

Climate Change Impacts in the Pacific Northwest

Lara Whitely Binder and Phil Mote

Climate Impacts Group
Center for Science in the Earth System
Joint Institute for the Study of the Atmosphere and
Ocean

University of Washington

Climate science in the public interest

Key Trends in PNW Climate

Average annual temperature increased +1.5°F in the PNW during the 20th century

April 1 snowpack has decreased throughout the PNW with losses of 30-60% at many individual stations (1950-2000)

Similar snowpack declines are seen throughout the western United States

a. April 1 SWE Observations 1950-1997

Nearly every glacier in the Cascades and Olympics has retreated during the past 50-150 years

South Cascade Glacier, 1928 (top) and 2000 (right)

Photos courtesy of Dr. Ed Josberger, USGS Glacier Group, Tacoma, WA

Trends in Spring Runoff

Peak of spring runoff is moving earlier into the spring throughout western U.S. and Canada

Fewer Frost Days in the Late 20th Century

Largest trends observed in the PNW; most of the trend driven by decline in spring frost days

G. A. Meehl, C.Tebaldi and D. Nychka (2004) Changes in frost days in simulations of 21st century climate. *Climate Dynamics*, Vol. 23, No. 5, pp. 495-511

Attribution

Are these changes due <u>entirely</u> to climate change?

NO, modes of natural variability have a role in these trends (e.g., El Niño)

• Are these changes due <u>entirely</u> to natural climate variability?

NO, natural variability cannot explain all of the trends

Projected 21st Century Global Warming

Multi-model Averages and Assessed Ranges for Surface Warming

IPCC "best estimate" range of global-scale warming by the 2090s:

3.2°F-7.2°F

Warming in the next few decades largely driven by current and near-term atmospheric GHG concentrations

Pattern of temperature change: regional model compared with global model

2020s 2050s 2090s

Projected Increases in PNW Temp

Modest Changes in PNW Precipitation

Modest increases (1-2%) in annual average precipitation

Most of the increase comes in the winter months (but in what intensity?)

Projected increase in average does not exceed 20th century variability

Note: there is high confidence in projected temp changes, less in precipitation changes

Changes Relative to the 20th Century

Lower Spring Snowpack

Spring snowpack is projected to decline as more winter precipitation falls as rain rather than snow, especially in warmer mid-elevation basins

Snowpack will melt earlier with warmer spring temperatures

April 1 Snowpack

Hydrology and Water Resources

Reduced snowpack and changes in soil moisture will occur.

Declines in April 1 SWE in WA vary between 35% and 41% for the 2040s, depending on the emissions scenario.

Streamflow Impacts

Higher winter streamflows

Earlier and lower peak runoff (mid/high basins)

Lower late spring streamflow

Lower, warmer summer streamflows

Sensitivity analysis for the Yakima River basin

Changing Risk

Risk of drought increases...

With 3.6°F warming, 50-year droughts become 10-year droughts and 10-year droughts become 2.2-year droughts (Scott et al. 2006)

Risk of flooding changes....

General increase in risk of winter flooding and combined sewer overflows in low-and mid-elevation basins

Lower risk of spring flooding in snowmelt basins due to lower spring snowpack

Portland Water Supply Climate Change Study

2040s WATER NEEDS IN PORTLAND (OR):

Regional growth: +40 mgd Climate change: +20 mgd

Climate change impacts = 50% of growth impacts

Implications for Water Management

- Increased demand among competing uses (M&I, habitat, irrigation, water quality navigation, recreation, hydropower)
- Increased risk of winter flooding in many basins (changes in urban flooding less clear)
- Water systems must manage longer and more extreme drawdown periods that in the past
- Bottom line: Increased competition for water and increased vulnerability to drought

Salmon Impacted Across Full Life-Cycle

Salmon

Water temperature is already a problem in many WA stream reaches.

The incidence of violations, especially in summer, will increase with warmer summer temperatures and reduced low flows due to earlier snowmelt.

Projected Maximum Weekly Average Water Temperatures – 2040s

49% of stations exceed the 21°C (70°F) water quality criteria (changes relative to 2001-2007)

Sea Level Rise (SLR) in the PNW

Major determinants:

- Global SLR driven by:
 - thermal expansion of the ocean, and
 - melting of land-based ice;
- Atmospheric dynamics, particularly changes in wind which push coastal waters toward or away from shore; and
- Local tectonic processes (subsidence and uplift)

Coasts

Rising sea levels will increase the risk of flooding, erosion, and habitat loss along much of Washington's 2,500 miles of coastline.

- Medium estimates of SLR for 2100:
 - +2" for the NW Olympic Peninsula
 - +11" for the central/southern coast
 - +13" for Puget Sound
- Higher estimates (up to 4 feet in Puget Sound) cannot be ruled out.

Projected sea level rise in Washington's waters relative to 1980-99, in inches. Shading roughly indicates likelihood.

Other Projected Regional Impacts

Human Health

Increased thermal stress from extreme heat events, decreased air quality (ozone; particulate matter), changes in range of/habitat for/exposure to disease vectors likely

Recreation

Shortened winter ski season (but improved access?), impacts in summer from forest fires

Hydropower

Increased winter streamflows benefit winter hydropower production; greater tradeoffs between hydropower, instream flows, irrigation, and recreation

Other Projected Regional Impacts

Forests

Increased risk of wildfire, vulnerability to insects, decreased growth & regeneration

Agriculture

Decreased irrigation supply, increased heat stress/insects, increased growing season

Infrastructure

The potential for more intense winter precipitation would increase the already high costs of stormwater management.

Forests

- Wildfires are strongly associated with climate, especially in eastside forests.
- Mountain pine beetle poses a significant threat to Washington's pine forests.
- Tree species composition will change as species respond uniquely to a changing climate.
- Productivity of Douglas-fir forests is likely to decrease statewide.

Infrastructure

- Stormwater impacts and management already carry significant economic costs for municipalities throughout western WA, as well as the rest of the state.
- The potential for changes in precipitation intensity would increase these costs.

Energy

 Heating degree days will continue to dominate in the 2020s and 2040s, but cooling degree days become a much more important factor in eastern WA as the region warms.

Cooling Degree Days (F)

Human Health

- Summer heat waves are expected to increase.
- Warmer summer air temperatures are likely impact air quality, increasing ozone concentrations and fine particulates
- Increased temperatures and flooding may alter the habitat and range of disease reservoirs and vectors (e.g., mosquitoes)

