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[1] Small-scale topographic features are commonly found on the boundaries of natural
rivers, streams, and floodplains. A simple method for determining the form drag on these
features is presented, and the results of this model are compared to laboratory
measurements. The roughness elements are modeled as Gaussian-shaped features defined
in terms of three parameters: a protrusion height, H; a streamwise length scale, s; and a
spacing between crests, l. This shape is shown to be a good approximation to a wide
variety of natural topographic bank features. The form drag on an individual roughness
element embedded in a series of identical elements is determined using the drag coefficient
of the individual element and a reference velocity that includes the effects of roughness
elements further upstream. In addition to calculating the drag on each element, the
model determines the spatially averaged total stress, skin friction stress, and roughness
height of the boundary. The effects of bank roughness on patterns of velocity and
boundary shear stress are determined by combining the form drag model with a channel
flow model. The combined model shows that drag on small-scale topographic features
substantially alters the near-bank flow field. These methods can be used to improve
predictions of flow resistance in rivers and to form the basis for fully predictive (no
empirically adjusted parameters) channel flow models. They also provide a foundation for
calculating the near-bank boundary shear stress fields necessary for determining rates of
sediment transport and lateral erosion.

Citation: Kean, J. W., and J. D. Smith (2006), Form drag in rivers due to small-scale natural topographic features: 1. Regular

sequences, J. Geophys. Res., 111, F04009, doi:10.1029/2006JF000467.

1. Introduction

[2] The beds and banks of natural rivers and streams, and
the surfaces of floodplains, often are covered with a variety
of small-scale topographic features. The small-scale features
on the beds of rivers include bed forms, scour holes, and
clusters of clasts. On the banks of rivers they consist of
undulations produced by erosion and slumping of bank
material and undulations associated with vegetation, such
as protruding root balls and protrusions of grass sod. Flow
over or past these small-scale topographic features produces
form drag on them, which can substantially affect the
overall flow resistance of the channel, as well as the flow
and sediment transport patterns within the channel. Accu-
rate quantitative treatment of the small-scale features is
essential for determining overall and local flow resistance
in fully predictive river flow models. Furthermore, under-
standing the complicated flow patterns as affected by the
small-scale features on the beds and banks of streams and
rivers is essential for calculating bed and bank erosion. For
example, the roughness of the bank and that of the near-by
stream bed control the boundary shear stress field in the

neighborhood of the toe of a cutbank, and it is the shear
stress field in this area that, in turn, controls the nature and
rate of bank erosion and thus meander migration.
[3] Studies aimed at understanding the flow and bound-

ary shear stress over small-scale topographic features in
rivers have focused primarily on the flow over bed forms.
One approach to this problem, taken by Smith and McLean
[1977] in a study of flow over dunes in the Columbia River,
involves partitioning the total stress on the boundary into a
stress due to drag on the topographic features and a stress
acting on the actual boundary, which they called skin-
friction. The skin friction, which scales the near-boundary
flow and controls the sediment transport, can be determined
by subtracting the drag stress from the total stress on the
boundary. The latter is known, for example, from the depth-
slope product in an unaccelerated flow or from a flow model
in a more complicated flow. In the Smith and McLean
method the drag on the dune is calculated using a drag
coefficient for the bed form and an appropriate reference
velocity. This method was originally tested using flow
measurements made in the Columbia River. A major ad-
vantage of this method is that the roughness effects of the
bed forms can be readily tied to their geometric properties,
such as shape, height, and spacing. More recently, methods
in computational fluid dynamics (CFD) also have been used
to study flow over bed topographic features, such as dunes
[e.g., Patel and Yoon, 1995] and surface irregularities on
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gravel beds [e.g., Olsen and Stokseth, 1995; Lane et al.,
2004; Nicholas, 2005]. The complex flow produced by
rough surfaces is particularly difficult to model using
available computational methods [Patel, 1998]. For this
reason, numerical studies have only recently moved beyond
modeling laboratory situations with regular, well-defined
boundaries. While the use of CFD to study flow over
complex natural topography shows considerable promise
[e.g., Lane et al., 2004], the approach remains computa-
tionally intensive and usually requires ultrahigh-resolution
topographic data sets, which are difficult to obtain.
[4] Despite the importance of bank roughness in con-

