

Programs for Simplifying the Analysis of
Geographic Information in U.S. Geological Survey

Ground-Water Models

U.S Department of the Interior
U.S. Geological Survey

U.S. GEOLOGICAL SURVEY
Open-File Report 01-392

Cover: The cover illustrates the process of modifying a grid and importing data
from a digital elevation model into Argus ONETM. In the upper left is a grid created
using Argus ONE. In the upper right, the grid has been modified using the Edit Grid
command described in this report so that the ratio of the widths of adjacent rows and
columns is always less than 1.2. The larger figure behind the others shows a digital
elevation model of the western half of the Washington 39ºN, -78ºW to 38ºN, -76ºW
quadrangle superimposed on the modified grid. The digital elevation model is available
under the name "Washington W" from
http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html under 1:250K DEM. The
figure in the lower right shows the digital elevation model data after being imported into
Argus ONE.

http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html

Programs for Simplifying the Analysis of Geographic
Information in U.S. Geological Survey Ground-Water
Models

By Richard B. Winston

U.S. GEOLOGICAL SURVEY
Open-File Report 01-392

Reston, Virginia
2001

U.S. DEPARTMENT OF THE INTERIOR
GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY
Charles G. Groat, Director

Although the computer program described in this report has been tested and used
by the U.S. Geological Survey (USGS), no warranty, expressed or implied, is made by
the USGS as to the accuracy of the functioning of the program and related material. The
code may be updated and revised periodically.

Any use of trade, product, or firm names in this publication is for descriptive
purposes only and does not imply endorsement by the U.S. Government.

__

For additional information
write to:
Office of Ground Water
U.S. Geological Survey
411 National Center
Reston, VA 20192

Copies of this report can be
purchased from:
U.S. Geological Survey
Branch of Information Services
Box 25286
Denver, Colorado 80225-0286

 iii

Contents
 Page
Abstract ... 1
Introduction ... 1

Installation instructions ... 18
Navigating ... 18
Acknowledgments... 19

Interpolation Methods ... 19
Commands... 20

Edit .. 20
Edit Contours... 20
DeclutterContours ... 21
Join Contours... 22
Edit Grid.. 23
Edit Data.. 26
Create Parameters in Multiple Layers... 27
Set Multiple Parameters .. 27

Import .. 28
Import Gridded Data ... 28
Import Points from Spreadsheet .. 29
Import Contours from Spreadsheet ... 29
Sample DEM Data .. 30
Copy Tri Mesh/Copy Quad Mesh ... 31

Convert .. 31
Contours To Data .. 31
Data to Contours.. 31
Reverse Contours on Clipboard .. 31
Mesh Objects To Contours.. 32
Mesh To Contours... 32

Hidden Commands.. 32
Set Parameter Locks.. 32
Delete Multiple Layers.. 33

Functions ... 33
Utility_CheckVersion.. 33
EvalRealAtXY, EvalIntegerAtXY, EvalBooleanAtXY, and EvalStringAtXY............ 33
Rotated X, and Rotated Y ... 34
GetMyDirectory .. 34
ReadFileValue functions ... 35

RF_Get_Value_From_File.. 35
RF_Clear_Files.. 35
RF_Save_Files .. 35
RF_CheckVersion ... 35

Conversion functions... 36
Hidden Functions .. 36

OKCancel Functions ... 36
IsOK .. 36

 iv

Ok_Add_Radio_Choice .. 36
Ok_Get_Radio_Choice ... 37
Ok_Radio_Free ... 37
Ok_UserFloat and Ok_UserInteger... 37
Ok_CheckVersion ... 37

ProgressBar Functions... 38
ProgressBarInitialize ... 38
ProgressBarFree .. 38
ProgressBarMax .. 38
ProgressBarAdvance ... 38
ProgressBarSetMessage .. 38
ProgressBarAddLine ... 38
ProgressBarSaveToFile... 39
ProgressBarCheckVersion .. 39

JoinFiles Functions.. 39
Join_Files .. 39
Delete_File .. 39
Rename_File.. 39
Split_File ... 39
Int2Str.. 39
JF_CopyLines.. 40
JF_CheckVersion .. 40

List functions... 40
L_Initialize .. 40
L_CreateNewList .. 40
L_SetListSize .. 41
L_GetListSize.. 41
L_FreeAList .. 41
L_AddToList ... 41
L_GetFromList.. 41
L_SetListItem.. 41
L_DeleteListItem .. 42
L_SortList.. 42
L_EliminateDuplicates.. 42
L_IndexOf ... 42
L_UnsortedIndexOf .. 42
L_CreateNew3DList ... 42
L_FreeA3DList ... 43
L_GetFrom3Dlist and L_GetFromOneBased3DList .. 43
L_Set3DlistItem and L_SetOneBased3DListItem.. 43
L_ResetA3DList.. 43
L_Add3DLists... 43
L_Subtract3DLists .. 44
L_Multiply3DLists.. 44
L_Divide3DLists... 44
L_Multipy3DByConstant.. 44

 v

L_Invert3DListMembers... 44
L_IsSingPrecUniform ... 44
L_GetErrorCount .. 45
L_FreeAllLists .. 45
L_CheckVersion.. 45

BlockList functions ... 45
BL_InitializeGridInformation ... 46
BL_AddVertexLayer... 46
BL_ReInitializeVertexList .. 46
BL_GetCountOfCellLists.. 46
BL_GetCountOfACellList .. 46
BL_GetCellRow and BL_GetCellColumn.. 46
BL_GetVertexCount ... 47
BL_GetVertexXPos and BL_GetVertexYPos .. 47
BL_SegmentCount .. 47
BL_SegmentFirstX and BL_SegmentFirstY .. 47
BL_SegmentSecondX and BL_SegmentSecondY.. 47
BL_SegmentLengthX and BL_SegmentLengthY .. 47
BL_SegmentLength .. 47
BL_SumSegmentsX and BL_SumSegmentsY ... 47
BL_SumSegmentLengths.. 47
BL_GetCountOfCombinedCellList .. 48
BL_GetCellRowFromCombinedList and BL_GetCellColumnFromCombinedList 48
BL_GetCountOfCrossRowLists and BL_GetCountOfCrossColumnLists 48
BL_GetCountOfACrossRowList and BL_GetCountOfACrossColumnList 48
BL_GetCrossRowRow and BL_GetCrossColumnRow.. 48
BL_GetCrossRowColumn and BL_GetCrossColumnColumn................................. 48
BL_GetCrossRowNeighborColumn and BL_GetCrossColumnNeighborRow........ 48
BL_GetCrossRowCompositeY and BL_GetCrossColumnCompositeX 49
BL_GetSumCrossRowCompositeY and BL_GetSumCrossColumnCompositeX.... 50
BL_GetCrossRowCompositeLength and BL_GetCrossColumnCompositeLength . 50
BL_GetRowBoundary and BL_GetColumnBoundary ... 50
BL_PointInsideContour .. 50
BL_GetRowNodePosition and BL_GetColumnNodePosition 50
BL_GetRowBoundaryCount and BL_GetColumnBoundaryCount.......................... 51
BL_GetRowNodeCount and BL_GetColumnNodeCount .. 51
BL_GetCellArea.. 51
BL_FractionOfLine... 51
BL_FreeVertexList.. 51
BL_FreeAllBlockLists .. 51
BL_GetErrorCount.. 51
BL_CheckVersion... 51

Conclusions ... 52
References ... 52
Appendix 1: Custom Components Used in PIEs .. 54

TRbwZoomBox... 54

 vi

TRbwDynamicCursor ... 55
TArgusDataEntry .. 55
TRbwQuadTree... 55
TRbwOctTree.. 55
Installation... 55

Appendix 2: Example Export Template for ProgressBar PIE... 57
Appendix 3: Example Export Template for List PIE.. 58
Appendix 4: Example Export Template for BlockList PIE .. 61
Appendix 5: Export Templates Using Rotated X and Rotated Y 64
Appendix 6: DEM2Image.exe... 67

Tables

 Page
Table 1. Commands added to Argus ONE in Utility.dll ..3
Table 2. Hidden commands added to Argus ONE in Utility.dll ..3
Table 3. Functions added to Argus ONE ...4
Table 4. Hidden functions added to Argus ONE ...10

Figures

 Page
Figure 1. Effect of using the Declutter Contours command .. 21
Figure 2. If used improperly, the Declutter Contours command can result in

contours that overlap or that no longer show correct geometric relationships............ 22
Figure 3. Effect of the Join Contours command ... 23
Figure 4. The cells intercepted by the contour (heavy black line) are shown in dark

gray. Those cells which are their neighbors as determined by
BL_GetCrossRowNeighborColumn and BL_GetCrossColumnNeighborRow are
shown in light gray except for those which are also intercepted by the contour.
The heavy dashed line separates each cell intercepted by the contour from its
neighbor or neighbors.. 49

Figure 5. For the cell indicated by the dark gray square, the length returned by
BL_GetCrossRowCompositeY is indicated by the double-headed arrow. To
determine this, the function retrieved data not only from the dark gray cell but
also from the light gray cells ... 50

Figure 6. The result of BL_FractionOfLine for the cell indicated by the dark square
would be 0.10 because 10 percent of the contour lies within the cell......................... 51

 1

Programs for Simplifying the Analysis of Geographic
Information in U.S. Geological Survey Ground-Water
Models

By Richard B. Winston

Abstract
This report describes a number of programs developed at the U.S. Geological Survey

(USGS) to enhance existing USGS graphical user-interfaces for ground-water modeling
programs. The programs are in the form of dynamic-link libraries that add interpolation
methods, commands, and functions to Argus ONETM through the use of Plug-In Extensions
(PIEs). The interpolation methods, commands, and functions are not specific to any
particular type of model but instead may find application under a variety of circumstances.
The new interpolation methods provide results much more quickly than the existing
interpolation methods in Argus ONE while still giving reasonable results. Some of them also
incorporate anisotropy. This may be particularly valuable for cross sectional models. The
commands are useful for copying, editing, converting, or importing information. They
include commands for creating or modifying grids, editing the precise locations of nodes
along contours, importing data as either contours or data points, setting the expressions for
multiple parameters, and importing Digital Elevation Models (DEMs). The functions
provide convenient methods for evaluating, converting, or storing information. Many of the
functions are hidden because they could cause memory leaks if used improperly or provide
specialized functions not likely to be of interest to most users. Nevertheless, these functions
provide a convenient method of performing Geographic Information System (GIS) functions
that would be difficult to do with Argus ONE alone.

Introduction
Argus ONETM is a Geographic Information System for numerical modeling

developed by Argus Interware. It can serve as a platform for creating graphical user-
interfaces for models (for example Voss and others (1997) and Winston (2000)). It can
create finite-element meshes and finite-difference grids and assign properties to nodes,
elements, or cells based on GIS analyses that it performs. It can write the input files for
numerical models and graphically display the results of those models. The functionality of
Argus ONE can be extended through the use of Plug-In Extensions (PIEs). A PIE can
provide an interface for a particular model, add a command to the Argus ONE menu
structure, add a GIS function that can be used by Argus ONE, import data into Argus ONE,
export data from Argus ONE, or implement a method of interpolating among data.

This report describes a number of interpolation methods, commands, and functions
that have been added to Argus ONE through the use of PIEs. The PIEs described in this
report are not specific to any particular type of model but instead may find application under
a variety of circumstances. The new interpolation methods are much faster than existing
interpolation methods in Argus ONE and can also incorporate anisotropy. The commands
listed in tables 1 and 2 are useful for copying, editing, converting, or importing information.
The commands listed in table 2 are hidden; special steps must be taken before they appear in

 2

the menu structure. The functions listed in tables 3 and 4 provide convenient methods for
evaluating, converting, or storing information. The functions in table 4 are hidden and do not
appear in the Argus ONE Expression editor unless special steps are taken to reveal them but
still will be accepted by Argus ONE. The hidden commands and functions were hidden for
three reasons. (1) The hidden commands circumvent protections built into Argus ONE
against users inadvertently changing or deleting information. (2) Some of the hidden
functions can not be used in the Argus ONE parameters because they either may allocate
memory that must be released later by a call to another function or because they use data
stored in a previous function call. (3) The hidden functions provide specialized capabilities
that are unlikely to be useful to most users although they are used extensively in the export
template for the MODFLOW GUI (Winston, 2000).

Some of the PIEs described in this report, such as the List and BlockList PIEs, have
been used in the MODFLOW GUI (Winston, 2000) or SUTRA GUI (Voss and others, 1997)
and are distributed with them. Others have not been released previously.

The purpose for creating these PIEs was to meet needs within the U.S. Geological
Survey (USGS). The USGS is using Argus ONE as a graphical-user interface for its ground-
water modeling programs. Argus ONE was chosen for this purpose because it has an open
architecture that allows the USGS to customize the graphical-user interfaces with less effort
than would be required if they were created from scratch. Argus ONE has numerous GIS
functions that facilitate the convertion of graphical information to the numerical information
required by ground-water modeling programs. In some cases, however, Argus ONE did not
have certain capabilities that would be useful to USGS scientists using the graphical-user
interfaces. For example, Argus ONE did not have a method for importing data from USGS
digital elevation models. To remedy the situation, a PIE command (described in this report)
was developed that could read USGS digital elevation models and convert the data into a
format that could be used by Argus ONE. Most of the commands and functions described in
this report were developed for similar reasons. In a few cases, however, commands or
functions described in this report duplicate capabilities already present in Argus ONE. These
commands and functions were a byproduct of developing other commands and functions not
present in Argus ONE. In some cases, the new functions may be faster than the
corresponding functions in Argus ONE. It would have been possible to use such functions
only for internal calculations. However, making the functions available as independent
functions required almost no effort. In specific cases, the new functions can facilitate better
performance of the graphical user interface.

An example of a command that partially duplicates Argus ONE functionality but also
adds new functionality is the Edit Grid command. In Argus ONE, the user can set the grid
angle by typing a value of the grid angle, but there is no graphical way of specifying the grid
angle. With the Edit Grid command, the user can specify the grid angle graphically. In
Argus ONE, the user can set the position of an interior grid line by double-clicking on it or
by dragging it to a new position. However, Argus ONE does not have a similar capability for
the exterior grid lines. With the Edit Grid command, the user can set the positions of both
interior and exterior grid lines.

The PIEs described in this report are written in Object Pascal using the Borland
Delphi version 5 compiler. When published, the source code will be available at
http://water.usgs.gov/nrp/gwsoftware/.

 3

Table 1. Commands added to Argus ONE in Utility.dll

Command Purpose
PIEs|Edit|Edit Contours Editing the exact positions of nodes on contours
PIEs|Edit|DeclutterContours Removing extra nodes from contours
PIEs|Edit|Join Contours Joining together open contours whose ends match

exactly and which have exactly the same contour values
PIEs|Edit|Edit Grid Creating and editing grids
PIEs|Edit|Edit Data Editing the locations and values of data points on a data

layer
PIEs|Edit|Create Parameters in
Multiple Layers

Creates identical copies of parameters in multiple layers

PIEs|Edit|Set Multiple Parameters Sets the value of multiple parameters in multiple layers
in one step

PIEs|Import|Import Gridded Data Importing data points at the centers of grid blocks
PIEs|Import|Import Points from
Spreadsheet

Importing point contours from a spreadsheet

PIEs|Import|Import Contours
from Spreadsheet

Importing point, open, or closed contours from a
spreadsheet

PIEs|Import|Sample DEM Data Import Digital Elevation Models into Argus ONE
PIEs|Import|Copy Tri Mesh Copying a finite-element mesh with triangular elements

to another mesh layer
PIEs|Import|Copy Quad Mesh Copying a finite-element mesh with quadrilateral

elements to another mesh layer
PIEs|Convert|Contours To Data Converting contours to data points on a data layer
PIEs|Convert|Data to Contours Converting data points on a data layer to point contours
PIEs|Convert|Reverse Contours
on Clipboard

Reversing the order in which nodes occur in a contour

PIEs|Convert|Mesh Objects To
Contours

Creating contours along the edges of selected finite
elements

PIEs|Convert|Mesh To Contours Creating closed contours that duplicate the shapes of
finite elements

Table 2. Hidden commands added to Argus ONE in Utility.dll

Command Purpose
PIEs|Set Parameter Locks Hidden command that locks or unlocks multiple parameters

in one step
PIEs|Delete Multiple Layers Hidden command that deletes multiple layers in one step

 4

Table 3. Functions added to Argus ONE

Function(arguments) File Result
Utility_CheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

Utility.dll Returns True if the version
number of the Utility PIE is
greater than or equal to the
version number passed in the
arguments

EvalRealAtXY(X, Y,
�Expression_As_Quoted_String�,
[�Layer_Name_As_Quoted_String�])

Utility.dll A real number based on the
evaluation of
�Expression_As_Quoted_String�
evaluated at (X,Y)

EvalIntegerAtXY(X, Y,
�Expression_As_Quoted_String�,
[�Layer_Name_As_Quoted_String�])

Utility.dll An integer based on the
evaluation of
�Expression_As_Quoted_String�
evaluated at (X,Y)

EvalBooleanAtXY(X, Y,
�Expression_As_Quoted_String�,
[�Layer_Name_As_Quoted_String�])

Utility.dll A Boolean based on the
evaluation of
�Expression_As_Quoted_String�
evaluated at (X,Y)

EvalStringAtXY(X, Y,
�Expression_As_Quoted_String�,
[�Layer_Name_As_Quoted_String�])

Utility.dll A string based on the evaluation
of
�Expression_As_Quoted_String�
evaluated at (X,Y)

Rotated X(�X�, �Y�, �GridAngle�) Utility.dll A row/column position converted
to an X coordinate

Rotated Y(�X�, �Y�, �GridAngle�) Utility.dll A row/column position converted
to an Y coordinate

GetMyDirectory() GetMyDirectory.
dll

The name of the directory in
which the PIE is installed

RF_Get_Value_From_File(Key,
Default_Value, [FileName])

ReadFileValue.dll A value from a file associated
with �Key� or if �Key� is not
found, the Default_Value

RF_Clear_Files() ReadFileValue.dll Attempts to clear a file and
returns True if the function
succeeds

RF_Save_Files() ReadFileValue.dll Attempts to save a file and
returns True if the function
succeeds

 5

Table 3 (Continued)

Function(arguments) File Result
RF_CheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

ReadFileValue.dll Returns True if the version
number of the ReadFile PIE is
greater than or equal to the
version number passed in the
arguments

Sec2Day(Number) Utility.dll Converts number from seconds to
days and returns the result

Day2Sec(Number) Utility.dll Converts Number from days to
seconds and returns the result

