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Abstract
The issue of concern is the impact of forward model nonlinearity on the nonlinearity of the inverse model. The

question posed is, ‘‘Does increased nonlinearity in the head solution (forward model) always result in increased non-
linearity in the inverse solution (estimation of hydraulic conductivity)?’’ It is shown that the two nonlinearities are
separate, and it is not universally true that increased forward model nonlinearity increases inverse model nonlinearity.

Introduction
Coping with model nonlinearities is a routine practice

for ground water modelers. The problems caused by nonli-
nearities differ depending on whether forward modeling or
inverse modeling is attempted. Nonlinearities in the for-
ward model can cause convergence difficulties for numeri-
cal solvers and/or limit the applicability of results based
on principles of superposition. In the extreme, unique solu-
tions are not guaranteed. Inverse model nonlinearity can
cause convergence difficulties in regression procedures
used for model calibration and/or can limit the applicabil-
ity of statistical measures of uncertainty based on linear
theory. The issue of concern for this work is how the for-
ward model nonlinearity affects the inverse model nonline-
arity. The inverse model is based on the forward model, so
one might assume that nonlinearity in the forward model
will cause additional nonlinearity in the inverse model.
This work uses a simple test case to examine the relation-
ship between these two nonlinearities and demonstrates
that increasing the forward model nonlinearity does not
necessarily increase the inverse model nonlinearity. The
issue of nonuniqueness in the forward model and its af-
fects on the inverse model results, such as parameter esti-
mates and predictions, is not addressed in this article.

Methods
The simple model considered in this work is shown

in Figure 1. It is a three-node, cross-sectional model
with specified-head boundaries on the left and right
nodes. It really is a one-node problem in that the only
unknown head is at the central node. For both confined
and unconfined conditions, the forward and inverse
equations for this system are derived, examined, and
compared.

The Nonlinearity in the Forward Model
The forward model solves for the unknown head,

given the boundary conditions and flow system proper-
ties. For the simple test case considered here, this can be
obtained by performing a steady-state mass balance on
the central cell, which results in:

qL2qR ¼ 0 ð1Þ

where qL ¼ flow per unit width into the central cell
through the left face, and qR ¼ flow per unit width out of
the central cell through the right face.

The flow across the cell faces can be expressed
in terms of conductances and head differences, as
follows:

qL ¼ CL � ðhL2hÞ ð2aÞ

qR ¼ CR � ðh 2 hRÞ ð2bÞ

where CL ¼ the conductance of the aquifer material
between the left node and the central node, CR ¼ the
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conductance of the aquifer material between the right
node and the central node, hL ¼ head specified as
a boundary condition at the left node, hR ¼ head specified
as a boundary condition at the right node, and h ¼ head at
the central node (unknown).

Substituting Equation 2 into Equation 1 and gather-
ing terms that multiply h results in:

h � ð2CL2CRÞ ¼ 2CL � hL2CR � hR ð3Þ

Solving for h results in:

h ¼ ð2CL � hL2CR � hRÞ=ð2CL2CRÞ ð4Þ

For a confined aquifer, conductance for a unit width
is calculated as follows:

CL ¼ ð2 �KL � bL �K � bÞ=ðKL � bL ��x1 K � b ��xÞ ð5aÞ

CR ¼ ð2 �KR � bR �K � bÞ=ðKR � bR ��x1K � b ��xÞ ð5bÞ

where KL ¼ the hydraulic conductivity of the left cell,
KR ¼ the hydraulic conductivity of the right cell, K ¼ the
hydraulic conductivity of the central cell, bL ¼ the satu-
rated thickness of the left cell, bR ¼ the saturated thick-
ness of the right cell, b ¼ the saturated thickness of the
central cell, and �x ¼ the grid spacing or cell dimension.

When these conductances are substituted into Equation
4, head (h) can be solved for explicitly, and therefore the
forward model is linear with respect to head.

For an unconfined aquifer, conductance is a function
of head (this is where the nonlinearity in the forward
model comes from) and for a unit width is calculated as
follows:

CL ¼ ð2 �KL � hL �K � hÞ=ðKL � hL ��x1 K � h ��xÞ ð5cÞ

CR ¼ ð2 �KR � hR �K � hÞ=ðKR � hR ��x1K � h ��xÞ ð5dÞ

The only difference between the confined and uncon-
fined conductances is the saturated thickness; in the
unconfined case, it is equal to the head in the aquifer (the
datum for head is the bottom of the cell). Thus, in the
unconfined case, the head solution (Equation 4) is non-
linear in head. That is, the head is a function of terms that
are themselves functions of head. Specifically, for uncon-
fined aquifers, the conductances depend on the head, as
shown in Equations 5c and 5d. Because we do not know
the correct head yet, in the unconfined case, we do not

know the correct value of conductance, and so Equation 4
must be solved iteratively.