trolling bank erosion, relatively little has been done to
characterize it. A common feature of natural banks, which
make them difficult to model, is that their surfaces are
highly irregular. The size and shape of bank features is
influenced by a wide variety of environmental factors,
including vegetation, soil cohesion, and flow. As a conse-
quence, the size and spacing of adjacent features can vary
considerably, usually more than the geometry of a set of
dunes. In addition to this variability, the shape of bank
features tends to be shorter, steeper, and more symmetric
than that of dunes. These characteristics result in greater
form drag relative to the dune situation and a wake that
substantially affects the flow over the features further
downstream.
[5] A first step toward understanding this complicated

interaction was taken by Hopson [1999] using a series of
flume experiments. These experiments measured the drag
coefficients of several different Gaussian-shaped elements
placed on the flume wall, as well as the drag force on an
element placed within a series of identical, regularly
spaced Gaussian elements on the flume wall. A Gaussian
shape was chosen for the profile of the roughness elements
for several reasons. This shape provided (1) a well-defined
point of separation, (2) a smooth transition onto the
underlying boundary of the channel, (3) a simple analytical
expression, (4) a single pair of inflection points, and (5) a
small set of parameters characterizing its shape so that it
would be easy to apply to stream-bank irregularities. In the
latter context, the Gaussian shape provided the three
essential parameters for approximating a natural small-
scale topographic element, namely (1) a protrusion dis-
tance, H, (2) a streamwise span (equivalent to the standard
deviation, s, in a Gaussian probability distribution), (3)
and a spacing of the crests. A Gaussian curve can express
a wide variety of shapes by varying the ratio of its
streamwise length scale to cross-stream length scale, and,
as will be shown subsequently, provides a satisfactory
approximation to a wide variety of roughness elements
found on the banks of rivers.
[6] The goal of this paper and a companion paper [Kean

and Smith, 2006], which are continuations of the work of
Hopson [1999], is to develop models to calculate the flow
and boundary shear stress fields over a boundary that is
characteristic of natural river banks. These papers are only
concerned with the flow effects of topographic features;
treatment of the flow effects of other roughness elements
commonly found on stream banks, such as the stems and
branches of woody vegetation, which are better modeled as
circular cylindrical elements, can be found elsewhere [e.g.,
Kean and Smith, 2004; Griffin et al., 2005]. Using an

approach similar to the one developed by Smith and
McLean [1977] for dunes, a model for low Froude number
flow (Fr < 1) past a regular sequence of two-dimensional
bank elements is developed in this paper and the results are
compared to data from the Hopson [1999] experiment.
Owing to the close spacing and relatively blunt geometry
of typical bank roughness elements, the new model places a
greater emphasis on characterizing the velocity in the wake
region behind Gaussian-shaped roughness elements than is
required for the dune problem. The new model is then used
together with the flow model of Kean and Smith [2004] to
investigate the effects of bank roughness on patterns of
velocity and boundary shear stress in a channel. A gener-
alization of the model presented herein that accommodates
irregular sequences of topographic elements is described in
the companion paper [Kean and Smith, 2006]. Although the
focus of the models discussed in these two papers is on bank
topographic roughness, the modeling approach is valid for
any boundary on which the small-scale topographic features
can be approximated by Gaussian-shaped elements. Specif-
ically, it can be used for floodplains, riverbeds, and the sea
floor, as well as river banks.

2. Natural Topographic Bank Features

[7] Three streamwise example profiles of bank surface
topography in channels near U.S Geological Survey
(USGS) streamflow gauging stations are shown in
Figure 1. These profiles were measured as part of an on-
going effort by the authors to develop and test a fluid
mechanically based method to calculate stage-discharge
relations (theoretical rating curves) for natural channels.
This new method of stream gauging determines the flow
resistance in the channel from basic geometric measure-
ments of the roughness elements in the channel, including
bed material, woody vegetation, and small-scale topographic
features such as those shown in the Figure 1. Quantifying the
resistance of the small-scale bank topographic features is
essential for determining accurate theoretical rating curves
for each of these three sites, because the channels are narrow
relative to their depth. The flow resistance associated with
the first example of bank topography shown in Figure 1
(from Lost Creek) will be discussed later in this paper. That
associated with each of the second two examples (from Rock
Creek and Whitewater River) along with the resulting
theoretical rating curves is discussed by Kean and Smith
[2005].
[8] The measurements for the first two examples (A, B)