K2F(Number) Utility.dll Converts Number from degrees
Kelvin to degrees Fahrenheit and
returns the result

F2K(Number) Utility.dll Converts Number from degrees
Fahrenheit to degrees Kelvin and
returns the result

J2BTU(Number) Utility.dll Converts Number from Joules to
British Thermal Units (BTU) and
returns the result

BTU2J(Number) Utility.dll Converts Number from BTU to
Joules and returns the result

sq_m2sq_ft(Number) Utility.dll Converts Number from square
meters to square feet and returns
the result

sq_ft2sq_m(Number) Utility.dll Converts Number from square
feet to square meters and returns
the result

cu_m2cu_ft(Number) Utility.dll Converts Number from cubic
meters to cubic feet and returns
the result

cu_ft2cu_m(Number) Utility.dll Converts Number from cubic feet
to cubic meters and returns the
result

m_s2ft_day(Number) Utility.dll Converts Number from meter-
seconds to feet-days and returns
the result

ft_day2m_s(Number) Utility.dll Converts Number from feet-days
to meter-seconds and returns the
result

 6

Table 3 (Continued)

Function(arguments) File Result
Pa2psi(Number) Utility.dll Converts Number from Pascals to

pounds per square inch (psi) and
returns the result

psi2Pa(Number) Utility.dll Converts Number from psi to
Pascals and returns the result

m_per_s2ft_per_day(Number) Utility.dll Converts Number from meters
per second to feet per day and
returns the result

ft_per_day2m_per_s(Number) Utility.dll Converts Number from feet per
day to meters per second and
returns the result

sq_m_per_s2sq_ft_per_day(Number) Utility.dll Converts Number from square
meters per second to square feet
per day or from cubic meters per
meter-second to cubic feet per
foot-day and returns the result

sq_ft_per_day2sq_m_per_s(Number) Utility.dll Converts Number from square
feet per day to square meters per
second and returns the result

cu_m_per_s2cu_ft_per_day(Number) Utility.dll Converts Number from cubic
meters per second to cubic feet
per day and returns the result

cu_ft_per_day2cu_m_per_s(Number) Utility.dll Converts Number from cubic feet
per day to cubic meters per
second and returns the result

l_per_s2cu_ft_per_day(Number) Utility.dll Converts Number from liters per
second to cubic feet per day and
returns the result

cu_ft_per_day2l_per_s(Number) Utility.dll Converts Number from cubic feet
per day to liters per second and
returns the result

kg_per_s2lb_per_day(Number) Utility.dll Converts Number from kilograms
per second to pounds per day and
returns the result

lb_per_day2kg_per_s(Number) Utility.dll Converts Number from pounds
per day to kilograms per second
and returns the result

Pa_per_s2psi_per_day(Number) Utility.dll Converts Number from Pascals
per second to psi per day and
returns the result

 7

Table 3 (Continued)

Function(arguments) File Result
psi_per_day2Pa_per_s(Number) Utility.dll Converts Number from psi per

day to Pascals per second and
returns the result

kg_per_cu_m2lb_per_cu_ft(Number) Utility.dll Converts Number from kilograms
per cubic meter to pounds per
cubic foot and returns the result

lb_per_cu_ft2kg_per_cu_m(Number) Utility.dll Converts Number from pounds
per cubic foot to kilograms per
cubic meter and returns the result

W_per_cu_m2BTU_per_hr_cu_ft
(Number)

Utility.dll Converts Number from Watts per
cubic meter to BTU per hour-
cubic foot and returns the result

BTU_per_hr_cu_ft2W_per_cu_m
(Number)

Utility.dll Converts Number from BTU per
hour-cubic foot to Watts per
cubic meter and returns the result

J_per_kg2BTU_per_lb(Number) Utility.dll Converts Number from Joules per
kilogram to BTU per pound and
returns the result

BTU_per_lb2J_per_kg(Number) Utility.dll Converts Number from BTU per
pound to Joules per kilogram and
returns the result

J_per_kg2ft_lb_f_per_lb_m(Number) Utility.dll Converts Number from Joules per
kilogram to foot-pound force per
pound mass and returns the result

ft_lb_f_per_lb_m2J_per_kg(Number) Utility.dll Converts Number from foot-
pound force per pound mass to
Joules per kilogram and returns
the result

cu_m_per_kg2cu_ft_per_lb(Number) Utility.dll Converts Number from cubic
meter per kilogram to cubic foot
per pound and returns the result

cu_ft_per_lb2cu_m_per_kg(Number) Utility.dll Converts Number from cubic foot
per pound to cubic meter per
kilogram and returns the result

cu_m_per_sq_m_s2cu_ft_per_sq_ft_
day (Number)

Utility.dll Converts Number from cubic
meter per square meter-second to
cubic foot per square foot-day
and returns the result

 8

Table 3 (Continued)

Function(arguments) File Result
cu_ft_per_sq_ft_day2cu_m_per_sq_
m_s (Number)

Utility.dll Converts Number from cubic foot
per square foot-day to cubic
meter per square meter-second
and returns the result

W_per_sq_m2BTU_per_hr_sq_ft
(Number)

Utility.dll Converts Number from Watts per
square meter to BTU per hour-
square foot and returns the result

BTU_per_hr_sq_ft2W_per_sq_m
(Number)

Utility.dll Converts Number from BTU per
hour-square foot to Watts per
square meter and returns the
result

kg_per_sq_m_s2lb_per_sq_ft_day
(Number)

Utility.dll Converts Number from kilogram
per square meter-second to pound
per square foot-day and returns
the result

lb_per_sq_ft_day2kg_per_sq_m_s
(Number)

Utility.dll Converts Number from pound per
square foot-day to kilogram per
square meter-second and returns
the result

kg_per_m_s2cP(Number) Utility.dll Converts Number from kilogram
per meter-second to centipoises
and returns the result

cP2kg_per_m_s(Number) Utility.dll Converts Number from
centipoises to kilogram per
meter-second and returns the
result

J_per_kg_m2BTU_per_lb_ft
(Number)

Utility.dll Converts Number from Joules per
kilogram-meter to BTU per
pound-foot and returns the result

BTU_per_lb_ft2J_per_kg_m
(Number)

Utility.dll Converts Number from BTU per
pound-foot to Joules per
kilogram-meter and returns the
result

W_per_m_deg_C2BTU_per_ft_hr_
deg_F (Number)

Utility.dll Converts Number from Watts per
meter-degree Celsius to BTU per
foot-hour-degree Fahrenheit and
returns the result

BTU_per_ft_hr_deg_F2W_per_m_
deg_C (Number)

Utility.dll Converts Number from BTU per
foot-hour-degree Fahrenheit to
Watts per meter-degree Celsius
and returns the result

 9

Table 3 (Continued)

Function File Result
W_per_sq_m_deg_C2BTU_per_hr_
sq_ft_deg_F (Number)

Utility.dll Converts Number from Watts per
square meter-degree Celsius to
BTU per square foot-hour-degree
Fahrenheit and returns the result

BTU_per_hr_sq_ft_deg_F2W_per_sq
_m_deg_C (Number)

Utility.dll Converts Number from BTU per
square foot-hour-degree
Fahrenheit to Watts per square
meter-degree Celsius and returns
the result

J_per_kg_deg_C2BTU_per_lb_deg_
F (Number)

Utility.dll Converts Number from Joules per
kilogram-degree Celsius to BTU
per pound-degree Fahrenheit and
returns the result

BTU_per_lb_deg_F2J_per_kg_deg_
C (Number)

Utility.dll Converts Number from BTU per
pound-degree Fahrenheit to
Joules per kilogram-degree
Celsius and returns the result

J_per_cu_m_deg_C2BTU_per_cu_ft
_deg_F (Number)

Utility.dll Converts Number from Joules per
cubic meter-degree Celsius to
BTU per cubic foot-degree
Fahrenheit and returns the result

BTU_per_cu_ft_deg_F2J_per_cu_m_
deg_C (Number)

Utility.dll Converts Number from BTU per
cubic foot �degree Fahrenheit to
Joules per cubic meter-degree
Celsius and returns the result

cu_m_per_s_m_Pa2cu_ft_per_day_lb
_sq_in (Number)

Utility.dll Converts Number from cubic
meter per second-meter-Pascal to
cubic foot per day-point-square
inch and returns the result

cu_ft_per_day_lb_sq_in2cu_m_per_s
_m_Pa (Number)

Utility.dll Converts Number from cubic foot
per day-point-square inch to
cubic meter per second-meter-
Pascal and returns the result

m_per_sq_sec2ft_per_sq_day
(Number)

Utility.dll Converts Number from meter per
square second to foot per square
day-point-square inch and returns
the result

ft_per_sq_day2m_per_sq_sec
(Number)

Utility.dll Converts Number from foot per
square day to meter per square
second and returns the result

 10

Table 4. Hidden functions added to Argus ONE

Function(arguments) File Result
IsOK(Message, [HideCancel]) OkCancel.dll Displays a dialog box with a

message and several buttons
Returns True or False depending on
which button the user pushes

ok_Add_Radio_Choice(Message,
[Message], [Message], [Message],
[Message])

OkCancel.dll Adds up to five radio button to a
dialog box and returns True if it
succeeds

ok_Get_Radio_Choice(Message,
[Choices_Height], [Width],
[Question_Height])

OkCancel.dll Returns the index of the radio
button that the user selects with the
first radio button given an index of
zero

ok_Radio_Free() OkCancel.dll Returns True if the dialog box with
the radio buttons has been
destroyed

ok_UserFloat(Message, Response,
[Minimum], [Maximum])

OkCancel.dll Displays a dialog box on which a
user may enter a real number, the
result is the real number that the
user enters

ok_UserInteger(Message, Response,
[Minimum], [Maximum])

OkCancel.dll Displays a dialog box on which a
user may enter an integer, the result
is the integer that the user enters

ok_CheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

OkCancel.dll Returns True if the version number
of the OkCancle PIE is greater than
or equal to the version number
passed in the arguments

ProgressBarInitialize(Number,
[Show_Cancel])

ProgressBar.dll Attempts to create a dialog box
with a progress bar and returns
True if it succeeds

ProgressBarFree() ProgressBar.dll Attempts to destroy the dialog box
with the progress bar and returns
True if it succeeds

ProgressBarMax(Number) ProgressBar.dll Attempts to set the maximum value
of the progress bar and returns True
if the Abort button has not been
pressed and the function succeeds

ProgressBarAdvance() ProgressBar.dll Attempts to advance the progress
bar by one and returns True if the
Abort button has not been pressed
and the function succeeds

 11

Table 4 (Continued)

Function(arguments) File Result
ProgressBarSetMessage(Message) ProgressBar.dll Attempts to display a message with

the progress bar and returns True if
the Abort button has not been
pressed and the function succeeds

ProgressBarAddLine(Message) ProgressBar.dll Attempts to add a line to the memo-
box beneath the progress bar and
returns True if the Abort button has
not been pressed and the function
succeeds

ProgressBarSaveToFile(File_Name) ProgressBar.dll Attempts to save the lines in the
memo box and returns the number
of lines in the file it saves

ProgressBarCheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

ProgressBar.dll Returns True if the version number
of the ProgressBar PIE is greater
than or equal to the version number
passed in the arguments

Join_Files(First_File, Second_File,
Result_File)

JoinFiles.dll Attempts to concatenate two files
and returns True if the function
succeeds

Delete_File(File_Name) JoinFiles.dll Attempts to delete a file and returns
True if the function succeeds

Rename_File(Old_File_Name,
New_File_Name)

JoinFiles.dll Attempts to rename a file and
returns True if the function
succeeds

Split_File(�Input_File, First_File,
Search_String, Second_File [,
Search_String, Third_File] [,
Search_String, Fourth_File]�[,
Search_String, Thirtieth_File])

JoinFiles.dll Attempts to split a file into 2 to 30
separate files and returns True if the
function succeeds

Int2Str(Number) JoinFiles.dll Returns the base 36 representation
of Number

JF_CopyLines(Old_File_Name,
New_File_Name, Line_Count,
[Is_Local_File])

JoinFiles.dll Copies Line_Count from
Old_File_Name to a new file
named New_File_Name and returns
True if it succeeds.

JF_CheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

JoinFiles.dll Returns True if the version number
of the JoinFile PIE is greater than
or equal to the version number
passed in the arguments

L_Initialize() List.dll True (obsolete function)

 12

Table 4 (Continued)

Function(arguments) File Result
L_CreateNewList() List.dll Creates a list and returns the

number of the list that was created
L_SetListSize(ListIndex, Size) List.dll Sets the size of a list and returns

True if the function succeeds
L_GetListSize(ListIndex) List.dll Returns the number of items in the

list
L_FreeAList(ListIndex) List.dll Attempts to remove all items from

a list and returns True if the
function succeeds

L_AddToList(ListIndex, Value) List.dll Adds a value to a list and returns
the position of Value in the list if
the function succeeds

L_GetFromList(ListIndex, Index) List.dll Returns the item indicated by
ListIndex and Index

L_SetListItem(ListIndex, Index, Value) List.dll Attempts to set the value of an item
in a list and returns True if the
function succeeds

L_DeleteListItem(ListIndex, Index) List.dll Attempts to remove an item from a
list and returns True if the function
succeeds

L_SortList(ListIndex) List.dll Sorts a list in ascending order and
returns True if the function
succeeds

L_EliminateDuplicates(ListIndex) List.dll Eliminates duplicate values from a
sorted list and returns True if the
function succeeds

L_IndexOf(ListIndex, Value) List.dll Returns the position of Value in the
sorted list of the position of the first
copy of highest number less than
Value in the sorted list if Value is
not in the sorted list

L_UnsortedIndexOf(ListIndex, Value) List.dll Returns the position of the first
copy of Value in the list Returns -1
if Value is not in the list

L_CreateNew3DList(Maximum_X,
Maximum_Y, Maximum_Z)

List.dll Creates a 3D list and returns the
number of the 3D list that was
created

L_FreeA3DList(ListIndex) List.dll Attempts to destroy a 3D list and
returns True if the function
succeeds

 13

Table 4 (Continued)

Function(arguments) File Result
L_GetFrom3DList(ListIndex, X_Index,
Y_Index, Z_Index)

List.dll Returns the item indicated by
ListIndex X_Index, Y_Index, and
Z_Index

L_GetFromOneBased3DList(ListIndex,
X_Index, Y_Index, Z_Index)

List.dll Returns the item indicated by
ListIndex X_Index, Y_Index, and
Z_Index

L_Set3DListItem(ListIndex, X_Index,
Y_Index, Z_Index, Value)

List.dll Sets the value indicated by
ListIndex X_Index, Y_Index, and
Z_Index and returns True if the
function succeeds

L_SetOneBased3DListItem(ListIndex,
X_Index, Y_Index, Z_Index, Value)

List.dll Sets the value indicated by
ListIndex X_Index, Y_Index, and
Z_Index and returns True if the
function succeeds

L_ResetA3DList(ListIndex) List.dll Sets all members of the 3D list
indicated by ListIndex to 0 and
returns True if the function
succeeds

L_Add3DLists(FirstListIndex,
SecondListIndex, ResultListIndex)

List.dll Adds the corresponding members
of two 3D lists and returns True if
the function succeeds

L_Subtract3DLists(FirstListIndex,
SecondListIndex, ResultListIndex)

List.dll Subtracts the corresponding
members of one 3D list from those
of another 3D list and returns True
if the function succeeds

L_Multiply3DLists(FirstListIndex,
SecondListIndex, ResultListIndex)

List.dll Multiplies the corresponding
members of two 3D lists and
returns True if the function
succeeds

L_Divide3DLists(FirstListIndex,
SecondListIndex, ResultListIndex)

List.dll Divides the corresponding members
of one 3D list by those of another
3D list and returns True if the
function succeeds

L_Multipy3DByConstant(ListIndex,
ResultListIndex, Value)

List.dll Multiplies the members of a 3D list
by a constant and returns True if the
function succeeds

L_Invert3DListMembers(ListIndex,
ResultListIndex)

List.dll Inverts the members of a 3D list
and returns True if the function
succeeds

 14

Table 4 (Continued)

Function(arguments) File Result
L_IsSingPrecUniform(ListIndex) List.dll Returns True if all the members of

a list are the same after being
converted to single precision

L_GetErrorCount() List.dll Returns the number of errors
L_FreeAllLists() List.dll Attempts to destroy all lists and 3D

lists and returns True if the function
succeeds

L_CheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

List.dll Returns True if the version number
of the List PIE is greater than or
equal to the version number passed
in the arguments

BL_InitializeGridInformation
(Grid_Layer_Name_as_String,
[GridType])

BlockList.dll Attempts to read grid information
from Argus ONE and returns 1 if
the function succeeds

BL_AddVertexLayer
(Information_Layer_Name_as_String)

BlockList.dll Attempts to read contour
information from Argus ONE and
returns True if the function
succeeds

BL_ReInitializeVertexList() BlockList.dll Attempts to delete all contour
information that has been read from
Argus ONE and returns True if the
function succeeds

BL_GetCountOfCellLists() BlockList.dll Returns the number of lists of cells
currently in memory

BL_GetCountOfACellList(ListIndex) BlockList.dll Returns the number of cells in a list
of cells

BL_GetCellRow(ListIndex, Index) BlockList.dll Returns the row number of a cell
BL_GetCellColumn(ListIndex, Index) BlockList.dll Returns the column number of a

cell
BL_GetVertexCount(ListIndex,
CellIndex)

BlockList.dll Returns the number of vertices of a
contour in a cell

BL_GetVertexXPos(ListIndex,
CellIndex, VertexIndex)

BlockList.dll Returns the X-coordinate of a
vertex

BL_GetVertexYPos(ListIndex,
CellIndex, VertexIndex)

BlockList.dll Returns the Y-coordinate of a
vertex

BL_SegmentCount(ListIndex,
CellIndex)

BlockList.dll Returns the number of segments of
a contour in a cell

BL_SegmentFirstX(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the X-coordinate of the
first vertex of a segment

 15

Table 4 (Continued)

Function(arguments) File Result
BL_SegmentFirstY(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the Y-coordinate of the
first vertex of a segment

BL_SegmentSecondX(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the X-coordinate of the
second vertex of a segment

BL_SegmentSecondY(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the Y-coordinate of the
second vertex of a segment

BL_SegmentLengthX(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the length of a segment in
the X-direction

BL_SegmentLengthY(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the length of a segment in
the Y-direction

BL_SegmentLength(ListIndex,
CellIndex, SegmentIndex)

BlockList.dll Returns the length of a segment

BL_SumSegmentsX(ListIndex,
CellIndex)

BlockList.dll Returns the sum of the lengths in
the X-direction of all the segments
in a cell