The Nonlinearity in the Inverse Model
The nonlinearity of the inverse model differs from

that of the forward model because the function of in-
terest is not the head solution but the derivative of the
head solution with respect to some parameter (these
derivatives are also called sensitivities). The derivatives
and observations are used to update parameter values
during model calibration. In the inverse model, the non-
linearity is with respect to parameters; in the simple
model used here, the parameter is hydraulic conduc-
tivity. The nonlinearity of the inverse model with re-
spect to hydraulic conductivity arises directly from
Darcy’s Law where head changes (h 2 h0) are pro-
portional to distance (�L) and flow rate (Q) and
inversely proportional to hydraulic conductivity (K) and
cross-sectional area (A):

h ¼ h02�L � Q=ðK � AÞ ð6Þ

Thus, the derivative of head with respect to K results
in:

@h=@K ¼ �L � Q=ðK2 � AÞ ð7Þ

as also shown by Hill and Tiedeman (2007, 12–13). This
is a nonlinear function of K and arises from inverse
proportionality of K with respect to h in Darcy’s Law.
Equation 7 also shows a dependence on the flow rate,
which indicates that the flow system properties play a role
in nonlinearity.

For the three-node model presented, the derivative of
h (Equation 4) with respect to K can be calculated. For
the confined case, making the simplification that the satu-
rated thickness, b, is uniform throughout, the sensitivity
coefficient simplifies to:

@h=@K ¼ ½ðhL2hRÞ � KL � KR � ðKL2KRÞ�=
½2 � KL � KR 1 K � ðKL 1 KRÞ�2

ð8Þ

For the unconfined case, the chain rule must be
invoked to calculate the derivative of h with respect to K
because Equation 4 is a function of both K and h, and h is
itself a function of K. Designating the right-hand side of
Equation 4 as ‘‘f’’ and using the chain rule for the de-
rivatives results in a sensitivity coefficient of:

@h=@K ¼ @f=@h � @h=@K 1 @f=@K ð9Þ

Solving for @h/@K results in

@h=@K ¼ @f=@K=ð12@f=@hÞ ð10Þ

where

@f=@K¼ ½h �hL � ðhL2hRÞ �hR �KL �KR�
ðhL �KL2hR �KRÞ�=½2 �hL �hR �KL �KR

1 h �K � ðhL �KL 1 hR �KRÞ�2 ð11aÞ

hR = specified headhL = specified head

KL K KR

h = unknown

∆x

qL qR

∆x∆x

Figure 1. Schematic of a three-node block-centered cross-
sectional model with uniform grid spacing and specified-
head boundaries at the left and right nodes, (hL and hR,
respectively).
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@f=@h¼ ½K � hL � ðhL2hRÞ � hR �KL �KR�
ðhL �KL2hR �KRÞ�=½2 � hL � hR �KL �KR

1 h �K � ðhL �KL 1 hR �KRÞ�2 ð11bÞ

The second derivative of h with respect to K is a mea-
sure of curvature and can be used to indicate the degree of
nonlinearity. The curvature indicates how much the first
derivative (sensitivity) changes with changes in K. For the
confined case, the curvature is:

@2h=@K2 ¼ 2½2 � ðhL2hRÞ � KL � KR�
ðKL2KRÞ � ðKL 1 KRÞ�=
½2 � KL � KR 1 K � ðKL 1 KRÞ�3 ð12Þ

For the unconfined case, the chain rule is again
invoked as for Equation 9 to obtain:

@2h=@K2¼½ð@2f=@h2 �@h=@K12�@2f=@K@hÞ�@h=
@K1@2f=@K2�=ð12@f=@hÞ ð13Þ

where

@2f=@K2¼ 2½2�h2 �hL �ðhL2hRÞ�hR �KL �KR�
ðhL �KL2hR �KRÞ�ðhL �KL1hR �KRÞ�=
½2�hL �hR �KL �KR1h�K �ðhL �KL1hR �KRÞ�3

ð14aÞ

@2f=@h2¼ 2½2 �K2 �hL � ðhL2hRÞ �hR �KL �KR�
ðhL �KL2hR �KRÞ � ðhL �KL1hR �KRÞ�=
½2 �hL �hR �KL �KR1h �K � ðhL �KL1hR �KRÞ�3