were made by placing a 9-m long straight edge along the
bank parallel to the flow direction and then recording
the distance normal to the bank surface at 5-cm intervals.
The measurements in the third example (C) were made
using a total station. In all cases, long-wavelength oscilla-
tions, which are 5 to 10 topographic features in length and
correspond to the general shape of the channel, have been
removed from the data [see Kean and Smith, 2005]. These
long-wavelength undulations tend to produce a negligible
contribution to the flow resistance in the channel.
[9] The topographic features shown in these three exam-

ples are essentially two-dimensional in shape; i.e., there is
little change in the profiles with elevation above the bed. In
some channels streamwise profiles of bank topography vary
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gradually with elevation above the bed. In these cases, such
variation usually follows a trend of decreasing protrusion
heights from the top of the bank to the bed. In addition to
the gradual variation with elevation, the mean geometric
properties of bank topography that control roughness also
can change in the streamwise direction. Thus, in order to
characterize bank roughness fully within a reach of interest,
many profiles, such as those shown in Figure 1, are
required. These profiles should be made at different eleva-
tions along the bank, as well as at different streamwise
positions in the channel.
[10] The three examples of bank roughness shown in

Figure 1 are taken from channels spanning a wide range in
size and bankfull discharge (Table 1). The banks in each
case also are composed of different materials and shaped by
different mechanisms. Lost Creek, the smallest and narrow-
est channel, has very steep banks composed of fine grained

alluvium and closely spaced willows. The bank cohesion
provided by willow roots supports bank protrusions that are
as large as 5% of the width of the channel. The banks of
Rock Creek are vegetated less densely than Lost Creek and
are composed of a mixture of fine-grained sediment and
limestone clasts. These banks and their protrusions tend to
be less steep than at Lost Creek. The bank topography of the
Whitewater River at Towanda, the largest channel, is
controlled primarily by local slumping of the fine-grained
bank material. The small-scale topographic features at that
site tend to be larger and broader than in the two smaller
channels. Despite substantial differences in channel size and
bank characteristics, the shape of most of the individual
topographic elements is well approximated using features
with a Gaussian cross section. The deviations of the
measured topography from the Gaussian fits can be treated
as a smaller scale of roughness superimposed on the

Figure 1. Measurements of bank topographic profiles near USGS streamflow gauging stations
(a) 12323840, Lost Creek near Anaconda, Montana, (b) 07146995, Rock Creek near Potwin, Kansas, and
(c) 07147070, Whitewater River at Towanda, Kansas. A best fit Gaussian curve is shown for each
topographic feature. (d) Standard normalized Gaussian curve plotted together with measurements
normalized by H and s and the streamwise position of the center of each feature.
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Gaussian shapes. Methods to estimate the magnitude of this
smaller scale of roughness are described by Kean and Smith
[2005, 2006].

3. Model for a Regular Sequence of
Topographic Elements

[11] Following the approach of Smith and McLean
[1977], the total shear stress on the average boundary of a
channel, tT, can be partitioned into two components: an
average shear stress on the actual surface, tSF (called ‘‘skin
friction’’ by Smith and McLean [1977]), and a shear stress
on the average channel boundary due to form drag on the
boundary irregularities, tD. This partition of shear stress can
be written as

tT ¼ tSF þ tD ð1Þ

The ‘‘skin friction’’ is the result of fluid stresses acting on
the boundary that arise from there being a no-slip condition
at the wall. The ‘‘drag stress’’ is the result of pressure forces
acting on the surfaces of elements which protrude into the
flow. Flow past a protruding topographic element creates a
pressure differential on the element between its upstream
and downstream sides that is highly dependent on its shape
(or form). This pressure differential produces a force (or
form drag) on the element. The drag stress is the form drag
on the element divided by the area of boundary over which
the drag force is applied, which depends on the spacings of
the topographic elements comprising the boundary.
[12] Because of the high Reynolds number of river flows

and the relatively blunt shape of bank topographic elements,
the drag stress is usually the dominant shear stress trans-
mitted to the boundary. Owing to this dominance, the drag
stress must be carefully incorporated into any accurate near-
boundary flow model. The drag (F) on an individual
element is expressed by the equation