BL_SumSegmentsY(ListIndex,
CellIndex)

BlockList.dll Returns the sum of the lengths in
the Y-direction of all the segments
in a cell

BL_SumSegmentLengths(ListIndex,
CellIndex)

BlockList.dll Returns the sum of the lengths of
all the segments in a cell

BL_GetCountOfCombinedCellList() BlockList.dll Returns the number of cells
intersected by any contour

BL_GetCellRowFromCombinedList
(CellIndex)

BlockList.dll Returns the row number of a cell
intersected by any contour

BL_GetCellColumnFromCombinedList
(CellIndex)

BlockList.dll Returns the column number of a
cell intersected by any contour

BL_GetCountOfCrossRowLists() BlockList.dll Returns the number of lists of cells
in which a contour crosses the Y-
coordinate of the cell node

BL_GetCountOfCrossColumnLists() BlockList.dll Returns the number of cells in a list
of cells in which a contour crosses
the X-coordinate of the cell node

BL_GetCountOfACrossRowList
(ListIndex)

BlockList.dll Returns the number of cells in a list
of cells in which a contour crosses
the Y-coordinate of the cell node

BL_GetCountOfACrossColumnList
(ListIndex)

BlockList.dll Returns the number of cells in a list
of cells in which a contour crosses
the X-coordinate of the cell node

 16

Table 4 (Continued)

Function(arguments) File Result
BL_GetCrossRowRow(ListIndex,
CellIndex)

BlockList.dll Returns the row number of a cell in
a list of cells in which a contour
crosses the Y-coordinate of the cell
node

BL_GetCrossColumnRow(ListIndex,
CellIndex)

BlockList.dll Returns the row number of a cell in
a list of cells in which a contour
crosses the X-coordinate of the cell
node

BL_GetCrossRowColumn(ListIndex,
CellIndex)

BlockList.dll Returns the column number of a
cell in a list of cells in which a
contour crosses the Y-coordinate of
the cell node

BL_GetCrossColumnColumn
(ListIndex, CellIndex)

BlockList.dll Returns the column number of a
cell in a list of cells in which a
contour crosses the X-coordinate of
the cell node

BL_GetCrossRowNeighborColumn
(ListIndex, CellIndex)

BlockList.dll Returns the column number of the
neighbor of a cell in a list of cells in
which a contour crosses the Y-
coordinate of the cell node

BL_GetCrossColumnNeighborRow
(ListIndex, CellIndex)

BlockList.dll Returns the row number of the
neighbor of a cell in a list of cells in
which a contour crosses the X-
coordinate of the cell node

BL_GetCrossRowCompositeY
(ListIndex, CellIndex)

BlockList.dll Returns a total difference in Y-
coordinate of segments in one or
more cells

BL_GetCrossColumnCompositeX
(ListIndex, CellIndex)

BlockList.dll Returns a total difference in X-
coordinate of segments in one or
more cells

BL_GetSumCrossRowCompositeY
(ListIndex)

BlockList.dll Returns the sum of the
BL_GetCrossRowCompositeY's for
all the cells in the list that cross the
Y-coordinate of the cell node

BL_GetSumCrossColumnCompositeX
(ListIndex)

BlockList.dll Returns the sum of the
BL_GetCrossColumnCompositeX's
for all the cells in the list that cross
the X-coordinate of the cell node

 17

Table 4 (Continued)

Function(arguments) File Result
BL_GetCrossRowCompositeLength
(ListIndex, CellIndex)

BlockList.dll Returns the length of the contour
associated with a cell in the list that
crosses the Y-coordinate of the cell
node

BL_GetCrossColumnCompositeLength
(ListIndex, CellIndex)

BlockList.dll Returns the length of the contour
associated with a cell in the list that
crosses the X-coordinate of the cell
node

BL_GetRowBoundary(Row) BlockList.dll Returns the position of the Row
boundary indicated by Row

BL_GetColumnBoundary(Column) BlockList.dll Returns the position of the Column
boundary indicated by Column

BL_PointInsideContour (ListIndex, X,
Y)

BlockList.dll Returns True if (X, Y) is inside the
contour indicated by ListIndex

BL_GetRowNodePosition(Row) BlockList.dll Returns the Y position of the node
of the Row indicated by "Row"

BL_GetColumnNodePosition(Column) BlockList.dll Returns the X position of the node
of the Column indicated by
"Column"

BL_GetRowBoundaryCount() BlockList.dll Returns the number of row
boundaries in the grid

BL_GetColumnBoundaryCount() BlockList.dll Returns the number of column
boundaries in the grid

BL_GetRowNodeCount() BlockList.dll Returns the number of row nodes in
the grid

BL_GetColumnNodeCount() BlockList.dll Returns the number of column
nodes in the grid

BL_GetCellArea(Column, Row) BlockList.dll Returns the area of the cell
indicated by Column, Row

BL_FractionOfLine(ListIndex,
CellIndex)

BlockList.dll Returns the fraction of the total
length of the contour inside the cell
indicated by CellIndex

BL_FreeVertexList() BlockList.dll Attempts to free all memory
associated with a list of verticies
and returns True if the function
succeeds

BL_FreeAllBlockLists() BlockList.dll Attempts to free all memory
allocated by the BlockList PIE and
returns True if the function
succeeds

 18

Table 4 (Continued)

Function(arguments) File Result
BL_GetErrorCount() BlockList.dll Returns the number of errors
BL_CheckVersion(First_Digit,
Second_Digit, Third_Digit,
Fourth_Digit)

BlockList.dll Returns True if the version number
of the BlockList PIE is greater than
or equal to the version number
passed in the arguments

Installation instructions
All the PIEs described in this report may be installed by placing the dynamic link

libraries (dll's) in the Argus Interware\ArgusPIE directory or a subdirectory of it. In cases
where the PIE has a help system, the help system files (with the extensions .hlp and .cnt)
must be placed in the same directory as the dll. Normal practice is to create a subdirectory in
the ArgusPIE directory with the same name as the dll except without the dll extension and
place the files there. For example, the Utility PIE would normally be installed as "Argus
Interware/ArgusPIE/Utility/Utility.dll".

Some of the commands or functions described in this report are now implemented in
the Utility.dll whereas previously they were implemented in several different dll's. The new
versions replace and often improve upon the previous versions so the dll's containing the
previous versions must be removed when installing the new versions. The dll's that have
been replaced are EditContoursPie.dll, EditDataLayer.dll, GriddedImport.dll,
JoinContoursPie.dll, MoreConversions.dll, EvalAtXY.dll, and RotateCells.dll. If the
conflicting dll's are not removed, the Utility.dll can not be used.

Two of these PIEs (JoinContoursPie.dll and MoreConversions.dll) were written by
the author prior to joining the USGS. Two of them (EditContoursPie.dll, RotateCells.dll)
were documented as part of version 3 of the MODFLOW GUI (Winston, 1999). Three more
(GriddedImport.dll, EvalAtXY.dll, and EditDataLayer.dll) were documented as part of
version 4 of the MODFLOW GUI (Winston, 2000).

Navigating
A number of the dialog boxes described in this report display spatial data and allow

the user to zoom in on or out of an area of interest or to pan to a different location.
Standardized buttons have been used for these operations. To zoom out all the way, click the
Zoom Extents button . To zoom in by a factor of two, click the Zoom In button . To
zoom out by a factor of two, click the Zoom Out button . To zoom to a specified region,
click the Zoom button and select to region to zoom in on. To select the region, click the
mouse in one corner of the region, hold down the mouse button while moving to the opposite
corner, and release the mouse button. To pan, click the Pan button and then hold down
the mouse button while moving the mouse to a new position.

 19

Acknowledgments
I would like to thank Allen M. Shapiro and Bernard J. Stolp for their helpful reviews

of this manuscript. I would also like to thank Leonard Konikow, Clifford Voss, Alden
Provost, George Z. Hornberger, Allen Shapiro, and Martha Scholl for helpful suggestions.

Interpolation Methods
Several new interpolation methods are included in Utility.dll. The new methods have

two advantages over existing interpolation methods in Argus ONE.

1. They are much faster.
2. They can incorporate anisotropy.

To test the speed of the new interpolation methods, a test case was constructed with a

grid containing approximately 500 cells. The grid had one parameter that was linked to a
data layer containing approximately 900,000 points (from a digital elevation model). When
the interpolation method used for the data layer was one of the new methods, coloring the
grid the first time took about 7 seconds. If the Argus ONE window was minimized and then
maximized again, recoloring the grid took about 1 second. If the default interpolation
method for the data layer was used, coloring the grid took about 1 minute regardless of
whether it was being colored for the first time or was being recolored. Other interpolation
methods all took even longer.

There are 10 new interpretation methods as listed below.

QT_Nearest
QT_Mean of 5 Nearest
QT_Mean of 20 Nearest
QT_Inv Dist Sq of 5 Nearest
QT_Inv Dist Sq of 20 Nearest
QT_Nearest (Anis = 100)
QT_Mean of 5 Nearest (Anis = 100)
QT_Mean of 20 Nearest (Anis = 100)
QT_Inv Dist Sq of 5 Nearest (Anis = 100)
QT_Inv Dist Sq of 20 Nearest (Anis = 100)

QT_Nearest returns the value of the data point that is closest to the location for

which a value is requested. This is exactly equivalent to the NN2D method (except faster).
In the event that two locations are equally distant from the location for which a value is
requested, an arbitrary choice between the values will be made.

QT_Mean of 5 Nearest finds the five data points that are closest to the location for
which a value is requested and returns their mean value. However, it is possible that there
will be additional data points that are no further way from the desired location as the point
that is the fifth most distant from it. If that is the case, all data points that are at the same
distance as the fifth most distant data point will be included in the calculation.

QT_Mean of 20 Nearest is the same as QT_Mean of 5 Nearest except that it uses
the 20 closest points rather than the five closest points.

 20

QT_Inv Dist Sq of 5 Nearest retrieves the five closest data points to the search
location in the same way as QT_Mean of 5 Nearest and then calculates a weighted mean of
the data points. The weights applied to each data point are the inverses of the square of their
distances from the search location. (In the event that one or more data points lies exactly at
the search location, the inverse of the distance can not be calculated so the value that is
returned is the mean of the values of all the data points that lie exactly at the search location.)

QT_Inv Dist Sq of 20 Nearest is the same as QT_Inv Dist Sq of 5 Nearest except
that it uses the 20 closest points rather than the five closest points.

QT_Nearest (Anis = 100) is the same as QT_Nearest except that the Y coordinates
of all the data points and the search location are multiplied by 100 before performing any
operations. This would be useful for performing interpolations in cross sectional models
where aquifer properties are typically much more continuous in the horizontal than in the
vertical direction.

The remaining anisotropic methods are the same as their isotropic equivalents except
that the Y coordinates are all multiplied by 100. For instance, QT_Mean of 5 Nearest (Anis
= 100) is the same as QT_Mean of 5 Nearest except that the Y coordinates of all the data
points and the search location are multiplied by 100 before performing any operations.

The reason for the �QT� in the name of all these interpolation methods is that the data
are stored in a data structure known as a Quadtree (Stephens, 1998). The advantage of using
a Quadtree is that it can make retrieving data of the sort required by interpolation methods
much faster than would be required by a sequential search through the data.

Commands
The commands described here are all implemented in the file Utility.dll. The

commands appear in the Argus ONE menus. Commands are in bold type to help distinguish
them from the surrounding text although other items may also in bold type. In the
description of commands, a vertical bar (|) is used separate menu items from submenu items.
For example, and instruction to select PIEs|Edit means to select the PIEs menu item and
then to select the Edit submenu item from the PIEs menu.

Edit

Edit Contours
The Edit Contours command is used to edit the positions of individual vertices in

contours. To use it, select PIEs|Edit|Edit Contours. You will be prompted for a layer
name. Select the layer for which you wish to edit a vertex position. All the contours from
the layer will be read and displayed. Click on any vertex, and a dialog box will appear in
which you can edit the vertex position. When you are done, click OK. The layer will be
cleared and a new set of contours will be written with the new vertex positions.

Users of the Edit Contours command should be aware of the following characteristics
of the command before using it.

1. The contour parameter values will be the same as they were originally; however, any
parameters that were set using Expressions will now be specified in the contour itself.
To go back to having the contour value being set by the expression for the parameter,
edit the contour and delete the parameter value.

 21

2. The command does not check for contours that are illegal in Argus ONE. A contour
is illegal if it crosses another contour and "Allow Intersection" is not turned on for
that layer. A contour is also illegal if it crosses itself even if "Allow Intersection" is
turned on. Argus ONE will not accept illegal contours so illegal contours will be lost
if you specify contours that are illegal. For this reason, it is best to back-up your file
before using the Edit Contours command. If you anticipate wanting to import
contours that touch, you should select "Allow Intersection" beforehand.

DeclutterContours
Reducing the number of vertices in a layer can make the export process faster. If the

vertices are much more closely spaced than the grid spacing, reducing the number of vertices
may have little effect on the model inputs. To use this command, select PIEs|Edit|Declutter
Contours. A dialog box will appear with a list of information layers. Select the Domain
Outline or Information layer in which you wish to reduce the number of vertices. Another
dialog box will appear in which you should enter the desired vertex spacing and an angle
used to control which vertices are removed.

When you click OK the contours on the layer will be processed so that vertices that
are closer together than the desired spacing will be eliminated if the "Delete nodes based on
spacing" check box is checked. However, if the "Delete Node based on angle" check box is
checked, nodes will only be deleted if the angle at the node exceeds the limit you specify.
The effect of Declutter Contours is illustrated in Figure 1. Figure 1A shows contours with
very closely spaced vertices many of which have been eliminated in Figure 1B by using the
Declutter Contours command.

A word of warning is in order about the Declutter Contours command. After

removing vertices, some contours that previously did not overlap may overlap and the
geometric relationships among contours may differ. For example, in Figure 2, the -200 ft
contour has been reduced to a single point that is no longer inside the -150 ft contour as it
was before. The user should check the contours for such problems after using this command.

BA

Figure 1. Effect of using the Declutter Contours command. (A) Before. (B) After.

 22

Both the Join Contours (to be described next) and Declutter Contours commands

first clear the layer before writing to it. If there is an error when writing the data to the layer,
this will result in loss of data. An error might occur in the Declutter Contours command if
some of the contours cross themselves after some vertices are removed. Thus it is a good
idea to save the Argus ONE file before running either of these PIEs. It usually would not
cause an error if contours crossed each other because the Declutter Contours command
automatically turns on "Allow Intersection" for the information layer that it is using.
However, "Allow Intersection" is not allowed for Domain Outline layers so for them, it
would cause an error.

Join Contours
You may sometimes wish to join contours together to make it easier to manipulate

them. To join contours together, select PIEs|Edit|Join Contours. A dialog box will appear
listing the information layers. Select the layer in which you want to combine contours. The
contours will be read from the layer. If any two contours have exactly the same starting or
ending point and all their parameter values are the same, those contours will be combined
into a single contour (Figure 3).

BA

Figure 2. If used improperly, the Declutter Contours command can result in contours that
overlap or that no longer show correct geometric relationships. (A) The contours before the
Declutter Contours command was used. (B) The contours after the Declutter Contours
command was used. Note that the -200 ft. contour is outside the -150 ft contour after the
Declutter Contours command was used.

 23

If two contours have starting or ending points that are even slightly different, the

contours will not be combined. To ensure that such contours are combined, make sure the
"Special|Allow Intersection" is checked. Then move the end of one of the contours close to
the end of the other. The cursor will change to a hollow cross to indicate that it has detected
another vertex. When you release the mouse, the vertex will be placed exactly over the
position of the other vertex.

Edit Grid
The Edit Grid command is used for creating and editing grids. The user can move or

rotate the grid, or add, delete, or move rows and columns. The user can also subdivide rows
and columns or specify the width or positions individual rows and columns. To ensure
numerical stability and accuracy during model computation, it is a good idea to make sure
that the ratio between the widths of adjacent rows and columns is less than or equal to a 1.5
(Anderson and Woessner, 1992). The Edit Grid command can automatically adjust an
existing grid or create a new one that meets this critierion.

To start the Edit Grid command, select PIEs|Edit|Edit Grid. You will be prompted
for the name of the grid layer whose grid you want to edit or you can choose to create a new
grid layer. You will also be prompted for the type of grid (Block-Centered or Grid-
Centered). If you decide to create a new grid layer, you can use either existing Domain
Outline and Density layers or you can create new ones. Once you have selected or created
the grid layer, the main dialog box will appear. It will have a copy of the grid (if there is
one) on the grid layer you selected. You can edit the grid in this dialog box.

A B

Figure 3. Effect of the Join Contours command (A) Before the Join
Contours command is applied, there are a large number of contours that
meet at their ends and that have exactly the same contour values. Each
contour has its own label. (B) After the Join Contours command is
applied, these contours have been joined together.

 24

Moving the Grid
To move the grid, you change the coordinates of the grid origin: the corner of the

grid at column 1, row 1. There are two ways to change the coordinates of the grid origin.
1. Type the values of the X and Y coordinates of the grid origin in the appropriate edit

boxes.
2. Click on the arrow button . Next, click inside the grid. The cursor will change

to a hand pointer. While holding the mouse button down, move to the location where you
would like the grid to be. A gray outline of the grid will move along with the mouse. When
you release the mouse button, the coordinates of the grid origin will be moved to reflect the
position you specified.

Rotate the Grid
There are three ways to rotate the grid.
1. Type the angle of the grid into the edit box labeled Grid Angle.

2. Rotate the knob at the bottom of the dialog box.
3. Click on the rotate button . Next, click inside the grid. The cursor will change

to a hand pointer. While holding the mouse button down, move to the location where you
would like the grid to be. A gray outline of the grid will rotate along with the mouse. When
you release the mouse button, the angle of the grid will be changed to reflect the position you
specified.

Moving Grid Lines
To move grid lines, click on the move column or move row button. Then

move the mouse over the column or row line you wish to move. The cursor will change to an
image similar to those on the buttons when the cursor is over a column or row. Click the
mouse button and hold it down. As you move the mouse, an image of the column or row will
follow the mouse. When you release the mouse, the column or row will be moved. You can
also move grid lines by specifying column and row positions or by specifying column and
row widths as described later in this section.

Adding Grid Lines
To add row or column grid lines, click on the add column or add row

button. Then move the mouse to where you wish to add a column or row. When you click
the mouse button and release it, a new column or row will be added at the mouse position.
As you move the mouse, an image of the new column or row boundary will follow the
mouse. You can also add grid lines by specifying column and row positions or by specifying
column and row widths as described later in this section.