ð14bÞ

@2f=@K@h¼ ½hL �ðhL2hRÞ�hR �KL �KR�
ðhL �KL2hR �KRÞ�ð2 �hL �hR �KL �KR

2h �K �ðhL �KL1hR �KRÞÞ�=
½2 �hL �hR �KL �KR1h �K �ðhL �KL1hR �KRÞ�3

ð14cÞ

Results and Discussion
For the confined case, the derivative of h with

respect to K (Equation 8) is a function that does not
depend on h and is a nonlinear function of K only. This
can be compared to the unconfined case where the deri-
vative of h with respect to K (Equations 10 and 11) is
a nonlinear function of both h and K. In general, the
unconfined case is more difficult to solve because the for-
ward model has nonlinearities and the inverse model must
calculate additional derivative terms that result from the
nonlinearity in the forward model. This is perhaps where
confusion arises in terms of nonlinearity of the forward
model producing more nonlinearity in the inverse model.
The additional derivative terms do not necessarily
increase the nonlinearity because, depending on their sign

relative to the other terms, they can cause cancellation
and decrease the nonlinearity.

In both the confined and the unconfined case,
changes in K change the head solution. This is shown in
Figure 2, which plots the head solution (Equation 4 using
Equation 5a and 5b or 5c and 5d) for both cases in rela-
tion to K. If either function were linear in K, it would plot
as a straight line. The curvature of the graphs in Figure 2
shows that both the confined and unconfined solutions
are nonlinear with respect to K. For different values of K,
the slope of the lines and therefore the nonlinearity vary.
For example, for larger values of K, the graphs are more
linear.

Examining Equations 12, 13, and 14 provides some
insights regarding the characteristics of the nonlinearity.
If hL ¼ hR, then in both cases the derivative (Equations 8
and 11) and curvature (Equations 12 and 14) are zero and
there is no nonlinearity. Physically, when hL ¼ hR, there
is no flow in the system, and therefore changes in K do
not change head. While a trivial example, it clearly illus-
trates that boundary conditions affect the nonlinearity in
the inverse model; therefore, flow system characteristics
beyond hydraulic parameters affect nonlinearity. If KL ¼
KR in the confined case, then the same conductance links
the central node to the left and right specified-head
boundary conditions. The head at the central node is
bound along a straight line between the two constant
heads independent of K at the central node and there is no
nonlinearity. In the unconfined case, because of the head
dependence, the conductances are not the same and the
system is nonlinear. This trivial example demonstrates
that in some situations, the nonlinearity in the forward
solution can cause more nonlinearity in the inverse solu-
tion. These results are an artifact of a single node bound
between two specified-head nodes and indicate, as before,
that flow system characteristics can influence the non-
linearity. In more general cases, numerical measures such
as modified Beale’s measure and measures of total and
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Figure 2. Head at the central node with respect to K for the
confined and unconfined cases. hL¼1, hR¼2, KL¼0.5,
KR¼0.01, and K is varied on the x-axis from 0.01 to 0.5.
Points A, B, and C relate to Figure 3. Referring to Figure 3,
for K less than 0.0845 (point A), the curvature in the head
solution is greater for the confined case compared to the
unconfined case.
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intrinsic nonlinearity (Cooley 2004, 85–87; Poeter et al.
2005, 214) can be used.

The question remains of how the inverse model non-
linearities of the confined and unconfined cases compare.
This is demonstrated in Figure 3 using a plot of the ratio
of the second derivatives for the confined and unconfined
cases. In this plot, the flow system is identical to that of
Figure 2 with hL¼1, hR¼2, KL¼0.5, and KR¼0.01. K var-
ies from 0.001 to 10. Values greater than 1 indicate more
curvature (more nonlinearity) in the inverse model for the
confined case. Values less than 1 indicate more curvature
in the inverse model for the unconfined case.

Figure 3 clearly shows that the heterogeneity affects
the degree of nonlinearity and that for some values of K,
the confined case has more nonlinearity than the uncon-
fined case. The saturated thickness is fixed for the con-
fined case and results not reported here show different

trends depending on this fixed value. Therefore, Figures 2
and 3 cannot be used to make a general statement regard-
ing how the relative nonlinearity varies with K. Nonethe-
less, in all simulations investigated, there were K values
where the nonlinearity in the confined cases was greater
than the unconfined case.

Conclusions
Forward model nonlinearity does not necessarily

make the inverse model more nonlinear. The two nonli-
nearities are separate and do not always combine in
a way to make the inverse model more nonlinear. In some
cases, it is more nonlinear; in other cases, it is not. Non-
linearity in the inverse model depends on many factors
that influence the flow system. How these factors com-
bine to create nonlinearities is difficult to assess without
using formal numerical measures.
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Figure 3. Ratio of confined to unconfined second derivatives
with respect to K. Second derivatives are a measure of cur-
vature (nonlinearity). Values greater than 1 (left of point A)
indicate the confined case has more nonlinearity and values
less than 1 (right of point A) indicate the unconfined case has
more nonlinearity. Points A, B, and C correspond to those in
Figure 2.
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