F ¼ 1

2
rCDHBu

2
ref ð2Þ

where r is the density of water, H is the protrusion height of
the element, B is the length of the direction perpendicular to
the x and z axis defined in Figure 2, uref is an appropriately
determined reference velocity, and CD is the empirically
determined drag coefficient of the element. For high
Reynolds number flows, such as occurred in the experiment
and as occur in rivers, CD is a function of the shape of the
object and is nearly independent of the Reynolds number.
Given H, B, and CD for a topographic element, (2) can be
used to determine the drag force on an object in any flow
scenario, provided that the appropriate uref is employed.
[13] The square of the reference velocity is defined to be

the average of the square of the velocity that would be
present if the element were removed from the flow. In the
case of a single element placed in a streamwise uniform
flow, this average is taken across the elements’s cross-
sectional area perpendicular to the flow (H B). When the
near-boundary flow is evolving in the streamwise direction,
such as for an element embedded in a series of regularly
spaced elements on a boundary, a robust estimate of uref can
be made by averaging the square of the velocity over the
volume the element occupies. The plan view of the aver-
aging domain for uref is depicted by the dashed Gaussian
curve in Figure 2. The model presented in this paper
provides a means by which uref can be determined for flow
over a sequence of elements on the bank using the geom-
etry, spacing, and CD of the elements, as well as, either a
specified far-field velocity away from the bank or the
specified total shear stress on the boundary. Through the
process of calculating uref, the form drag on the boundary,
the total roughness height of the boundary due to skin
friction plus form drag, zoT, and the spatially averaged
velocity field from the wall of the channel to the far-field
also are determined.
[14] For each topographic element in a long train of

regularly spaced similar topographic elements, the reference
velocity is primarily controlled by the wake of the upstream
element. This wake, in turn, is affected by the flow above it,
which is created by the resistance of the roughness elements
further upstream. In addition to the wake, uref is affected by

Table 1. Summary of Channel Characteristics for the Channels in Figure 1

Drainage Area, km2 Bankfull Width, m Bankfull Depth, m Bankfull Discharge, m3/s

Lost Creek, MT 68 4.5 1 5
Rock Creek, KS 32 8.8 1.6 20
Whitewater River, KS 1100 33 5.5 170

Figure 2. Diagram of the plan view geometry of topographic roughness elements and the internal
boundary layer, wake, and outer regions of flow. The dashed line of the downstream element indicates
that it is removed from the flow, and uref

2 for this element is the average squared velocity over this area.
The unit ‘‘cell’’ from l/2 to 3l/2 is the length over which the stresses are averaged.
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a growing internal boundary layer on the wall that begins at
the reattachment point of the separation zone on the
upstream form. The internal boundary layer is scaled by
the wake above it. Thus uref is affected by three interde-
pendent regions each having turbulent processes which
scale differently. They are: an internal boundary layer
region, a wake region, and an outer boundary layer region
(Figure 2). In order to calculate uref, the velocity field of
each region must be determined.
[15] In keeping with the approach used by Smith and

McLean [1977] and McLean and Smith [1986], this model
describes the velocity field in each region separately and
joins the regions together using appropriate matching con-
ditions. This approach is based on the assumption that the
turbulence in each region is governed by low-order mo-
mentum balances. The alternatives to this approach are
either to solve the Reynolds-averaged Navier-Stokes equa-
tions using a turbulence closure capable of describing the
complicated flow regions or to perform a direct numerical
simulation of the nonaveraged equations. The computational
intensity of the latter method make it not well suited for
describing the wide variety natural configurations that are of
interest in this study. Computational fluid dynamic models
following the former approach are now being used to study
the flow over complex bed topography [e.g., Lane et al.,
2004]. While it is likely that these methods will eventually
be employed successfully to address problems involving
complex bank topography, simpler semianalytic approaches,
such as the one presented here, are sufficient to gain the
desired insight into the problem.

3.1. Three Flow Regions

[16] The lowest region of flow can be described by a
growing internal boundary layer that begins at the reat-
tachment point, R, of the separation zone of the upstream
element. The accelerating flow in this region is initially
laminar but quickly becomes turbulent for the flow con-
ditions of in most rivers. Therefore, for most of the
internal boundary layer, the velocity can be described by
the turbulent law of the wall, which is given by the
equation

u ¼
u*IBL

k
ln

z

zoSF
ð3Þ

where k is von Karman’s constant = 0.408 [Long et al.,
1993], z is the distance away from the boundary, zoSF is the
local roughness height of the boundary without the
topographic elements, and u*IBL is the shear velocity inside
the internal boundary layer, which is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
tIBL=r

p
.