Changing the Width of Rows or Columns
To change the width of rows or columns, click on the column width or row

height button. Then move the mouse over one of the columns or rows whose width you
wish to change. Hold down the left mouse button and, if desired, move the mouse to another
column or row. When you release the mouse button, a dialog box will appear where you can
enter a new width for all the selected columns or rows. As you move the mouse with the
button down, the selected columns or rows will be shown in gray. You can also change the
width of rows or columns by specifying column and row positions or by specifying column
and row widths as described later in this section.

 25

Deleting Grid Lines
To delete grid lines, click on the delete button . Then move the mouse over one

of the grid lines that you wish to delete and click the mouse button. As you move the mouse
with the button down, the selected columns or rows will be shown in gray and the cursor will
change to an X. You can also delete grid lines by specifying column and row positions or by
specifying column and row widths as described later in this section.

Subdividing Rows or Columns
To subdivide rows or columns, click on the subdivide button . Then move the

mouse over one of the columns or rows whose width you wish to change. Hold down the left
mouse button and, if desired, move the mouse to another column or row. When you release
the mouse button, a dialog box will appear where you can enter the number of columns and
rows that you wish to subdivide the selected columns or rows into. If you enter a number
greater than one for either and click the OK button, each selected columns and row will be
subdivided into the number of columns and rows you specify. As you move the mouse with
the button down, the selected columns or rows will be shown in gray. You can also
subdivide rows or columns by specifying column and row positions or by specifying column
and row widths as described below.

Specifying Row and Column Positions
To specify row and column positions, click on the Column/Row Positions button

. In the dialog box, you can increase or decrease the number of columns or rows and enter
new positions for columns or rows. The positions don't need to be in order because they will
be arranged automatically.

Specifying Row and Column Widths
To specify row and column widths, click on the Column/Row Widths button .

In the dialog box, you can increase or decrease the number of columns or rows and enter new
widths for the columns or rows. You can drag rows in the table to rearrange them.

Adjusting Row and Column Boundaries
According to Anderson and Woessner (1992), the maximum ratio between adjacent

row or column widths should usually be less than or equal to 1.5. They also recommend that
the maximum ratio between the length and width of individual cells should be less than 10.
Numerical difficulties in solving the model equations arise less frequently in models with
grids that meet these criteria.

To adjust the row and column boundaries so that the ratio between the size of
adjacent rows and columns is less than a specified value, first, enter a number greater than 1
in the grid smoothing criterion edit box. This number represents the maximum desired ratio
between the sizes of adjacent columns or rows. Then click the smooth grid button . The
positions of the grid lines will be changed in an attempt to satisfy the criterion. If it doesn't
succeed, the maximum ratio in the grid will be displayed in a warning message. Clicking the
button again may reduce the ratio further.

Creating Grids
If there isn't a grid already, you can add row or column grid lines to create it as

described above. If you want to create a grid using information from the Domain Outline
and Density layers, first set the grid angle and smoothing criterion to the desired value. Then
click on the Magic Wand button . A dialog box will appear in which you may select the

 26

names of the Domain Outline and Density layers and the type of grid to be created. When
you have done this, the grid will be created.

When you click the OK button, your edited grid will be imported into Argus ONE.
However, all the cells in the grid will be active. To deactivate the cells outside the domain
outline, click with the Argus ONE "Magic Wand" button inside the domain outline and
choose "Deactivate". When the operation has finished, all cells outside the Domain outline
will be shaded to show they are inactive.

Edit Data
To use this procedure, select Files|Edit|Edit Data.
You must have at least one parameter on the data layer before it can be edited. If you

attempt to edit a data layer that has no parameters, you will get an error message about the
problem.

If there are no data points on the data layer, will get a warning message but you will
still be able to edit the data layer. When you edit the data layer, you can: move data points,
change the value or values of data points, add data points, and/or delete data points.

When you are finished editing the data points click on the OK button to accept the
changes or the Cancel button to discard them. The data points appear both on the Graphical
tab and the Table tab.

The OK and Cancel buttons will both close the dialog box but if the OK button is
clicked the changes made in the dialog box will be kept. Otherwise they will be discarded.
Other buttons on the Graphical tab are used for navigating.

You can move data points, change their values, add new data points or delete existing
data points on both the Graphical and Table tab.

On the Graphical tab, you can do these tasks as follows. To move a data point or
edit its values, make sure that the Select point button is depressed and click on the data
point. Then edit the X and Y coordinates in the edit boxes or edit the parameter values in the
table. To add a data point, first make sure that the Add point button is depressed and
then click at the location where you would like to add a data point. Then edit the parameter
values and X and Y coordinates and data values in the dialog box. To delete a data point,
first make sure that the Delete point button is depressed and then click on the data point
you would like to delete.

On the Table tab, you can do these tasks as follows. To move a data point, locate the
data point in the table of data points and edit the X and Y coordinates in the table. To change
the values of a data point, locate the data point in the table of data points and edit the
parameter values in the table. To add a data point, increase the number of data points by
clicking on the up arrow next to the control that shows the number of data points. Then edit
the parameter values and X and Y coordinates in the table. To delete a data point, locate the
data point you would like to delete and drag it to the bottom of the table. Then decrease the
number of data points by clicking on the down arrow next to the control that shows the
number of data points.

If you have data in a spreadsheet you can copy them to the clipboard and paste them

in the table on the Table tab by clicking on the Paste from Clipboard button. You can

also read the data from a file by clicking the Read from file button. Several file formats
can be used as described below.

 27

If the file or clipboard contains data for more parameters than exist on the data layer,
extra columns will be created in the table. You can drag the columns to new positions to
determine which values will actually be used.

Data to be read from a file or pasted from the clipboard must either be in the format
of an Argus ONE contour as described in the Argus ONE documentation (Argus Interware,
Inc., 1997, p. 104 to 108) or they must have the following format.

1. Any line in the data whose first character is a "#" will be considered a comment and
will be used to assign names to imported parameters.

2. Each line in the data will begin a new row in the table except for comment lines.
3. The data may be either in a tab-delimited format or a comma/space-delimited format.
4. In tab-delimited format, the data value that will appear in each cell in a row is

separated from the data value in the next cell in the row by a tab character.
5. In comma/space-delimited format, the data value that will appear in each cell in a row

is separated from the data value in the next cell in the row by one or more tab
characters, commas, or spaces. If you wish to import strings that include spaces
while still using the comma/space delimited format, enclose the strings in quotation
marks.
Note: If you copy data from a commercial spreadsheet to the clipboard, the data will

generally be in a tab-delimited format.

Create Parameters in Multiple Layers
This command allows you to add identical parameters to multiple layers in one step.

To activate this command, select PIEs|Edit|Create Parameters in Multiple Layers. A
dialog box will appear on which are listed those layers that can have parameters. Make sure
that the check box next to each layer is checked for every layer to which you wish to add the
parameter. In the bottom half of the dialog box, enter the parameter name, type, units, and
value (expression). If you click the OK button, a parameter of the type you defined will be
added to each of layers you selected. However, for any data layer, the type of the parameter
will always be a real number regardless of the type that you specify because that is the only
type allowed in data layers.

Set Multiple Parameters
This command allows you to set the expressions of multiple parameters in multiple

layers in one step. To activate this command, select PIEs|Edit|Set Multiple Parameters. A
dialog box will appear with a hierarchical arrangement of layers and their parameters. A
parameter will not appear on the list if it has been locked so that its expression can not be
modified. Make sure that the check box is checked next to every parameter whose
expression you wish to change. Set the value (expression) for the parameters in the edit box
and click the OK button to set the expressions. The expressions are not checked for
correctness; the user is responsible for ensuring their validity. In the case of complicated
expressions, it may be helpful to create the expression first using the Argus ONE expression
editor. Then copy the expression to the clipboard and apply it to multiple parameters using
this command.

 28

Import

Import Gridded Data
Import Gridded Data is a command for Argus ONE that facilitates importing

gridded data into Argus ONE. This capability is helpful for importing data from existing
finite difference models into Argus ONE. A new data layer will be created with data points
at the center of the cells in an existing grid in Argus ONE. Each data point will have one or
more associated parameters. The PIE provides an easy method for creating these data points
and for setting the values of the data points.

You must create a grid in Argus ONE before you can use the Import Gridded Data
command because the command will attempt to create data points at the center of each of the
cells in the grid. Consult the Argus ONE documentation for how to create a grid. Once you
have created a grid, select the PIEs|Import|Import gridded data menu item. The main
window is where the gridded data are prepared for importing into Argus ONE. If the
checkbox labeled Export each data set to a separate layer is checked, each data set that is
imported into Argus ONE will be imported as a separate layer. By default, they are all
imported into the same layer.

In the edit box labeled Layer Name is the name of the data layer on which the data
should be placed. If there is no layer by this name, it will be created. If it does exist, you
will be given a choice of overwriting the existing data or selecting a new layer name that
does not exist. This edit box is only enabled if all the data sets will be imported into a single
layer.

The Number of data sets is the number of data values associated with each new data
point. Each value will be stored in an Argus ONE parameter. You must also assign names to
the Argus ONE Parameter names. Parameter names must be unique within the layer.
However, if each data set will be imported into a separate layer, enter the layer names in the
table rather than parameter names.

There may be some cells for which you do not wish to create data points. If these
cells have one or more values that do not occur in the rest of the data, they can be ignored.
Set the number of data values and then set the values to be ignored. If the data will all be
imported to a single layer, only the first data set is checked in this way so the rest of the data
sets must have valid data for all locations that are valid in the first data set.

When pasting data from the clipboard, the values for individual data points must be in
one of the following formats:

• Tab-delimited: each row of the table starts on a new line. Each data value on the line
is separated from the next by a single tab.

• Comma, space-delimited: each row of the table starts on a new line. Each data value
on the line is separated by one or more commas, spaces, or tabs.
In either case, lines beginning with a "#" character will be considered comments and

ignored. If you copy data from a spreadsheet to the clipboard and paste them to the table, it
should work with either format. Data that are copied to the clipboard from spreadsheets are
generally in tab-delimited format.

In some cases, the data you want to import may have multiple lines of data in the file
that all belong on the same row of the model. If the Multiple data lines per grid row check
box is checked, each row of the grid will be filled before going on to the next row of the grid.

 29

After copying the desired data to the clipboard, click on Paste from clipboard button
to paste them in the table. Be sure to use the right format for the data as described above.

You may also read data from one or more files each containing a single two-
dimensional array that you want to import. Click the Read data from files button and select
the files. If required, the number of data sets will be increased to accommodate the number
of files you select. Each parameter will be assigned the name of the file from which its data
were imported. (You can then edit those names if you wish.) The first file to be imported
will be placed in the table on the tab that is active. As each file is read, the selected tab will
be changed so that each file goes in its own table.

The table contains the data to be placed in the model. Note that the numbers of the
rows and columns in the table will match the numbering of the rows and columns in the grid.
For example, if in Argus ONE, the Grid direction is Negative X, the columns in Argus will
be numbered from right to left instead of left to right. However, the columns in the table will
still be numbered from left to right.

Clicking the OK button will create one or more data layers with the data you have
entered.

Import Points from Spreadsheet
Import Points from Spreadsheet allows you to import point contours into Argus

ONE from a spreadsheet-like format. To use it, select PIEs|Import|Import Points from
Spreadsheet. Then select the information layer into which you wish to import point
contours. A dialog box will appear in which you can enter the X and Y coordinates of the
point contours and all the parameter values. If you have a spreadsheet with this data, you can
arrange the data in the spreadsheet in the same order as shown in the table and copy the data
to the clipboard. Then paste the data by clicking the Paste from clipboard button. The data
may be either in a tab-delimited format or it can be delimited by commas and/or spaces as
described in the section entitled "Import Gridded Data". If the data are in a text file, you can
also read them from that text file by clicking the Read from file button.

When the contours are about to be imported, the user will be prompted to either retain
the existing contours or delete them. This option is provided because two or more point
contours can exist at the same location and importing new point contours can conceal the
presence of existing contours at the same location.

Import Contours from Spreadsheet
Import Contours from Spreadsheet allows you to import contours into Argus ONE

from a spreadsheet-like format. To use it, select PIEs|Import|Import Contours from
Spreadsheet. Then select the information layer into which you wish to import point
contours. A dialog box will appear in which you can enter the X and Y coordinates of the
contours in one table and the parameter values in a second table. If you have a spreadsheet
with this data, you can arrange the data in the spreadsheet in the same order as shown in the
table and copy the data to the clipboard. Then paste the data by clicking the Paste from
clipboard button. The data may be either in a tab-delimited format or they can be delimited
by commas and/or spaces as described in the section entitled "Import Gridded Data". If the
data are in a text file, you can also read them from that text file by clicking the Read from
file button.

 30

The number of contours to be imported and the maximum number of vertices in any
of the contours are set in a pair of edit boxes in the lower left corner of the Contour
Coordinates tab of the Import Contours dialog box. If data are pasted into the table, the
number of contours and the maximum number of vertices per contour will be automatically
updated to match the pasted data. Similarly, on the Parameter Values tab, the number of
columns will be adjusted to accommodate the data pasted into the table. However, the Argus
ONE layer into which the data are to be imported can only hold data for the parameters that
already exist. Therefore, the user should either insure that sufficient parameters already exist
in the layer to hold the data to be imported before starting to import it or may rearrange the
columns in the table by dragging them to new positions so that the correct data are imported.

Sample DEM Data
Sample DEM data reads Digital Elevation Models (DEMs) in the format described

in the DEM data users guide (U.S. Department of the Interior, U.S. Geological Survey, 1992)
(http://rockyweb.cr.usgs.gov/nmpstds/demstds.html). The 1:250K DEMs at
http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html are in this format. The DEMs
are displayed as bitmaps in the Universal Transverse Mercator (UTM) projection. To use it,
select PIEs|Import|Sample DEM data.

When you select Sample DEM data, you are first prompted for whether you wish to
import just the outline of the DEM, or data relative to a grid or mesh. If you wish to import
data relative to a grid, you must specify whether the grid is "Block-Centered" or "Grid-
Centered".

When you click the OK button, another dialog box will appear. In it select File|Open
to select a DEM file to read. If you choose to import just the outline of the DEM into Argus
ONE, you will be prompted whether you wish to read just the outline of the DEM or the full
DEM. As the file is read, it will be displayed in the dialog box.

The size of the bitmap showing the DEM is determined by the size of the display area
when the DEM is read. If the size of the display area is changed, you can select File|Refresh
to create a new bitmap at the current size. Although the user can zoom in and out, this is
accomplished by stretching the bitmap rather than by redrawing it so zooming, by itself, does
not change the size of the bitmap. To save a bitmap, select File|Save as BMP or File|Save
as JPEG. (Argus ONE can read the BMP but not the JPEG files)

If the check box labeled High elevations are red is checked, elevations are color
coded from red at the highest elevation to purple at the lowest elevation. If it is not checked,
the color scale is reversed.

It is possible to read more than one DEM at a time. To do so, just select multiple
DEM files when you select File|Open. However, if the DEMs come from zones that use
different central meridians to calculate the UTM coordinates, you will be prompted to choose
which central meridian you wish to use.

If you wish to emphasize the coastline, it is a good idea to leave the checkbox labeled
Make locations with elevations of 0 white checked. However, for areas that have elevations
below sea level, you may wish to uncheck this checkbox.

When determining the central meridian for calculating the UTM coordinates, all
UTM zones are treated as being exactly 6 degrees wide. This is not correct for a few zones.
The area where this is not true is from 0 to 42 degrees east north of 72 degrees north and
from 0 to 12 degrees east between 56 and 64 degrees north. Because the author is unaware

 31

of any available DEMs in this area in the format accepted by this program, no effort has been
made to address this issue.

If you click the OK button, the data are imported into Argus ONE at blocks, nodes, or
element centers. You may choose to use either a mean value for the block node or element,
the closest DEM data value to the point of interest, the highest value in the area around the
point of interest, or the lowest value in the area around the point of interest. For block-
centered grids, such as the MODFLOW grid (Harbaugh, Banta, Hill, and McDonald, 2000),
the data are imported at the center of the block. For grid-centered grids, such as the HST3D
grid (Kipp, 1997), the data are imported at the grid nodes.

The ability to convert DEMs to colored bitmaps might be of interest to those who do
not have Argus ONE. Because this aspect of the PIE does not rely on Argus ONE, a stand-
alone program, DEM2Image.exe, was created (Appendix 6).

Copy Tri Mesh/Copy Quad Mesh
To use these commands, select PIEs|Import|Copy Tri Mesh or PIEs|Import|Copy

Quad Mesh. Then select a pair of Tri Mesh or Quad Mesh layers. The mesh on one of the
layers will be copied to the other layer. Only the nodes and elements will be copied.
Parameters and parameter values will not be copied.

Convert

Contours To Data
To use this procedure, select Files|Convert|Contours To Data. You will then be

prompted to select the name of an Information or Domain Outline layer. After you have
selected it you will be prompted to select the name of a new or existing data layer.

The contours on the Information or Domain Outline layer will be copied to the data
layer. A data point will be placed at the position of each vertex of the contours.

All the data points for a contour will have the same value even if the value of the
original contour is set by an expression that varies along the length of the contour.

Data to Contours
Data to Contours converts data points on a data layer to point contours on an

information layer. To use it, select PIEs|Convert|Data to Contours. Then select the data
layer whose data points you wish to convert.

When the contours are about to be imported, the user will be prompted to either retain
the existing contours or delete them. This option is provided because two or more point
contours can exist at the same location and importing new point contours can conceal the
presence of existing contours at the same location.

Reverse Contours on Clipboard
Reverse Contours on Clipboard reverses the order of the vertices in a contour. To

use it, cut one or more contours to the clipboard. Then select PIEs|Convert|Reverse
Contours on Clipboard. Select the layer in which you wish the contours to be placed and
click the OK button. The same warnings that apply to Edit Contours also apply to Reverse
Contours on Clipboard.

 32

Mesh Objects To Contours
Mesh Objects To Contours allows you to select nodes or edges of elements and

import them into Argus ONE as contours on information layers. To use it, select
PIEs|Convert|Mesh Objects To Contours. Then select the mesh layer from which you
wish to import data followed by an information, map, or domain outline layer into which you
wish to import data. A dialog box will appear in which you can select nodes or sides of
elements. If the arrow button is depressed, you can select nodes or sides by clicking on
them with the mouse. If the lasso button is depressed, you can select nodes by encircling
them with the mouse button depressed. In either case, if the shift button is depressed when
you click down with the mouse, the selected nodes or sides will be added to removed from
the list of selected nodes or sides rather than replacing them.

