 
cellular debris without the release of 
inflammatory mediators. Thus, apopto­
sis differs from necrotic cell death in 
that there is no associated inflamma­
tion or compensatory mitogenesis. 

Body weight reduction: In general, 
body weight reductions resulting from 
dietary restriction are reductions in 
body weight gain relative to corre­
sponding ad libitum -fed control ani­
mals. That is the restricted animals 
are gaining weight but at a slower 
rate. However, individual animals, par­
ticularly older rodents on long-term 
dietary restriction studies, may actu­
ally lose weight on a short-term basis, 
but generally not on a long-term basis 
unless the weight-loss is associated 
with morbidity. 

Dietary restriction: The term is used 
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loosely here to incorporate both food 
restriction and caloric restriction. Ca­
loric restriction is defined as the bal­
anced and moderate reduction of the 
carbohydrate, protein and fat content 
of a diet without a reduction in vitamin 
or micronutrient content. Caloric re­
striction by 10 - 40% of ad libitum  food 
consumption has typically been used 
in aging studies. Food restriction, 
where total food intake is reduced, is 
simpler to perform and has been 
used in several toxicity studies. It runs 
the risk of causing vitamin deficien­
cies when used in excess. 

Dietary control: As used here, dietary 
control involves the manipulation of 
food allocations to maintain experi­
mental animals on a pre-determined 
body weight growth curve. It can in­
volve either dietary restriction of dietary 
supplementation depending on the 
individual animal and on the required 
growth curve. 

Glucocorticoid: A steroid ligand of the 
glucocorticoid receptor, which evokes 
the glucocorticoid effect of raising 
blood glucose levels. Includes phar­
maceuticals such as dexamethasone 
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in addition to endogenous cortisol 
and corticosterone. 

Hypercorticism: Elevated secretion 
and blood concentrations of adrenal 
corticosteroids; predominantly corti­
costerone in rodents and cortisol in 
primates. 

Nutrient stress: Hypoglycemia-
induced stress resulting from reduced 
caloric intake, which can result from 
dietary restriction, short-term fasting 
or starvation. 

Restraint stress:  Experimental tech­
nique of producing a classic stress 
response in rodents by restricting 
their movements. 

Weight-reduced mice: Mice which 
had lower body weight values and 
lower rates of growth due to either 
dietary restriction or exposure to a 
non-carcinogenic test chemical. See 
reference 231 for more details. 

See also legends of Figures 1 and 2 
for full names of hormones and signal 
transduction proteins . 

include regulation of expression of 
drug metabolizing enzymes, ef­
fects of diet and obesity on inflam­
matory processes and carcino­
genesis, and development and 
standardization of new animal 
models for use in chronic toxicity 
studies. 
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