Here tIBL is the local skin friction shear stress that would be
present if the object were removed from the flow. This stress
is similar but not equivalent to the actual skin friction shear
stress acting on the surface of the roughness element, tSF. In
addition to being affected by a growing internal boundary
layer, the actual skin friction shear stress on the topographic
element also is affected by pressure gradients produced
from flow past the object, which cause acceleration of the
fluid on the upstream side of the element and flow
separation downstream from the crest. For broad, low
topographic features, such as dunes, the spatial average of
tSF is very close to the average of tIBL.

[17] The thickness of the internal boundary layer is
estimated here using an approach suggested by Miyake
[1965]. This approach is based on the assumption that the
rate of vertical diffusion of the boundary layer is related to
the local shear velocity. From this assumption, the slope of
the internal boundary layer height is given by

dd
dx

¼
gu*IBL
ud

ð4Þ

where d is the boundary layer height, ud is velocity at the top
of the boundary layer, and g is a constant of order 1. After
substituting ud from the logarithmic profile given by (3) but
evaluated at z = d into (4), equation (4) may be integrated
with the initial condition that d = zoSF at x0 = x � R to give
an implicit expression for d, which is

d
x0

ln
d

zoSF

� �
� 1

� �
¼ gk ð5Þ

where x0 is the distance downstream from the beginning of
the turbulent boundary layer. Using the value of 1.25 for g,
(5) has been shown by Walmsley [1989] to give good
agreement with atmospheric measurements of internal
boundary layers in wind profiles over a change in the
surface roughness.
[18] The wake region above the internal boundary layer is

modeled using Schlichting’s far-field wake solution
[Schlichting, 1979], which was used by McLean and Smith
[1986] to model the wakes of dunes. The wake solution of
Schlichting and Gersten [2000] could be used just as well.
Both are similarity solutions obtained from the linearized
momentum integral, which use the assumption that the
velocity deficit, or difference between the velocity inside
and outside the wake, is small. This assumption usually
becomes valid at greater distances downstream from objects
than are of interest here. It appears, however, that the wake
evolves to exhibit some degree of self-similarity much
before the far-field assumption becomes valid. Placing the
centerline of the wake on the boundary, the Schlichting
solution is given by

u ¼ ub 1� g xð Þf z� h
b

� �h i
ð6Þ

where

g xð Þ ¼ A2

xþ xo

CDH

� ��1=2

and f
z� h
b

� �
¼ 1� z� h

b

� �3=2
� �2

In these equations, A2 is a constant, x is the distance
downstream from the center of the object producing the
wake, z is the distance away from the reference level of the
roughness elements, z = h is the surface of the boundary, b
is the wake thickness, CD is the drag coefficient of the
object, H is the height of the upstream object, ub is the
velocity at the top of the wake, and xo is the virtual origin,
which, in this problem, is taken to be equal to zero. In
principal, the x axis should conform to the surface of the
boundary containing the roughness elements; however, for
simplicity, the x axis is approximated to be along the
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reference level of the roughness elements as shown in
Figure 2.
[19] The wake thickness is given by the equation

b ¼ 2A1CDH
xþ xo

CDH

� �1=2

ð7Þ

where A1 is a constant. The constants A1 and A2 are equal toffiffiffiffiffi
10

p
b and

ffiffiffiffiffi
20

p
/(18b), respectively, where b is an

empirically determined constant that sets the eddy viscosity
within the wake. Schlichting determined b to be 0.18 using
velocity measurements behind a circular cylinder. Given
that the centerline of the wake has been replaced by a solid
boundary, it is expected that the constant for this application
may differ somewhat from that determined by Schlichting,
and it will be left to be determined empirically from the
measurements of Hopson [1999]. It is important to note that
parameters CD, H, and b in (6) and (7) are tied to the
element producing the wake and not the element for which
the reference velocity is to be calculated. For a regular
sequence, however, these parameters are the identical for
each element.
[20] The internal boundary layer and wake are matched