When you click on the OK button, the contours will be created. Contours can not
branch so if the selected items allow a contour to go in several directions at a node, an
arbitrary decision will be made as to which way the contour should go.

Mesh To Contours
Mesh to Contours converts each element in a triangular or quadrilateral finite-

element mesh to a closed contour on an information layer. To use it, select
PIEs|Convert|Mesh to Contours. These contours should not be used to assign
properties to nodes where two or more contours intersect! Attempting to do so may
produce unpredictable results because the system must determine arbitrarily which of the
contours to use in assigning properties to such nodes.

Hidden Commands
Some of the commands described in this report have been "hidden". They do not

normally appear in the Argus ONE menu structure. This was done because these commands
circumvent protections built into Argus ONE to prevent users from inadvertently changing or
deleting information that usually should not be changed or deleted.

It is possible to make the hidden commands described in this report visible. To do so,
create a text file in the same directory as the Utility.dll PIE whose command you want to
reveal. Name the file Utility.ini. Make the first line of the file "Show". The next time you
start Argus ONE, the hidden commands in that PIE will be visible in the menu structure. To
hide the functions again, delete the Utility.ini file or change its first line to something other
than "Show." "Show" is case insensitive.

Set Parameter Locks
Set Parameter Locks is hidden because if an option for a parameter is locked, it

generally means that users should not make ill-considered changes to it.
Set Parameter Locks can be used to lock or unlock multiple parameters at one time.

Once the command has been revealed as described above, it can be activated by selecting
PIEs|Set Parameter Locks. A dialog box will appear with a hierarchical arrangement of
layers and parameters. The user should select the parameters for which something should be
locked or unlocked. The checkboxes at the bottom of the dialog box will be unchecked for
all parameter locks which are not set for all the selected parameters. Similarly, the
checkboxes will be checked for all parameter locks which are set for all the selected

 33

parameters. The checkboxes will be gray if some of the selected parameters have the related
feature locked and others do not. After selecting the parameters to change, the user should
check or uncheck the check boxes to make the desired changes to the parameters. When the
user clicks the OK button all the selected parameters will have their locks changed as the user
specifies using the checkboxes. If any of the checkboxes is in a gray state, that lock will not
be changed for any of the selected parameters.

Delete Multiple Layers
Delete Multiple Layers is hidden because it allows layers that have been locked to

prevent deletion to be deleted easily. Because deleting locked layers without proper
consideration can destroy large amounts of data and make a model unusable, this command
is somewhat dangerous.

Once the Delete Multiple Layers command has been revealed as described at the
beginning of this section, it can be activated by selecting PIEs|Delete Multiple Layers. A
dialog box will appear with a series of check boxes with layer names next to them. The user
must select the layers to delete by checking the check boxes. If the user then clicks the OK
button, the user will be warned that the layers will be deleted and given a chance to change
the decision to delete. If the user still chooses to delete the layers, they will be deleted.

Functions
Functions in Argus ONE can be accessed through the expression editor. The Argus

ONE documentation describes how to show the expression editor. When the expression
editor is visible, there is a list of function categories followed by a list of layers. Under the
list of function categories, one of the categories is PIEs. All of the functions described in
this document are found under the PIEs category.

Utility_CheckVersion
Utility_CheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit) returns

True if the version number of the Utility dynamic link library is greater than or equal to the
version number passed in the arguments. To check the version number of the dynamic link
library right-click on Utility.dll, select "Properties", and go to the version information tab.

EvalRealAtXY, EvalIntegerAtXY, EvalBooleanAtXY, and
EvalStringAtXY

EvalRealAtXY, EvalIntegerAtXY, EvalBooleanAtXY, and EvalStringAtXY allow an
expression to be evaluated at a specified X, Y location. The four functions return a real
number, integer, Boolean, and string respectively. The expression is passed to the function
as a quoted string. It is up to the user to make sure that the expression is correctly formatted
and that the value returned by the function is compatible with the type of the parameter to
which it is assigned. If desired, the user may specify the layer on which the expression
should be evaluated. The formats of the commands are as follows:

EvalRealAtXY(X, Y, "Expression_As_Quoted_String",

["Layer_Name_As_Quoted_String"])

 34

EvalIntegerAtXY(X, Y, "Expression_As_Quoted_String",
["Layer_Name_As_Quoted_String"])

EvalBooleanAtXY(X, Y, "Expression_As_Quoted_String",
["Layer_Name_As_Quoted_String"])

EvalStringAtXY(X, Y, "Expression_As_Quoted_String",
["Layer_Name_As_Quoted_String"])

Rotated X, and Rotated Y
Rotated X, and Rotated Y are functions that can take row or column positions

provided by Argus ONE along with the grid angle and convert them to (X, Y) coordinates.
This could be done entirely by an export template, but using a PIE can make the export
template simpler and easier to understand and perhaps faster too.

Rotated X has three arguments: X, Y, and GridAngle. X is a column position. Y is a
row position. GridAngle is the angle of the grid. Rotated X returns the X-coordinate of the
point defined by the intersection of the row and column positions. Rotated Y is just like
Rotated X except that it returns the Y-Coordinate.

The first export template in Appendix 5 uses Rotated X and Rotated Y to export the
row and column numbers or each cell in a grid followed by the X and Y coordinates of the
four corners of the cell. The template can be used to reproducing the grid in other programs.
Users may modify the template to meet their specific requirements.

The second template in Appendix 5 uses Rotated X and Rotated Y to export a
contour that surrounds a single cell. The contour can be used as a domain outline in models
that define a subgrid in a single cell.

GetMyDirectory
GetMyDirectory.dll is a PIE that returns the name of the directory in which it is

installed. The name of the function will be the name of the dll itself without the extension.
Typically, two programs are installed in the same directory as GetMyDirectory.dll:
SelectChar.exe, and WaitForMe.exe.

SelectChar.exe is a console program that simulates a keyboard event based on its
command line arguments. In the following [Char] is used to represent any character and [N]
represents any number. If a command line argument contains "Alt-[Char]", SelectChar.exe
will simulate depressing the Alt key and the [Char] key simultaneously. If a command line
argument contains "Ctrl-[Char]", SelectChar.exe will simulate depressing the Ctrl key and
the [Char] key simultaneously. If a command line argument contains "Chr-[N]",
SelectChar.exe will simulate depressing the key whose key code is [N]. For any other
command line argument SelectChar.exe will simulate depressing the first character in the
command line argument. If SelectChar.exe is called with no command line arguments, it will
simulate a carriage return.

WaitForMe.exe is a program that can run until it is closed. It is only possible to run
one copy of WaitForMe.exe at a time. If you attempt to run a second copy, the first copy will
be activated instead. It can be closed by activating it and typing a carriage return. The
purpose of this is to start the program before doing something else and then activate it again
when that "something else" is done. You can then close it by running SelectChar.exe. An
external program, such as UCODE, can be waiting for WaitForMe.exe to finish executing
before continuing.

 35

These three files make it possible for an external program such as UCODE (Poeter
and Hill, 1998) to run MODFLOW or SUTRA through Argus ONE and wait until
MODFLOW has finished executing before continuing. In the MODFLOW GUI 3 and Sutra
PIE 1.0.3 or later, if you define a Global variable named "Calibrate" and set its value to True
(= 1). Argus ONE will activate and then close WaitForMe.exe in the directory containing
GetMyDirectory.dll after running MODFLOW. It will also allow the DOS window in which
MODFLOW or Sutra ran to close. For this to work, GetMyDirectory.dll, SelectChar.exe,
and WaitForMe.exe must all be in the same directory and must be in the ArgusPIE directory
or a subdirectory of the ArgusPIE directory.

ReadFileValue functions
The functions in the ReadFileValue PIE have the function names shown below except

that they may have a prefix such as "MODFLOW_" or "SUTRA_".
The functions in the ReadFileValue PIE are primarily intended to be used with an

external program such as UCODE (Poeter and Hill, 1998) that is running Argus ONE.
RF_Clear_Files and RF_Save_Files are called in the export templates for MODFLOW and
SUTRA.

RF_Get_Value_From_File
In RF_Get_Value_From_File(Key, Default_Value, [FileName]), "FileName" is an

optional parameter. If "FileName" is not specified, "FileName" will be given the value of
"Default.txt". The function checks if it has already opened "FileName". If it hasn't, it reads
"FileName" into memory. If "FileName" does not exist, it creates a new version of the
"FileName" in memory. It then checks for "Key" in "FileName". If any full line in
"FileName" is equal to "Key", the next line is converted to a double-precision real number
and returned as the result of RF_Get_Value_From_File. If none of the lines in "FileName" is
equal to "Key", "Key" is added to the file followed by "Default Value" and the result of
RF_Get_Value_From_File is "Default_Value".

"FileName" can be either a fully qualified path name or just a file name. If it is just a
file name, ReadFileValue.dll will look for "FileName" in the current directory. The file that
ReadFileValue.dll will check must consist of alternating lines of Keys and numbers. The
first line must be a key. Blank lines and comments are not allowed.

RF_Clear_Files
RF_Clear_Files() clears all files that the ReadFileValue.dll currently has in memory.

RF_Save_Files
RF_Save_Files() saves all files that the ReadFileValue.dll currently has in memory to

disk.

RF_CheckVersion
RF_CheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit) returns

True if the version number of the PIE is greater than or equal to the version number passed in
the arguments. The version number of the PIE may be checked by right clicking on the dll,
selecting "Properties" and going to the version information tab.

 36

Conversion functions
Kipp (1987) provides conversion formulas for converting from metric units to US

customary units. These formulas were programmed into functions listed in Table 3. No
explanation of these functions is needed beyond that in the table so they are not listed
individually here. These conversions supplement those in the Unit Conversions PIE on the
Argus Interware web site (http://www.argusint.com/).

Hidden Functions
Argus ONE gives PIE developers the ability to "hide" functions. If a function is

hidden, it will still work properly but it will not show up in the list of PIE functions. This
helps keep inexperienced users from using functions improperly that have a high potential for
misuse. The functions in this section can only be used in export templates. For most of
them, this is because they either allocate memory that must be released using a different
function or use memory allocated by a call to a previous function Others display dialog
boxes that would be inappropriate for use with expressions for layer parameters.

To make the hidden functions visible create a text file in the same directory as the PIE
whose functions you want to reveal. Name the file the same as the dll except change the
extension from dll to ini. Make the first line of the file "Show". The next time you start
Argus ONE, the functions in that PIE will be visible in the expression editor. To hide the
functions again, delete the "ini" text file or change its first line to something other than
"Show." "Show" is case insensitive.

OKCancel Functions
The OkCancel PIE contains functions that can be used to ask the user questions and

get responses in an export template. The OkCancel PIE is used in the export template for
SUTRA if the bandwidth of the mesh appears high. In such cases, the user is asked if they
want to continue exporting or stop. The second template in Appendix 5 also uses the
OkCancel PIE.

IsOK
IsOK(Message, [HideCancel]) displays "Message" in a dialog box with "Yes", "No",

and "Cancel" buttons. If the optional "HideCancel" parameter is set to true, the "Cancel"
button, is not shown. It returns True if the user clicks on "Yes". Otherwise it returns False.
The following is an example export template using the IsOK function

Ask the user a question and do different things depending on the result.
If: IsOK("Do you want to click the Yes button?")
 Alert: "You clicked Yes."
Else
 Alert: "You clicked No or Cancel."
End if

Ok_Add_Radio_Choice
Ok_Add_Radio_Choice, ok_Get_Radio_Choice, and ok_Radio_Free are functions

related to displaying a dialog box with a series of radio buttons and getting a response from

 37

the user depending on the radio button selected. Ok_Add_Radio_Choice(Message,
[Message] , [Message] , [Message] , [Message]) adds up to five radio buttons to the list of
radio buttons that are displayed. The text of each radio button will be "Message".

Ok_Add_Radio_Choice creates, but does not display, the dialog box if the dialog box
does not already exist. If the dialog box already exists, ok_Add_Radio_Choice adds
Message to the list of choices displayed in the dialog box.

Ok_Add_Radio_Choice returns True if it is successful. It should succeed unless the
computer's memory has been exhausted.

Ok_Get_Radio_Choice
Ok_Get_Radio_Choice(Message, [Choices_Height], [Width], [Question_Height])

displays a dialog box with a question set in the first parameter. There are three optional
parameters. The first sets the height in pixels of the box containing the choices. The second
sets the width of the dialog box in pixels, and the third sets the height in pixels of the
question to be displayed. The choices that the user may select as responses must have
previously been set with a call to ok_Add_Radio_Choice. The dialog box is destroyed after
the response is obtained in ok_Get_Radio_Choice. The function returns the index of the
radio button that the user selected as his or her response. The radio buttons are numbered
consecutively starting at zero.

Ok_Radio_Free
Ok_Radio_Free() destroys the dialog box without displaying it. This function is only

needed if ok_Add_Radio_Choice is used without a subsequent ok_Get_Radio_Choice.
The following is an export template using IsOK, ok_Add_Radio_Choice,

ok_Get_Radio_Choice, and ok_Radio_Free.

Evaluate expression: ok_Add_Radio_Choice("Choice 1", "Choice 2")
Evaluate expression: ok_Add_Radio_Choice("Choice 3")
If: IsOK("Do you want to see Choices 1, 2, and 3?", 1)
 Alert: "You chose choice number "+(1+ok_Get_Radio_Choice("What is your choice?",80,300,45))
Else
 Evaluate expression: ok_Radio_Free()
End if

Ok_UserFloat and Ok_UserInteger
Ok_UserFloat(Message, Response, [Minimum], [Maximum]) and

Ok_UserInteger(Message, Response, [Minimum], [Maximum]) displays a dialog box with a
question set by Message and an edit box containing Response. If Minimum and/or
Maximum are set, they are the minimum and maximum allowable value of the response. The
function returns the value shown in the edit box as a real number or integer when the user
closes the dialog box depending on which function was called.

Ok_CheckVersion
Ok_CheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit) returns

True if the version number of the dynamic link library is greater than or equal to the version
number passed in the arguments. The version number of the OkCancel dynamic link library

 38

may be checked by right clicking on OkCancel.dll, selecting "Properties" and going to the
version information tab.

ProgressBar Functions
The functions in the ProgressBar PIE have the function names shown below except

that they may have a prefix such as "MODFLOW_" or "SUTRA_".
The ProgressBar PIE allows you to display a progress bar during the export of a

model that advances as the export progresses. It also has a label and a memo box with which
messages to the user can be displayed without halting the export process. The contents of the
memo can be saved to a text file. The progress bar shows the elapsed time and gives an
estimate of the time remaining to complete the export process.

The ProgressBar PIE is used extensively in the export template for MODFLOW-96
(Winston, 2000).

Appendix 2 has an example export template that uses the ProgressBar PIE.

ProgressBarInitialize
ProgressBarInitialize(Number, [Show_Cancel]) creates and shows the progress bar

and sets the maximum position of the progress bar to Number. Initially the progress bar
position is at 0. If Show_Cancel is true, an "Abort" button will be visible. This function
returns True if it succeeds. Any of the remaining ProgressBar functions will fail if
ProgressBarInitialize is not called first.

ProgressBarFree
ProgressBarFree() frees the progress bar and frees all memory associated with the

progress bar. This function returns True if it succeeds. If ProgressBarFree(), is not called at
the end of the export process, the progress bar will remain visible after the export process is
complete.

ProgressBarMax
ProgressBarMax(Number) sets the maximum value of the progress bar. This is also

set in ProgressBarInitialize(Number). This function returns True if the Abort button has not
been pressed and the function succeeds.

ProgressBarAdvance
ProgressBarAdvance() increases the position of the progress bar by one. This

function returns True if the Abort button has not been pressed and the function succeeds.

ProgressBarSetMessage
ProgressBarSetMessage(Message) sets the message in the label displayed in the

progress bar to Message. This function returns True if the Abort button has not been pressed
and the function succeeds.

ProgressBarAddLine
ProgressBarAddLine(Message) adds Message to the list of messages in the memo.

This function returns True if the Abort button has not been pressed and the function
succeeds.

 39

ProgressBarSaveToFile
ProgressBarSaveToFile(File_Name) saves the messages in the memo to a text file

named File_Name and returns the number of lines in the file it saves.

ProgressBarCheckVersion
ProgressBarCheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit)

returns True if the version number of the dynamic link library is greater than or equal to the
version number passed in the arguments. To check the version number of the ProgressBar
dynamic link library right-click on Progressbar.dll, select "Properties", and go to the version
information tab.

JoinFiles Functions
The JoinFiles PIE contains functions for performing operations on files.
The functions in the JoinFiles PIE have the function names shown below except that

they may have a prefix such as "MODFLOW_" or "SUTRA_". The JoinFiles PIE is used
extensively in the export template for MODFLOW-96 because it allows the template to be
more efficient (Winston, 2000). Certain items at the beginnings of the input files are counts
of items that occur later in the file. The JoinFiles PIE makes it possible to count the items as
they are exported, write the count to a separate file, and then join the files to create a properly
formatted, MODFLOW, input file.

Join_Files
Join_Files(First_File, Second_File, Result_File) appends Second_File to First_File

and stores the result in Result_File.

Delete_File
Delete_File(File_Name) deletes the file indicated by File_Name.

Rename_File
Rename_File(Old_File_Name, New_File_Name) changes the name of a file from

Old_File_Name to New_File_Name.

Split_File
Split_File('Input_File, First_File, Search_String, Second_File [, Search_String,

Third_File] [, Search_String, Fourth_File]...[, Search_String, Thirtieth_File]) Splits a file into
up to 30 sections. The input file is read one line at a time and saved to First_File. If
Search_String is found in a line, First_File is closed and subsequent lines are saved in
Second_File and the last line of First_File will be Search_String. If there are additional
parameters (Search_String, Third_File, etc.) the remainder of 'Input_File will continue to
be searched by occurrences of the new Search_String and split into separate files as before.

Int2Str
Int2Str(Number) converts a number to its character representation in Base 36. (0, 1, ...

9, A, B, ... Z, 10, 11, ... 19, 1A,). This can be useful if a file extension must be less than 3
characters long and the file extension must have a number. For example, MODFLOW

 40

(Harbaugh, Banta, Hill, and McDonald, 2000) can be compiled in such a way that only file
names less than or equal to eight characters in length with extensions less than or equal to
three characters in length will be recognized. If the IBOUND array for each of 100 layers is
stored in separate files with names of the form MyModel.i1 to MyModel.i100, there will be a
problem. The last file, MyModel.i100 won't be recognized because the extension has more
than 3 characters. In an export template that used Int2Str, the file name could be
MyModel.i2s which would be acceptable.