by equating the velocity at the top of the boundary layer to
the velocity of the wake at z = d. This matching condition
results in a discontinuity in shear at this level, but is retained
for its simplicity. The average skin friction based shear
velocity for the ‘‘cell’’ can then be related to ub by

u*IBL

D E
¼ a1ub ð8Þ

where h i denotes a spatial average and

a1 ¼
1

li

Z x2

x1

1� g xð Þf d
b

� �� �
1

k
ln

z

zo

� �� ��1

dx ð9Þ

In this equation, the subscript i refers to the ‘‘cell’’
containing the element for which the reference velocity is
needed; the subscript i–1 refers to the upstream ‘‘cell’’
containing the wake-producing element. The upper limit of
integration is x2 = (li�1)/2 + li, where li and li�1 are the
widths of the current and upstream cells. The lower limit
depends on whether the separation zone extends into the
unit cell. If it does, x1 = Ri�1, and if not, x2 = (l i�1)/2,
where Ri � 1 is the position of the upstream reattachment
point. In this paper, the value of R for an element is obtained
from (6) as the position of zero wake velocity at the
boundary, which is given by CDH A2

2.
[21] The loss of momentum from drag and skin friction

on the roughness elements causes momentum to diffuse
inward toward the boundary and, in an equilibrium situa-
tion, produces a logarithmic velocity profile given by

u ¼
u*T

k
ln

z

zoT

� �
ð10Þ

where u*T =
ffiffiffiffiffiffiffiffiffiffi
tT=r

p
and zoT is the roughness height due to

skin friction plus form drag. Superimposed on this flow, are
the accelerations and decelerations associated with the
approximately inviscid response of the flow to the

undulations of the topographic elements on the boundary
[see McLean and Smith, 1986; Nelson and Smith, 1989].
This response will not be addressed in this study because it
does not significantly affect the spatially averaged flow
properties, which are of primary interest here.
[22] The matching condition between the wake and the

outer region is specified by requiring that both the velocity
and shear between the two regions be continuous. For
simplicity, this condition is enforced only above the center
of the element, which corresponds to the streamwise posi-
tion x = xc = (li + li�1)/2. The velocity matching condition
leads to the expression for ub:

ub ¼
u*T

k
ln

zm

zoT

� �
1� g xcð Þf zm

b xcð Þ

� �� ��1

ð11Þ

where zm is the matching height. The shear matching
condition leads to an implicit sixth-order polynomial
expression for zm. The only physically meaningful root of
this polynomial is

zm ¼ �a2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � 4a1a3

p
2a3

" #2=3

ð12Þ

where

a1 ¼ 1� g xcð Þ

a2 ¼ � g xcð Þ
b xcð Þ3=2

3 ln
zm

zoT

� �
� 2

� �

a3 ¼
g xcð Þ
b xcð Þ3

3 ln
zm

zoT

� �
� 1

� �

Given an initial guess for zm, (12) can be solved by iteration
to find zm. A complete match in shear is not possible for
broader forms, and in these cases the real component of (12)
is taken to provide the level for the closest match.
[23] Equations (3), (6), and (10) together with the match-

ing conditions fully specify the velocity field, u(x, y), that
would be present if the object were removed from the flow.
Having specified this field, the reference velocity for the
drag equation is determined by averaging the square of this
field over the space that the element occupied. For a two-
dimensional flow this average is given by the equation

u2ref ¼
1

A

Z
A

u2 x; zð Þ dA ð13Þ

where A is the plan view area of the element. The plan view
area of a Gaussian shape is given by Hs

ffiffiffiffiffiffiffiffi
p=2

p �
erf( xdn�xcffiffi

2
p

s
) �

erf(
xup�xcffiffi

2
p

s
)
�
, where xup xdn, and xc are the streamwise

positions of the upstream end, downstream end, and center
(crest) of the element, respectively.

3.2. Closing the Solution

[24] Depending on the application, the solution is closed
by specifying either the total boundary shear stress or a
velocity in the outer region. For uniform flow over a
sequence of topographic elements on a channel bottom or
on a floodplain, the total boundary shear stress is known
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from the depth-slope product. In the case of topographic
elements on a bank, however, the total stress on the bank is
not known a priori, because it depends on the relative
roughnesses of the bank and the bed. In this situation it is
more convenient to close the problem by specifying a
velocity at a level in the outer region of flow. This velocity
can be measured in the field or calculated using methods
such as the one described by Kean and Smith [2004].
Because banks are the focus of this chapter, the solution
will be presented in terms of a specified outer velocity;
however, the steps can be easily modified to accommodate a
specified boundary shear stress.
[25] In order to close the solution using either parameter,

the drag on the topographic elements must be related to the
properties of the outer flow through (1). Using (2), the drag
stress may be expressed as

tD ¼ 1

2
rCD

H

l
u2ref ð14Þ

If the average skin friction stress, tSF, is expressed in terms
of htIBLi 
 r hu*IBLi2, then the total stress on the boundary,
tT, can be written as

tT ¼ ru2
*
¼ r ao u*IBL

D E2
� �

þ 1

2
rCD

H

l
u2ref ð15Þ

where a0 is an estimate of the ratio u*SF/hu*IBLi, which in
these calculations is taken to be 1. The overall error incurred
by this approximation is minimal, because for these kinds of
topographic features the skin friction stress is typically an
order of magnitude less than the drag stress. Using these
equations the outer flow parameters, zoT and u*T, can be
determined by iteration. Initial guesses of zoT and u*T are
first made that match the specified velocity at its level. Once
specified, hu*IBLi and uref can be determined using (8) and
(13). These values can then be used to obtain improved
estimates of u*T and zoT using (15) and (10). The procedure
is repeated until the solution converges.
[26] An important feature of the solution is that the total

roughness height, zoT, of a regular sequence of elements is
independent of the magnitude of the velocity in the outer
region. This is not immediately apparent from the equations
above; therefore it is shown in an Appendix. The same is
true for a boundary of fixed grains in hydraulically rough
flow, where zo only depends on the geometry of the
boundary. The independence zoT on the flow for a regular
sequence greatly simplifies the computation of the three-
dimensional streamwise flow field near banks with small-scale
roughness.

4. Laboratory Experiments

[27] The experiments by Hopson [1999] were conducted
using a recirculating, variable slope flume. The walls were
painted steel and the bottom was covered by 7-mm
diameter gravel cemented in place. Velocity measurements
used for determination of the drag coefficient of the
roughness elements were made using a Prandtl tube and
differential pressure transducer. Additional velocity mea-
surements were made in the center of the flume using a
partially ducted rotor current meter [Kean, 1998]. The

Gaussian-shaped roughness elements were made out of
fiberglass cast from carefully built wooden molds. Devia-
tions of the elements from the exact Gaussian shape were
within 1 mm normal to the exact surface [Hopson, 1999].
Each type of element had the same H but different ratios
of s/H. The dimensions of three of the types are shown in
Figure 3. The flat plate (s/H = 0) provided an upper
bound on the results. An intermediate Gaussian form with
s/H = 1 is not included in the present analysis because
there appears to have been some error in the measurements
for that element. The drag force on a roughness element
was determined by measuring the strain in an aluminum
bar connected to the element at one end and fixed at the
other end to a rigid frame above the flume. Both the
velocity and force measurements were averaged over 4 min
to remove the turbulent fluctuations.
[28] Two classes of force measurements were made for

each type of bank element in the Hopson [1999] experi-
ment. The first class was made on a single element on the
wall and was used together with velocity measurements to
determine the drag coefficients for each type of roughness
element. The measured drag coefficients for the three
elements in Figure 3 are plotted as a function of s/H in
Figure 4. The fit to the data is given by

CD ¼ 1:79 exp �0:77
s
H

� �
ð16Þ

The second class of force measurements were made on an
element placed in an array of ten identical elements evenly
spaced along the wall as shown in Figure 5. These
measurements were made to determine the effect of spacing
on the drag on the elements. The force was measured on the
eighth form downstream, where the flow had reached
equilibrium. The spacing, l, of the elements was varied
from a minimum spacing where the elements were almost
touching (l = 7s to 6.5s for the two Gaussian elements, and
l = 4 cm for the flat plate) to a maximum spacing of 60 cm
apart. For the very close spacings of the flat plate, the

Figure 3. Shape and dimensions of three of the roughness
elements used in the Hopson [1999] experiment. Figure 3
is drawn with the correct aspect ratio. The roughness
elements extended the entire depth of the flow. The shape
of the roughness elements is given by the equation z =
H exp[(�x2/(2s2))].
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separation zone extended the full distance between plates.
These latter cases for the flat plate are not considered in this
paper.