JF_CopyLines
JF_CopyLines(Old_File_Name, New_File_Name, Line_Count, [Is_Local_File])

creates a new text file the current directory named New_File_Name and opens an existing
file named Old_File_Name. It then reads Line_Count lines from Old_File_Name and writes
them to New_File_Name. If it can do all this, it returns True. Otherwise it returns False. If
the optional Is_Local_File parameter is present and is set to False, Old_File_Name represents
the full path of the existing file. Otherwise it represents the name of a file in the current
directory.

JF_CheckVersion
JF_CheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit) returns True

if the version number of the PIE is greater than or equal to the version number passed in the
arguments. To check the version number of the PIE right-click on JoinFiles.dll, select
"Properties", and go to the version information tab.

List functions
The functions in the List PIE have the function names shown below except that they

may have a prefix such as "MODFLOW_" or "SUTRA_". The List PIE maintains variable-
size, zero-based lists (arrays) of real numbers. The number of dimensions in the lists can be
either one or three.

It is possible to call the functions in the List PIE with incorrect arguments. In such
cases, the List PIE will increment an internal variable that contains a count of the number of
errors that have occurred and then return a result. Where possible, the result will indicate
that an error occurred but it is not always possible for the function to do this. Users can call
the L_GetErrorCount function get determine the number of errors that have occurred and
then take appropriate action.

The List PIE is used extensively in the export template for MODFLOW 96 (Winston,
2000). It isn't needed for MODFLOW-2000.

An example export template using the List PIE is in Appendix 3.

L_Initialize
L_Initialize() (obsolete) was formerly used to initialize the List PIE. It is no longer

needed but is still present for backwards compatibility.

L_CreateNewList
L_CreateNewList() create a new list and returns the "ListIndex" of the new list.

ListIndex is used to refer to a particular list when it is used. If the function is unsuccessful, it
increments the error count and returns -1. L_CreateNewList should only be unsuccessful if

 41

the computer's memory has been exhausted. The values of ListIndex returned by
L_CreateNewList are consecutive and start at 0.

L_SetListSize
L_SetListSize(ListIndex, Size) adds additional items with values of 0 to the list

indicated by ListIndex until the number of items in the list is equal to Size. You can still add
additional items to a list after using SetListSize. The function returns True if it is successful,
and False if unsuccessful. If it is unsuccessful, it will increment the error count. If ListIndex
indicates a list that does not exist, SetListSize will be unsuccessful. If the list is already
larger than Size, L_SetListSize does nothing.

L_GetListSize
L_GetListSize(ListIndex) returns the number of items in the list indicated by

ListIndex. The function returns -1 if it is unsuccessful. If ListIndex indicates a list that does
not exist, L_GetListSize will be unsuccessful and will increment the error count.

L_FreeAList
L_FreeAList(ListIndex) deletes all items in the list indicated by ListIndex. It does

not delete the list itself so the ListIndicies of lists created after the list that has been emptied
do not change. The function returns True if successful, and False if unsuccessful. If
ListIndex indicates a list that does not exist, L_FreeAList will be unsuccessful and will
increment the error count.

L_AddToList
L_AddToList(ListIndex, Value) adds an item to the end of the list indicated by

ListIndex. The numeric value of the item is Value. Value is stored as a double-precision real
number. The function returns the "Index" of the item if successful, and -1 if unsuccessful.
"Index" is the position of the item in the list. If ListIndex indicates a list that does not exist
or if memory has been exhausted, L_AddToList will be unsuccessful and will increment the
error count. The values of "Index" are consecutive and start at zero.

L_GetFromList
L_GetFromList(ListIndex, Index) returns the item at the position indicated by Index

from the list indicated by ListIndex. The function returns 0 if unsuccessful. If ListIndex and
Index indicate a list or an item that does not exist, L_GetFromList will be unsuccessful and
will increment the error count.

L_SetListItem
L_SetListItem(ListIndex, Index, Value) sets the value of the item at the position

indicated by Index in the list indicated by ListIndex to Value. The function returns True is
successful and False if unsuccessful. If ListIndex and Index indicate a list or an item that
does not exist, L_SetListItem will be unsuccessful and will increment the error count. For
example, if L_GetListSize(ListIndex) returns 5, L_SetListItem(ListIndex, 5, Value) would be
unsuccessful but L_SetListItem(ListIndex, 4, Value) would succeed.

 42

L_DeleteListItem
L_DeleteListItem(ListIndex, [Index]) deletes the item at the position indicated by

Index from the list indicated by ListIndex. This reduces the number of items in the list by
one. The function returns True is successful and False if unsuccessful. If ListIndex and
Index indicate a list or an item that does not exist, L_DeleteListItem will be unsuccessful and
will increment the error count. "Index" is optional. If Index is not included, the last item in
the list indicated by ListIndex will be deleted.

L_SortList
L_SortList(ListIndex) sorts the items in the list indicated by ListIndex from lowest at

the beginning of the List to highest at the end of the list. The function returns True if it
succeeds and False if it fails. If the list indicated by ListIndex does not exist, L_SortList will
fail and will increment the error count.

L_EliminateDuplicates
If two adjacent items in a list are identical, L_EliminateDuplicates(ListIndex) will

delete one of them from the list. Usually, you should call L_SortList or otherwise ensure that
the list is sorted before calling L_EliminateDuplicates to eliminate all duplicate entries in the
list. The function returns True if it succeeds and False if it fails. If the list indicated by
ListIndex does not exist, L_EliminateDuplicates will fail and will increment the error count.

L_IndexOf
L_IndexOf(ListIndex, Value) returns the position within a sorted list indicated by

ListIndex of the first occurrence of Value. Normally, you should call L_SortList or
otherwise ensure that the list is sorted before calling L_IndexOf.

If Value is not in the list, it will return the index of the first occurrence of the largest
item smaller than Value.

For example if the list contains 0, 1, 1, 3: L_IndexOf(ListIndex, 0) returns 0,
L_IndexOf(ListIndex, 1) returns 1, L_IndexOf(ListIndex, 2) returns 1, and
L_IndexOf(ListIndex, 3) returns 3.

If the list indicated by ListIndex does not exist, L_IndexOf will fail. It will then
return -1 and will increment the error count.

L_UnsortedIndexOf
L_UnsortedIndexOf(ListIndex, Value) returns the position of Value in the list

indicated by ListIndex. If it is not found, the function returns -1. If the list indicated by
ListIndex does not exist, L_UnsortedIndexOf will fail. It will then return -1 and will
increment the error count.

L_CreateNew3DList
L_CreateNew3DList(Maximum_X, Maximum_Y, Maximum_Z) creates a new 3D

List with dimensions [0..Maximum_X-1, 0..Maximum_Y-1, 0..Maximum_Z-1]. If it
succeeds, L_CreateNew3DList returns the ListIndex of the new 3D List. The function
returns -1 if unsuccessful. L_CreateNew3DList will be unsuccessful if memory has been
exhausted. If the function is unsuccessful, it will increment the error count by 1. The values
of ListIndex returned by L_CreateNew3DList are consecutive and start at 0. The numbering

 43

of 3D lists is independent of the numbering of lists created with L_CreateNewList. Thus, the
initial calls to L_CreateNew3DList and L_CreateNewList would both return 0. Initially all
items in a 3D list have a value of 0.

L_FreeA3DList
L_FreeA3DList(ListIndex) deletes all items from the 3D List indicated by ListIndex

and sets Maximum_X, Maximum_Y and Maximum_Z to 0. The function returns True if
successful and False if unsuccessful. If ListIndex indicates a 3D list that does not exist,
L_FreeA3DList will be unsuccessful. If the function is unsuccessful, it will increment the
error count.

L_GetFrom3Dlist and L_GetFromOneBased3DList
L_GetFrom3DList(ListIndex, X_Index, Y_Index, Z_Index) returns the value of the

item within the 3D list indicated by ListIndex at the position indicated by X_Index, Y_Index,
and Z_Index. The function returns 0 if it fails. If ListIndex, X_Index, Y_Index, Z_Index
indicate a 3D list or an item in a 3D list that does not exist, L_GetFrom3DList will be
unsuccessful and will increment the error count.

L_GetFromOneBased3DList is identical to L_GetFrom3DList except that the 3D list
is treated as having the following limits [1..Maximum_X, 1..Maximum_Y, 1..Maximum_Z]
instead of [0..Maximum_X-1, 0..Maximum_Y-1, 0..Maximum_Z-1].

L_Set3DlistItem and L_SetOneBased3DListItem
L_Set3DListItem(ListIndex, X_Index, Y_Index, Z_Index, Value) sets the value of the

item within the 3D list indicated by ListIndex at the position indicated by X_Index, Y_Index,
and Z_Index to Value. The function returns True if it succeeds and False if it fails. It will fail
if the 3D list indicated by ListIndex does not exist or if the position indicate by X_Index,
Y_Index, and Z_Index is outside the extents of the 3D List. If it fails, it will increment the
error count.

L_SetOneBased3DListItem is identical to L_Set3DListItem except that the 3D list is
treated as having the following limits [1..Maximum_X, 1..Maximum_Y, 1..Maximum_Z]
instead of [0..Maximum_X-1, 0..Maximum_Y-1, 0..Maximum_Z-1].

L_ResetA3DList
L_ResetA3DList(ListIndex) sets all items in the 3D list indicated by ListIndex to 0.

The function returns True if it succeeds and False if it fails. It will fail if the 3D list indicated
by ListIndex does not exist. If it fails, it will increment the error count.

L_Add3DLists
L_Add3DLists(FirstListIndex, SecondListIndex, ResultListIndex) adds each member

of the 3D list indicated by FirstListIndex to the corresponding member of the 3D list
indicated by SecondListIndex and places the result in the corresponding member of the 3D
list indicated by ResultListIndex. The function will fail and return False if FirstListIndex,
SecondListIndex, or ResultListIndex indicate a 3D list that does not exist. It will also fail if
all of the 3D lists do not have the same limits. If it fails, it will increment the error count.

 44

L_Subtract3DLists
L_Subtract3DLists(FirstListIndex, SecondListIndex, ResultListIndex) subtracts each

member of the 3D list indicated by SecondListIndex to the corresponding member of the 3D
list indicated by FirstListIndex and places the result in the corresponding member of the 3D
list indicated by ResultListIndex. The function will fail and return False if FirstListIndex,
SecondListIndex, or ResultListIndex indicate a 3D list that does not exist. It will also fail if
all of the 3D lists do not have the same limits. If it fails, it will increment the error count.

L_Multiply3DLists
L_Multiply3DLists(FirstListIndex, SecondListIndex, ResultListIndex) multiplies

each member of the 3D list indicated by FirstListIndex by the corresponding member of the
3D list indicated by SecondListIndex and places the result in the corresponding member of
the 3D list indicated by ResultListIndex. The function will fail and return False if
FirstListIndex, SecondListIndex, or ResultListIndex indicate a 3D list that does not exist. It
will also fail if all of the 3D lists do not have the same limits. If it fails, it will increment the
error count.

L_Divide3DLists
L_Divide3DLists(FirstListIndex, SecondListIndex, ResultListIndex) divides each

member of the 3D list indicated by FirstListIndex by the corresponding member of the 3D
list indicated by SecondListIndex and places the result in the corresponding member of the
3D list indicated by ResultListIndex. The function will fail and return False if FirstListIndex,
SecondListIndex, or ResultListIndex indicate a 3D list that does not exist. It will also fail if
all of the 3D lists do not have the same limits. If it fails, it will increment the error count.

L_Multipy3DByConstant
L_Multipy3DByConstant(ListIndex, ResultListIndex, Value) multiplies each member

of the 3D list indicated by ListIndex by Value and places the result in the corresponding
member of the 3D list indicated by ResultListIndex. The function will fail and return False if
ListIndex or ResultListIndex indicate a 3D list that does not exist. It will also fail if the 3D
lists indicated by ListIndex and ResultListIndex do not have the same limits. If it fails, it will
increment the error count.

L_Invert3DListMembers
L_Invert3DListMembers(ListIndex, ResultListIndex) takes the reciprocal of each

member of the 3D list indicated by ListIndex and places the result in the corresponding
member of the 3D list indicated by ResultListIndex. The function will fail and return False if
ListIndex or ResultListIndex indicate a 3D list that does not exist. It will also fail if the 3D
lists indicated by ListIndex and ResultListIndex do not have the same limits. If it fails, it will
increment the error count.

L_IsSingPrecUniform
L_IsSingPrecUniform(ListIndex) returns True if all members of the list indicated by

ListIndex have the same value after being converted to single precision. The function will
fail and return False if ListIndex indicates a 3D list that does not exist. If it fails, it will
increment the error count.

 45

This function is used in the export template for MOC3D to check that the cells in the
export subgrid are of uniform size.

L_GetErrorCount
L_GetErrorCount() returns the number of errors that have occurred in the List PIE

since the PIE was loaded or the last call to L_FreeAllLists. Normally an error count greater
than 0 indicates that the export process did not go as planned. This function is used in the
export template for MODFLOW to check for programming errors in the export template.

L_FreeAllLists
L_FreeAllLists() Deletes all items in all lists and all 3D Lists, deletes the lists and sets

the error count to 0. The function returns True if it is successful and False if unsuccessful.
L_FreeAllLists should never be unsuccessful. L_FreeAllLists() should be called at the end
of any export template that uses the List PIE because it will release memory allocated by the
List PIE. If it is not called, the memory will be released when Argus ONE is shut down.

L_CheckVersion
L_CheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit) returns True

if the version number of the dynamic link library is greater than or equal to the version
number passed in the arguments. The version number of the dynamic link library may be
checked by right clicking on List.dll, selecting "Properties" and going to the version
information tab.

BlockList functions
The functions in the BlockList PIE have the function names shown below except that

they may have a prefix such as "MODFLOW_" or "SUTRA_". The BlockList PIE contains
GIS functions deal with the relationships between contours and grid cells. The functions
indicate (1) which cells are intersected by a contour, (2) which cells are inside a contour, (3)
the order in which cells are intersected by a contour (4) the length of the section of the
contour intersected by a cell, (5) the cells next to the ones intersected by the contour but on
the other side of the contour, and (6) many other data relating the contours and cells. The
BlockList PIE is, by far, the most complicated PIE discussed in this paper. It can provide
information that would be difficult to calculate with just an export template. In the
MODFLOW GUI (Winston, 2000) the BlockList PIE is used extensively in preparing the
input for the Horizontal Flow Barrier (Hsieh, and Freckleton, 1993) and Stream (Prudic,
1989) packages for MODFLOW-96. For MODFLOW-2000, the blocklist functions are
called directly by the MODFLOW GUI rather than through an export template and the
functions are used for all boundary conditions rather than just the Horizontal-Flow Barrier
and Stream packages.

In these functions, ListIndex is used to designate a list of cells intersected by a
contour. CellIndex indicates a particular cell in the list. VertexIndex indicates a vertex in a
cell. SegmentIndex indicates a segment of a contour within a cell. In any of the functions,
invalid values of Listindex, CellIndex, VertexIndex, or SegmentIndex are used, an error will
occur.

It is possible to call the functions in the BlockList PIE with incorrect arguments. In
such cases, the BlockList PIE will increment an internal variable that contains a count of the

 46

number of errors that have occurred and then return a result. Where possible, the result will
indicate that an error occurred but it is not always possible for the function to do this. Users
can call the BL_GetErrorCount function get determine the number of errors that have
occurred and take appropriate action.

Appendix 4 contains an example export template that uses the BlockList PIE.

BL_InitializeGridInformation
BL_InitializeGridInformation(Grid_Layer_Name_as_String, [GridType]) reads the

positions of row and columns from the grid layer named Grid_Layer_Name_as_String.
Because Grid_Layer_Name_as_String is a string, it must either be surrounded by quotes or
be turned into a string by some other method. GridType is an optional parameter that
determines how the grid will be treated in subsequent processing. GridType = 0 indicates a
block-centered grid. GridType = 1 indicates a node-centered grid. The default is a block-
centered grid. GridType need not match the actual type of the grid. For example a block-
centered grid could be used with a GridType of 1 in order to evaluate all information as if it
were a node-centered grid in which all the nodal points were at the intersections of the row
and column boundaries in the block-centered grid.

BL_AddVertexLayer
BL_AddVertexLayer(Information_Layer_Name_as_String) reads the contour

information from the information layer named Information_Layer_Name_as_String and
determines which cells intersect the contours on the information layer. Because
Information_Layer_Name_as_String is a string, it must either be surrounded by quotes or be
turned into a string by some other method. BL_AddVertexLayer does not erase the
information stored in previous calls to BL_AddVertexLayer but instead adds the information
in Information_Layer_Name_as_String to the information that was read previously. To erase
the contour information, call BL_ReInitializeVertexList().

BL_ReInitializeVertexList
BL_ReInitializeVertexList() deletes all contour information that has already been

entered.

BL_GetCountOfCellLists
BL_GetCountOfCellLists() returns the number of lists of cells. This is normally the

sum of all the objects on all the layers that have been added using BL_AddVertexLayer since
the last call to BL_ReInitializeVertexList. Each list of cells contains the cells intersected by
the contour in the order in which they were intersected along the length of the contour.

BL_GetCountOfACellList
BL_GetCountOfACellList(ListIndex) returns the number of cells in a list of cells

intersected by a contour. The same cell may be intersected by a contour more than once so
the cells in this list may not all be unique.

BL_GetCellRow and BL_GetCellColumn
BL_GetCellRow(ListIndex, CellIndex) and BL_GetCellColumn(ListIndex,

CellIndex) return a row or column number in a list of cells. The first cell is the one at the

 47

beginning of the contour and the cells are listed in order from the beginning to end of the
contour.

BL_GetVertexCount
BL_GetVertexCount(ListIndex, CellIndex) returns the number of vertices associated

with a cell. Vertices will be present wherever a contour has a vertex or a contour intersects
the cell boundary.

BL_GetVertexXPos and BL_GetVertexYPos
BL_GetVertexXPos(ListIndex, CellIndex, VertexIndex) and

BL_GetVertexYPos(ListIndex, CellIndex, VertexIndex) return the X and Y coordinates of a
vertex.

BL_SegmentCount
BL_SegmentCount(ListIndex, CellIndex) returns the number of line segments within

a cell. A segment is the section of a contour within a cell that connects two adjacent vertices.

BL_SegmentFirstX and BL_SegmentFirstY
BL_SegmentFirstX(ListIndex, CellIndex, SegmentIndex) and

BL_SegmentFirstY(ListIndex, CellIndex, SegmentIndex) returns the X and Y coordinates of
the first vertex defining a segment.

BL_SegmentSecondX and BL_SegmentSecondY
BL_SegmentSecondX(ListIndex, CellIndex, SegmentIndex) and

BL_SegmentSecondY(ListIndex, CellIndex, SegmentIndex) return the X and Y coordinates
of the second vertex defining a segment.

BL_SegmentLengthX and BL_SegmentLengthY
BL_SegmentLengthX(ListIndex, CellIndex, SegmentIndex) and

BL_SegmentLengthY(ListIndex, CellIndex, SegmentIndex) return the X or Y coordinate of
the second vertex defining a segment minus the X or Y coordinate of the first vertex defining
a segment.

BL_SegmentLength
BL_SegmentLength(ListIndex, CellIndex, SegmentIndex) returns the length of a

segment.

BL_SumSegmentsX and BL_SumSegmentsY
BL_SumSegmentsX(ListIndex, CellIndex) and BL_SumSegmentsY(ListIndex,

CellIndex) return the sum of all the differences between the X or Y coordinate of the second
vertex defining each segment minus the X or Y coordinate of the first vertex defining each
segment.

BL_SumSegmentLengths
BL_SumSegmentLengths(ListIndex, CellIndex) returns the sum of the lengths of all

the segments in a cell.

 48

BL_GetCountOfCombinedCellList
BL_GetCountOfCombinedCellList() returns the number of all the cells intersected by

any contour. Each cell in this list has a unique row and column number. The cells are listed
in no particular order but no two cells are identical.

BL_GetCellRowFromCombinedList and BL_GetCellColumnFromCombinedList
BL_GetCellRowFromCombinedList(CellIndex) and

BL_GetCellColumnFromCombinedList(CellIndex) return a row or column in the list of all
cells intersected by contours.

BL_GetCountOfCrossRowLists and BL_GetCountOfCrossColumnLists
BL_GetCountOfCrossRowLists() returns the number of lists of cells in which a

contour crosses the Y-coordinate of the cell node. For block-centered grids, the nodal
position is at the center of the grid but in grid-centered grids, the nodal position may be off-
center. For the purposes of this function, a contour is considered not to have crossed the
center if its first and last vertices in segments within the cell lie on the same side of the Y-
coordinate of the cell node. BL_GetCountOfCrossColumnLists() similar to
BL_GetCountOfCrossRowLists() except that it deals with cells in which a contour crosses
the X-coordinate of a cell node.

BL_GetCountOfACrossRowList and BL_GetCountOfACrossColumnList
BL_GetCountOfACrossRowList(ListIndex) returns the number of cells in which a

contour crosses the Y-coordinate of the cell node.
BL_GetCountOfACrossColumnList(ListIndex) is similar to BL_GetCountOfACrossRowList
except that it deals with cells in which a contour crosses the X-coordinate of a cell node.

BL_GetCrossRowRow and BL_GetCrossColumnRow
BL_GetCrossRowRow(ListIndex, CellIndex) returns the row number of a cell in

which the contour crosses the Y-coordinate of the cell node.
BL_GetCrossColumnRow(ListIndex, CellIndex) is similar to BL_GetCrossRowRow except
that it deals with cells in which a contour crosses the X-coordinate of a cell node. CellIndex
must be greater than or equal to zero and less than or equal to the result of
BL_GetCountOfACrossRowList or BL_GetCountOfACrossColumnList

BL_GetCrossRowColumn and BL_GetCrossColumnColumn
BL_GetCrossRowColumn(ListIndex, CellIndex) returns the column number of a cell

in which the contour crosses the Y-coordinate of the cell node.
BL_GetCrossColumnColumn(ListIndex, CellIndex) is similar to BL_GetCrossRowColumn
except that it deals with cells in which a contour crosses the X-coordinate of a cell node.
CellIndex must be greater than or equal to zero and less than or equal to the result of
BL_GetCountOfACrossRowList or BL_GetCountOfACrossColumnList

BL_GetCrossRowNeighborColumn and BL_GetCrossColumnNeighborRow
BL_GetCrossRowNeighborColumn(ListIndex, CellIndex) returns the column number

of the neighboring cell to the one in which the contour crosses the Y-coordinate of the cell
node (Figure 4). BL_GetCrossColumnNeighborRow(ListIndex, CellIndex) is similar to

 49

BL_GetCrossRowNeighborColumn except that it deals with cells in which a contour crosses
the X-coordinate of a cell node and it returns a row number rather than a column number.
CellIndex must be greater than or equal to zero and less than or equal to the result of
BL_GetCountOfACrossRowList or BL_GetCountOfACrossColumnList

Figure 4. The cells intercepted by the contour (heavy black line) are shown in dark gray. Those cells
which are their neighbors, as determined by BL_GetCrossRowNeighborColumn and
BL_GetCrossColumnNeighborRow, are shown in light gray except for those which are also intercepted
by the contour. The heavy dashed line separates each cell intercepted by the contour from its neighbor
or neighbors.

BL_GetCrossRowCompositeY and BL_GetCrossColumnCompositeX
BL_GetCrossRowCompositeY(ListIndex, CellIndex) returns a total difference in Y-

coordinate of segments in one or more cells. The cells over which the sum is returned must
be in the same row as the cell that has a contour that crosses the Y-coordinate of the cell
node. If there are two such cells in the same row with no other such cells between them on
different rows, a maximum or minimum point of the contour between the two cells will be
the limit of segments that will be summed for the purpose of this function (Figure 5).
BL_GetCrossColumnCompositeX(ListIndex, CellIndex) is similar to
BL_GetCrossRowCompositeY except that it deals with cells in which a contour crosses the
X-coordinate of a cell node and it returns a difference in the X-coordinate. CellIndex must
be greater than or equal to zero and less than or equal to the result of
BL_GetCountOfACrossRowList or BL_GetCountOfACrossColumnList

 50

Figure 5. For the cell indicated by the dark gray square, the length returned by
BL_GetCrossRowCompositeY is indicated by the double-headed arrow. To determine this, the function
retrieved data not only from the dark gray cell but also from the light gray cells.

BL_GetSumCrossRowCompositeY and BL_GetSumCrossColumnCompositeX
BL_GetSumCrossRowCompositeY(ListIndex) returns the sum of the

BL_GetCrossRowCompositeY's for all the cells in the list that cross the Y-coordinate of the
cell node. BL_GetSumCrossColumnCompositeX(ListIndex) is similar to
BL_GetSumCrossRowCompositeY except that it deals with cells in which a contour crosses
the X-coordinate of a cell node. CellIndex must be greater than or equal to zero and less than
or equal to the result of BL_GetCountOfACrossRowList or
BL_GetCountOfACrossColumnList

BL_GetCrossRowCompositeLength and
BL_GetCrossColumnCompositeLength

BL_GetCrossRowCompositeLength(ListIndex, CellIndex) is similar to
BL_GetCrossRowCompositeY except that it returns the total length rather than the total
difference in Y-coordinates. BL_GetCrossColumnCompositeLength(ListIndex, CellIndex) is
similar to BL_GetCrossRowCompositeLength except that it deals with cells in which a
contour crosses the X-coordinate of a cell node. CellIndex must be greater than or equal to
zero and less than or equal to the result of BL_GetCountOfACrossRowList or
BL_GetCountOfACrossColumnList

BL_GetRowBoundary and BL_GetColumnBoundary
BL_GetRowBoundary(Row) and BL_GetColumnBoundary(Column) return the

position of the Row or Column boundary indicated by Row or Column. These are equivalent
to the Row() and Column() functions of Argus ONE.

BL_PointInsideContour
BL_PointInsideContour(ListIndex,X,Y) returns True if (X,Y) is inside the contour

indicated by ListIndex but is not inside any contours inside the one indicated by ListIndex.
(This function may not work if "Allow Intersection" is on and contours cross each other.)

BL_GetRowNodePosition and BL_GetColumnNodePosition
BL_GetRowNodePosition(Row) and BL_GetColumnNodePosition(Column) return

the Y position of the node of the Row indicated by "Row" and the X position of the node of
the Column indicated by "Column". These are equivalent to the Argus ONE functions
NthRowPos(Row) and NthColumnPos(Column).

 51

BL_GetRowBoundaryCount and BL_GetColumnBoundaryCount
BL_GetRowBoundaryCount() and BL_GetColumnBoundaryCount() return the

number of row and column boundaries in the grid.

BL_GetRowNodeCount and BL_GetColumnNodeCount
BL_GetRowNodeCount() and BL_GetColumnNodeCount() return the number of row

and column nodes in the grid.

BL_GetCellArea
BL_GetCellArea(Column, Row) indicates the area of the cell indicated by Column,

Row.

BL_FractionOfLine
BL_FractionOfLine(ListIndex, CellIndex) gives the fraction of the total length of the

line inside the cell indicated by CellIndex (Figure 6).

Figure 6. The result of BL_FractionOfLine for the cell indicated by the dark square would be 0.10
because 10 percent of the contour lies within the cell.

BL_FreeVertexList
BL_FreeVertexList() Frees all memory associated with a list of vertices.

BL_FreeAllBlockLists
BL_FreeAllBlockLists() Frees all memory associated with the BlockList PIE.

BL_GetErrorCount
BL_GetErrorCount() returns the number of errors that have occurred since the last

time the PIE was initialized in BL_InitializeGridInformation. This function is used in the
export template for MODFLOW-96 as a check for programming errors in the Blocklist PIE.

BL_CheckVersion
BL_CheckVersion(First_Digit, Second_Digit, Third_Digit, Fourth_Digit) returns

True if the version number of the dynamic link library is greater than or equal to the version
number passed in the arguments. The version number of the dynamic link library may be
checked by right clicking on BlockList.dll, selecting "Properties" and going to the version
information tab.

 52

Conclusions
One motivation for creating the PIE commands, functions, and interpolation methods

described in this report was to provide a mechanism for performing actions that could not be
done easily using Argus ONE. For example, when editing a grid in Argus ONE, it was time
consuming to create a grid that did not have a uniform cell size and that also did not have
abrupt changes in cell sizes. The Edit Grid command makes creating such grids easy.
Another motivation was to speed up procedures that could already be done in Argus ONE. A
good example of this is the QT_Nearest interpolation method. This gives exactly the same
results as the NN2D interpolation method, but it is faster for large data sets because it uses a
more efficient algorithm. This report documents the PIEs so that users will have a reference
document to which they can turn when attempting to use them in their own work.

References
Anderson, M.P., and Woessner, W.W., 1992, Applied groundwater modeling, simulation of

flow and advective transport: San Diego, California, Academic Press, 381 p.
Argus Interware, Inc., 1997, User's guide Argus ONETM, Argus Open Numerical

Environments � A GIS modeling system, version 4.0: Jericho, NY, Argus Holdings,
Limited, 506 p.

Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000,
the U.S. Geological Survey modular ground-water model � User�s guide to
modularization concepts and the ground-water flow process: U.S. Geological Survey
Open-File Report 00-92, 191 p.

Hsieh, P.A., and Freckleton, J.R., 1993, Documentation of a computer program to simulate
horizontal-flow barriers using the U.S. Geological Survey modular three-dimensional
finite-difference ground-water flow model: U.S. Geological Survey Open-File Report
92-477, 32 p.

Kipp, K.L., Jr., 1987, HST3D: A computer code for simulation of heat and solute transport in
three-dimensional ground-water flow systems: U.S. Geological Survey, Water-
Resources Investigations Report 86-4095, 597 p.

______ 1997, Guide to the revised heat and solute transport simulator, HST3D � version 2:
U.S. Geological Survey Water-Resources Investigations Report 97-4157, 149 p.

Konopka, Ray, 1997, Developing custom Delphi 3 components: Albany, New York, Coriolis
Group Books, 725 p.

Poeter, E.P., and Hill, M.C., 1998, Documentation of UCODE, a computer code for universal
inverse modeling: U.S. Geological Survey Water-Resources Investigations Report 98-
4080, 116 p.

Prudic, D.E., 1989, Documentation of a computer program to simulate stream-aquifer
relations using a modular, finite-difference, ground-water flow model: U.S.
Geological Survey Open-File Report 88-729, 113 p.

Stephens, Rod, 1998, Ready-to-run Delphi 3.0 algorithms: Wiley, New York, 398 p.
U.S. Department of the Interior, U.S. Geological Survey, 1992, Standards for digital

elevation models: Reston, Va., 102 p.
Voss, C.I., Boldt, David, and Shapiro, A.M., 1997, A graphical-user interface for the U.S.

Geological Survey SUTRA code using Argus ONE: U.S. Geological Survey, Open-
File Report 97-421, 106 p.

 53

Winston, R.B., 1999, Upgrade to MODFLOW-GUI: Addition of MODPATH, ZONEBDGT,
and additional MODFLOW packages to the U.S. Geological Survey MODFLOW-96
graphical-user interface: U.S. Geological Survey Open-File Report 99-184, 63 p.

______ 2000, Graphical user interface for MODFLOW: Version 4: U.S. Geological Survey
Open-File Report 00-315, 27 p.

 54

Appendix 1: Custom Components Used in PIEs
Several custom components were developed and used as part of the PIEs described

here. These components can also be used in any program or dll created using Borland
Delphi. The names of the components follow the naming conventions discussed by Konopka
(1997) by including the author's initials or a company name in the name of the component.
Detailed descriptions of the properties, methods, and events in the components are contained
in Windows help files that come with the components.

TRbwZoomBox
TRbwZoomBox provides methods for converting real-number coordinates to screen

coordinates so that points at those coordinates may be easily displayed.
By default, the positive directions for the real-number coordinate system are to the

right (X-axis) and upward (Y-axis). However, the direction of either axis may be reversed.
By default, the vertical exaggeration is one but the vertical exaggeration may be set to any
positive real number. However, if the vertical exaggeration is set to too high or too low a
value, EInvalidOp may be raised when calculating the screen coordinates.

TRbwZoomBox has two embedded components, a TPaintBox and a TShape; the
TPaintBox provides the drawing surface. The TShape is only visible during zooming
operations. Some of the more important methods of TRbwZoomBox are listed below:

Zooming methods; methods for changing the magnification at which the data are

displayed:
AbortZoom
BeginZoom
ContinueZoom
FinishZoom
ZoomBy
ZoomByAt
ZoomOut
SetZoom

Panning methods; methods for changing what area is visible:
BeginPan
EndPan

Coordinate Conversion methods; methods for converting from real-number to screen

coordinates and back:
MouseToCoordinates
X
XCoord
Y
YCoord

TRbwZoomPoint is a helper-class that store the real-number coordinates. Many of

the zooming operations require that TRbwZoomPoint be used to store the coordinates.

 55

TRbwDynamicCursor
TRbwDynamicCursor provides a convenient way to draw a cursor at runtime.

Assign the cursor hot spot with the HotPointX and HotPointY properties. Draw the cursor
on the bitmaps provided in the OnDrawCursor event. Call the RedrawCursor method
whenever the cursor needs to be changed.

TArgusDataEntry
TArgusDataEntry provides data-checking for user-entered data. All data entered in

a TArgusDataEntry are first checked to be sure it can be converted to another type of data
as specified by the DataType property. In the event that the data can not be converted,
characters will be stripped from the end of Text until the conversion is possible. If the
DataType is dtInteger or dtReal, it is also possible to check that the numeric representation
of Text does not lie outside the range Min..Max. Use CheckMin and CheckMax to turn on
or off range checking. OnExceedingBounds and OnExceededBounds can be used to
provide custom handling for cases where the data do lie outside the range specified by
Min..Max when range checking is on.

TArgusDataEntry was originally developed while the author worked for Argus
Interware. It was subsequently adopted by the U.S. Geological Survey.

TRbwQuadTree
TRbwQuadTree provides methods for storing data associated with X, Y coordinates

in a way that allows the data close to a specific point can be retrieved quickly. Data are
added using the AddPoint procedure and removed with the RemovePoint procedure. All
the data in the TRbwQuadTree can be removed using the Clear procedure. Data can be
retrieved using the FindClosestPointsData, FindNearestPoints, FindPointsInBlock,
FindPointsInCircle, and NearestPointsFirstData procedures. Before adding points to the
TRbwQuadTree it is best to set Xmax, Xmin, Ymax, and Ymin to the limits of the data to
be added or something close to the limits. Performance may suffer if the limits are greatly
different from the actual limits of the data. MaxPoints specifies the maximum number of
data points in any one leaf of a TRbwQuadTree. Performance may be affected by
MaxPoints in a way that depends on the nature of the task to be performed.

TRbwOctTree
TRbwOctTree is the three-dimensional equivalent of TRbwQuadTree.

Installation
To install TRbwZoomBox, TRbwDynamicCursor, TArgusDataEntry,

TRbwQuadTree, and TRbwOctTree in Delphi 5, start Delphi 5 and select
Component|Install Component. Select the file RbwZoomBox.pas,
RbwDynamicCursor.pas, ArgusDataEntry.pas, QuadtreeClass, or OctTreeClass as the "Unit
file name" and click the OK button. To install context-sensitive help for the components in
Delphi 5 select Help|Customize. On the Contents tab select Edit|Add Files and select
TRBWZoomBox.cnt, TDynamicCursor.cnt. or TArgusDataEntry.cnt. Next, on the Index tab
select Edit|Add Files and select TRbwZoomBox.hlp, TDynamicCursor.hlp, or
TArgusDataEntry.hlp. Then on the Link tab select Edit|Add Files and select

 56

TRbwZoomBox.hlp, TDynamicCursor.hlp, or TArgusDataEntry.hlp. Finally, select
File|Save Project and close the dialog box.

 57

Appendix 2: Example Export Template for ProgressBar
PIE

Define Variable: OK [Boolean]
Set Variable: OK:= ProgressBarCheckVersion(1,3,0,0)

Check if the PIE is installed.
If: IsNAN(OK)
 Set Variable: OK:= 0
 Alert: "Aborting: You either have an outdated version of the Progress Bar PIE or else you don't
have the Progress Bar PIE installed."
Else
 # Check if the PIE is up-to-date.
 If: OK=0
 Alert: "Aborting: You have an outdated version of the Progress Bar PIE."
 End if
End if
If: OK
 # Initialize the progress bar. Set the maximum for the
 # progress bar to the number of blocks.
 Evaluate expression: ProgressBarInitialize(NumBlocks(), 1)
 #
 # Set the message shown in the progress bar
 Set Variable: OK:= ProgressBarSetMessage("Exporting Blocks")
 #
 # Check if the user has pressed the Cancel button.
 If: OK
 Redirect output to: $BaseName$
 Loop for: Blocks
 #
 # Advance the progress bar by one. At the end of the
 # loop over blocks this function will have been called
 # NumBlocks() times.
 Set Variable: OK:= ProgressBarAdvance()
 #
 # Check if the user has pressed the Cancel button.
 If: OK
 # Make a test such as a test for an error condition.
 If: Column()=Row()
 #
 # If the test suceeds, add a message to the progress
bar memo.
 Evaluate expression: ProgressBarAddLine("Column: "
+ Column() + " = Row: " + Row())
 End if
 End if
 End loop
 End file
 #
 # Save the messages in the progress bar memo to a file.
 Evaluate expression: ProgressBarSaveToFile("AFile")
 End if
 #
 # Get rid of the progress bar.
 Evaluate expression: ProgressBarFree()
End if

 58

Appendix 3: Example Export Template for List PIE

These will be assigned values of ListIndex.
Define Variable: FirstList [Integer]
Define Variable: SecondList [Integer]
These will be used to determine how many items are in the list.
Define Variable: LoopIndex [Integer]
Redirect output to: $BaseName$
 Start a new line
 # FirstList is assigned a value of 0.
 Set Variable: FirstList:= L_CreateNewList()
 Export expression: FirstList; [G0]
 # SecondList is assigned a value of 1.
 Set Variable: SecondList:= L_CreateNewList()
 Export expression: SecondList; [G0]
 # We now add variables to the first and second lists.
 Evaluate expression: L_AddToList(FirstList, 5)
 Evaluate expression: L_AddToList(FirstList, 7)
 Evaluate expression: L_AddToList(SecondList, 9)
 # The number of items in FirstList is 2 and
 # the number of items in SecondList is 1.
 Export expression: L_GetListSize(FirstList); [G0]
 Export expression: L_GetListSize(SecondList); [G0]
 End line
 # This exports all values in the first list.
 Start a new line
 Export expression: "FirstList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(FirstList)-1 step: 1
 Export expression: L_GetFromList(FirstList, LoopIndex); [G0]
 End loop
 End line
 # This exports all values in the second list.
 Start a new line
 Export expression: "SecondList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(SecondList)-1 step: 1
 Export expression: L_GetFromList(SecondList, LoopIndex); [G0]
 End loop
 End line
 # This does nothing because there are already more than one item if FirstList.
 Evaluate expression: SetListSize(FirstList, 1)
 # This adds two more items with a values of 0 to the end of SecondList.
 Evaluate expression: L_SetListSize(SecondList, 3)
 # This exports all values in the first list.
 Start a new line
 Export expression: "FirstList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(FirstList)-1 step: 1
 Export expression: L_GetFromList(FirstList, LoopIndex); [G0]
 End loop
 End line
 # This exports all values in the second list.
 Start a new line
 Export expression: "SecondList" [G0]
 End line
 Start a new line

 59

 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(SecondList)-1 step: 1
 Export expression: L_GetFromList(SecondList, LoopIndex); [G0]
 End loop
 End line
 # This deletes all items in FirstList but does not change SecondList.
 Evaluate expression: L_FreeAList(FirstList)
 # This exports all values in the first list.
 Start a new line
 Export expression: "FirstList is Empty"; [G0]
 # This returns 0
 Export expression: L_GetListSize(FirstList) [G0]
 End line
 Start a new line
 # These will cause an error because all loops are executed at least once.
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(FirstList)-1 step: 1
 # The error occurs here because FirstList contains nothing.
 Export expression: L_GetFromList(FirstList, LoopIndex); [G0]
 End loop
 End line
 # This exports all values in the second list.
 Start a new line
 Export expression: "SecondList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(SecondList)-1 step: 1
 Export expression: L_GetFromList(SecondList, LoopIndex); [G0]
 End loop
 End line
 # This sets the value of the second item in SecondList to 20.
 Evaluate expression: L_SetListItem(SecondList, 1, 20)
 # This exports all values in the second list.
 Start a new line
 Export expression: "SecondList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(SecondList)-1 step: 1
 Export expression: L_GetFromList(SecondList, LoopIndex); [G0]
 End loop
 End line
 # This deletes the first item of SecondList.
 Evaluate expression: L_DeleteListItem(SecondList, 0)
 # This exports all values in the second list.
 Start a new line
 Export expression: "SecondList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(SecondList)-1 step: 1
 Export expression: L_GetFromList(SecondList, LoopIndex); [G0]
 End loop
 End line
 # This deletes the last item of SecondList.
 Evaluate expression: L_DeleteListItem(SecondList)
 # This exports all values in the second list.
 Start a new line
 Export expression: "SecondList" [G0]
 End line
 Start a new line
 Loop for: Variable LoopIndex from: 0 to: L_GetListSize(SecondList)-1 step: 1
 Export expression: L_GetFromList(SecondList, LoopIndex); [G0]
 End loop
 End line
 # Test if error has occurred. This export template was designed to have one error in it.

 60

 If: L_GetErrorCount()
 Start a new line
 Export expression: "Whoops. The number of errors was " + L_GetErrorCount()
[G0]
 End line
 End if
 # This frees up memory. It returns True if successful.
 Start a new line
 Export expression: L_FreeAllLists() [G0]
 End line
End file

The contents of the file exported by this template are as follows:

0 1 2 1
FirstList
5. 7.
SecondList
9.
FirstList
5. 7.
SecondList
9. 0. 0.
FirstList is Empty 0
0.
SecondList
9. 0. 0.
SecondList
9. 20. 0.
SecondList
20. 0.
SecondList
20.
Whoops. The number of errors was 1
1

 61

Appendix 4: Example Export Template for BlockList PIE

Define Variable: CellListIndex [Integer]
Define Variable: CellIndex [Integer]
Redirect output to: $BaseName$
 Start a new line
 Export expression: BL_InitializeGridInformation("Grid"); [G0]
 Export expression: BL_AddVertexLayer("New Layer1"); [G0]
 Export expression: BL_AddVertexLayer("New Layer2"); [G0]
 End line
 Start a new line
 Export expression: "Number of Cell Lists: " [G0]
 Export expression: BL_GetCountOfCellLists() [G0]
 End line
 Loop for: Variable CellListIndex from: 0 to: BL_GetCountOfCellLists()-1 step: 1
 Start a new line
 Export expression: "Cells for Object " [G0]
 Export expression: BL_CellListIndex [G0]
 End line
 Loop for: Variable CellIndex from: 0 to: BL_GetCountOfACellList(CellListIndex)-1 step: 1
 Start a new line
 Export expression: "Column"; [G0]
 Export expression: BL_GetCellColumn(CellListIndex, CellIndex); [G0]
 Export expression: "Row"; [G0]
 Export expression: BL_GetCellRow(CellListIndex, CellIndex); [G0]
 End line
 End loop
 End loop
 Start a new line
 Export expression: "Combined List" [G0]
 End line
 Loop for: Variable CellIndex from: 0 to: BL_GetCountOfCombinedCellList()-1 step: 1
 Start a new line
 Export expression: "Column"; [G0]
 Export expression: BL_GetCellColumnFromCombinedList(CellIndex); [G0]
 Export expression: "Row"; [G0]
 Export expression: BL_GetCellRowFromCombinedList(CellIndex) [G0]
 End line
 End loop
 Start a new line
 Export expression: "ReInitialize: "; [G0]
 Export expression: BL_ReInitializeVertexList(); [G0]
 Export expression: BL_AddVertexLayer("New Layer3") [G0]
 End line
 Start a new line
 Export expression: "Number of Cell Lists: " [G0]
 Export expression: BL_GetCountOfCellLists() [G0]
 End line
 Loop for: Variable CellListIndex from: 0 to: BL_GetCountOfCellLists()-1 step: 1
 Start a new line
 Export expression: "Cells for Object " [G0]
 Export expression: CellListIndex [G0]
 End line
 Loop for: Variable CellIndex from: 0 to: BL_GetCountOfACellList(CellListIndex)-1 step: 1
 Start a new line
 Export expression: "Column"; [G0]
 Export expression: BL_GetCellColumn(CellListIndex, CellIndex); [G0]
 Export expression: "Row"; [G0]
 Export expression: BL_GetCellRow(CellListIndex, CellIndex); [G0]
 End line

 62

 End loop
 End loop
 Start a new line
 Export expression: "Combined List" [G0]
 End line
 Loop for: Variable CellIndex from: 0 to: BL_GetCountOfCombinedCellList()-1 step: 1
 Start a new line
 Export expression: "Column"; [G0]
 Export expression: BL_GetCellColumnFromCombinedList(CellIndex); [G0]
 Export expression: "Row"; [G0]
 Export expression: BL_GetCellRowFromCombinedList(CellIndex) [G0]
 End line
 End loop
 Start a new line
 Export expression: BL_FreeAllBlockLists() [G0]
 End line
End file

Executing this export template can yield a file with the following contents.

1 1 1
Number of Cell Lists: 2
Cells for Object 0
Column 1 Row 3
Column 2 Row 3
Column 3 Row 3
Column 4 Row 3
Column 5 Row 3
Column 6 Row 3
Column 6 Row 4
Cells for Object 1
Column 2 Row 5
Column 2 Row 4
Column 3 Row 4
Column 3 Row 3
Column 4 Row 3
Column 4 Row 2
Column 5 Row 2
Column 6 Row 2
Combined List
Column 1 Row 3
Column 2 Row 3
Column 3 Row 3
Column 4 Row 3
Column 5 Row 3
Column 6 Row 3
Column 6 Row 4
Column 2 Row 5
Column 2 Row 4
Column 3 Row 4
Column 4 Row 2
Column 5 Row 2
Column 6 Row 2
ReInitialize: 1 1
Number of Cell Lists: 1
Cells for Object 0
Column 1 Row 7
Column 2 Row 7
Column 3 Row 7
Column 4 Row 7
Column 5 Row 7

 63

Column 6 Row 7
Combined List
Column 1 Row 7
Column 2 Row 7
Column 3 Row 7
Column 4 Row 7
Column 5 Row 7
Column 6 Row 7
1

 64

Appendix 5: Export Templates Using Rotated X and
Rotated Y

Template 1

Export template to export the row and column numbers
and the locations of the four corners of each block.

Define Variable: X [Real]
Define Variable: Y [Real]

Redirect output to: $BaseName$
 Start a new line
 Export expression: "Row Number"; [G0]
 Export expression: "Column Number"; [G0]
 Export expression: "X-coord 1"; [G0]
 Export expression: "Y-coord 1"; [G0]
 Export expression: "X-coord 2"; [G0]
 Export expression: "Y-coord 2"; [G0]
 Export expression: "X-coord 3"; [G0]
 Export expression: "Y-coord 3"; [G0]
 Export expression: "X-coord 4"; [G0]
 Export expression: "Y-coord 4"; [G0]
 End line
 Loop for: Blocks
 Start a new line
 Export expression: Row(); [G0]
 Export expression: Column(); [G0]
 Set Variable: X:= NthColumnPos(Column()-1)
 Set Variable: Y:= NthRowPos(Row()-1)
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 Set Variable: X:= NthColumnPos(Column())
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 Set Variable: Y:= NthRowPos(Row())
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 Set Variable: X:= NthColumnPos(Column()-1)
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 End line
 End loop
End file

 65

Template 2

This template uses the OkCancel and Utility PIEs
to export a contour that surrounds a single cell.
The contour can be used as a domain outline for a
model that defines a subgrid within that cell.

Define Variable: RowToUse [Integer]
Define Variable: ColumnToUse [Integer]
Define Variable: X [Real]
Define Variable: Y [Real]
Redirect output to: $BaseName$
 Set Variable: RowToUse:= OK_UserInteger("What row do you want to use?", 1, 1, NumRows())
 Set Variable: ColumnToUse:= OK_UserInteger("What column do you want to use?", 1, 1,
NumColumns())
 Start a new line
 Export expression: "## Name:" [G0]
 End line
 Start a new line
 Export expression: "## Icon:"; [G0]
 Export expression: 0 [G0]
 End line
 Start a new line
 Export expression: "# Points Count"; [G0]
 Export expression: "Value" [G0]
 End line
 Start a new line
 Export expression: 5 [G0]
 End line
 Start a new line
 Export expression: "# X pos"; [G0]
 Export expression: "Y pos" [G0]
 End line
 Loop for: Blocks
 If: (Row()=RowToUse)&(Column()=ColumnToUse)
 Start a new line
 Set Variable: X:= NthColumnPos(Column()-1)
 Set Variable: Y:= NthRowPos(Row()-1)
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 End line
 Start a new line
 Set Variable: X:= NthColumnPos(Column())
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 End line
 Start a new line
 Set Variable: Y:= NthRowPos(Row())
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 End line
 Start a new line
 Set Variable: X:= NthColumnPos(Column()-1)
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]
 End line
 Start a new line
 Set Variable: Y:= NthRowPos(Row()-1)
 Export expression: Rotated X(X, Y, GridAngle()); [G0]
 Export expression: Rotated Y(X, Y, GridAngle()); [G0]

 66

 End line
 End if
 End loop
End file

 67

Appendix 6: DEM2Image.exe
DEM2Image.exe reads Digital Elevation Models (DEMs) in the format described

in the DEM data users guide (U.S. Department of the Interior, U.S. Geological Survey,
1992) (http://rockyweb.cr.usgs.gov/nmpstds/demstds.html) and displays them as bitmaps.
Once the program has been started by double-clicking on its icon, its operation is much
the same as the Sample DEM Data command described in the main body of this report.
However, you do not need to specify a grid nor does DEM2Image extract gridded data.

	Cover
	Contents
	Tables
	Figures
	Abstract
	Introduction
	Installation instructions
	Navigating
	Acknowledgments

	Interpolation Methods
	Commands
	Edit
	Edit Contours
	DeclutterContours
	Join Contours
	Edit Grid
	Moving the Grid
	Rotate the Grid
	Moving Grid Lines
	Adding Grid Lines
	Changing the Width of Rows or Columns
	Deleting Grid Lines
	Subdividing Rows or Columns
	Specifying Row and Column Positions
	Specifying Row and Column Widths
	Adjusting Row and Column Boundaries
	Creating Grids

	Edit Data
	Create Parameters in Multiple Layers
	Set Multiple Parameters

	Import
	Import Gridded Data
	Import Points from Spreadsheet
	Import Contours from Spreadsheet
	Sample DEM Data
	Copy Tri Mesh/Copy Quad Mesh

	Convert
	Contours To Data
	Data to Contours
	Reverse Contours on Clipboard
	Mesh Objects To Contours
	Mesh To Contours

	Hidden Commands
	Set Parameter Locks
	Delete Multiple Layers

	Functions
	Utility_CheckVersion
	EvalRealAtXY, EvalIntegerAtXY, EvalBooleanAtXY, and EvalStringAtXY
	Rotated X, and Rotated Y
	GetMyDirectory
	ReadFileValue functions
	RF_Get_Value_From_File
	RF_Clear_Files
	RF_Save_Files
	RF_CheckVersion

	Conversion functions

	Hidden Functions
	OKCancel Functions
	IsOK
	Ok_Add_Radio_Choice
	Ok_Get_Radio_Choice
	Ok_Radio_Free
	Ok_UserFloat and Ok_UserInteger
	Ok_CheckVersion

	ProgressBar Functions
	ProgressBarInitialize
	ProgressBarFree
	ProgressBarMax
	ProgressBarAdvance
	ProgressBarSetMessage
	ProgressBarAddLine
	ProgressBarSaveToFile
	ProgressBarCheckVersion

	JoinFiles Functions
	Join_Files
	Delete_File
	Rename_File
	Split_File
	Int2Str
	JF_CopyLines
	JF_CheckVersion

	List functions
	L_Initialize
	L_CreateNewList
	L_SetListSize
	L_GetListSize
	L_FreeAList
	L_AddToList
	L_GetFromList
	L_SetListItem
	L_DeleteListItem
	L_SortList
	L_EliminateDuplicates
	L_IndexOf
	L_UnsortedIndexOf
	L_CreateNew3DList
	L_FreeA3DList
	L_GetFrom3Dlist and L_GetFromOneBased3DList
	L_Set3DlistItem and L_SetOneBased3DListItem
	L_ResetA3DList
	L_Add3DLists
	L_Subtract3DLists
	L_Multiply3DLists
	L_Divide3DLists
	L_Multipy3DByConstant
	L_Invert3DListMembers
	L_IsSingPrecUniform
	L_GetErrorCount
	L_FreeAllLists
	L_CheckVersion

	BlockList functions
	BL_InitializeGridInformation
	BL_AddVertexLayer
	BL_ReInitializeVertexList
	BL_GetCountOfCellLists
	BL_GetCountOfACellList
	BL_GetCellRow and BL_GetCellColumn
	BL_GetVertexCount
	BL_GetVertexXPos and BL_GetVertexYPos
	BL_SegmentCount
	BL_SegmentFirstX and BL_SegmentFirstY
	BL_SegmentSecondX and BL_SegmentSecondY
	BL_SegmentLengthX and BL_SegmentLengthY
	BL_SegmentLength
	BL_SumSegmentsX and BL_SumSegmentsY
	BL_SumSegmentLengths
	BL_GetCountOfCombinedCellList
	BL_GetCellRowFromCombinedList and BL_GetCellColumnFromCombinedList
	BL_GetCountOfCrossRowLists and BL_GetCountOfCrossColumnLists
	BL_GetCountOfACrossRowList and BL_GetCountOfACrossColumnList
	BL_GetCrossRowRow and BL_GetCrossColumnRow
	BL_GetCrossRowColumn and BL_GetCrossColumnColumn
	BL_GetCrossRowNeighborColumn and BL_GetCrossColumnNeighborRow
	BL_GetCrossRowCompositeY and BL_GetCrossColumnCompositeX
	BL_GetSumCrossRowCompositeY and BL_GetSumCrossColumnCompositeX
	BL_GetCrossRowCompositeLength and BL_GetCrossColumnCompositeLength
	BL_GetRowBoundary and BL_GetColumnBoundary
	BL_PointInsideContour
	BL_GetRowNodePosition and BL_GetColumnNodePosition
	BL_GetRowBoundaryCount and BL_GetColumnBoundaryCount
	BL_GetRowNodeCount and BL_GetColumnNodeCount
	BL_GetCellArea
	BL_FractionOfLine
	BL_FreeVertexList
	BL_FreeAllBlockLists
	BL_GetErrorCount
	BL_CheckVersion

	Conclusions
	References
	Appendix 1: Custom Components Used in PIEs
	TRbwZoomBox
	TRbwDynamicCursor
	TArgusDataEntry
	TRbwQuadTree
	TRbwOctTree
	Installation

	Appendix 2: Example Export Template for ProgressBar PIE
	Appendix 3: Example Export Template for List PIE
	Appendix 4: Example Export Template for BlockList PIE
	Appendix 5: Export Templates Using Rotated X and Rotated Y
	Appendix 6: DEM2Image.exe