5. Comparison to Laboratory Measurements

[29] The model is tested by comparing the measured and
predicted drag forces on individual elements in a regular
sequence. To account for the smooth wall of the experiment,
the formulation for the flow in the internal boundary layer
was changed to accommodate laminar flow near the bound-
ary. Because of the small thickness of the internal boundary
layer the reference velocity in the drag equation could be
approximated by averaging only the wake velocity over the
volume of the element. The empirical wake constant, b,
which scales the eddy viscosity in the wake, was back-
calculated from the force measurements. If the model
contains the basic physics of the problem, a single value
of b should provide a reasonable prediction of the measured
forces for all types of forms and for a wide range of
spacings. Figure 6 shows the value of b needed by the
model to have perfect agreement with each of the measured

values. This value will be referred to as b0. For spacings
greater than l/H = 10, b0 for each type of element is nearly
constant with spacing, and spans a relatively narrow range
of values between 0.22 and 0.25. In the very near-field
(l/H < 10), however, b0 decreases with decreasing spacings
of the elements.
[30] The trends in the very near-field values of b0 indicate

that the drag and wake of the closely spaced elements is
affected by the pressure field of the upstream element and
its separation zone. These effects are not included directly in
the present model. Rather than adopt a more sophisticated
modeling approach for the near-field flow, the present
model is retained for its simplicity, and the near-field is
adjusted empirically through b0 as a function of spacing.
This simple approach is sufficient to provide an adequate
characterization of the flow structure. The near-field fit of b
is determined by regression and has the form

b ¼ bfar 1� exp �c
l
H

� �� �
ð17Þ

where bfar is the empirically determined far-field value of b,
and c is an empirical constant. In order to provide the best
model for roughness elements characteristic of natural
streams and rivers, which almost always have values of s/H
greater than 1/2, the Gaussian elements are treated
separately from the flat plate in the regression. For the
Gaussian elements, the values of b0 are weighted by the
drag coefficient, because the predicted drag forces for
steeper-shaped elements are more sensitive to the value of
b. This gives bfar = 0.226 and c = 0.353. For the flat plate,
the values of bfar and c are determined to be 0.241 and
0.515, respectively. The values for bfar for the Gaussian
elements and the flat plate are not substantially different
from the value of 0.18 determined by Schlichting [1979].
By changing the value of b for close spacings, the model is
essentially accounting for near-field effects through a
change in the eddy viscosity of the wake. A lower value
of b means that the velocity deficit of the wake does not
diffuse as fast in the near field.
[31] Comparisons of the measured and calculated forces

and velocities using (17) are given in Figures 7–9. Those
for the forces are shown in Figures 7 and 9a. In general, the
calculated drag forces for the elements are in reasonable
agreement with the measured forces. Forces calculated

Figure 5. Plan view of the series of 10 regularly spaced roughness elements in the Hopson [1999]
experiment.

Figure 4. Measured drag coefficients of the three rough-
ness elements shown in Figure 3. The fit to the data is given
by (16). Most natural roughness elements on the banks of
streams have 0.5 < s/H < 2. The error bars are ±10% of the
measured value.
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using a constant b that is equal to bfar for the flat plate and
Gaussian elements are also shown for comparison. Using a
constant b results in a difference between the measured and
calculated forces that is within 20% for all spacings of the
Gaussian elements. A comparison of the measured and
calculated velocity profiles for the minimum, maximum,
and an intermediate spacings of the elements is shown in
Figures 8 and 9b. In general, there is reasonable agreement
between the measurements and the calculated outer profile.
The greatest deviation is for the closest spacing of the
broadest form. This discrepancy may be because the mea-
sured spatially averaged velocity for the broadest form was
defined by fewer measurements in the streamwise direction
than for the other Gaussian form. Figure 8 also shows the
dependence of the wake profile on l and CD. As the spacing
increases the growth in the wake is matched by a decrease
in the velocity deficit. For a given spacing, an increase in
the drag coefficient causes an increase in the wake height
and the velocity deficit. The match in slope between the
wake and calculated outer velocity profile is better for larger
velocity deficits.

6. Implications for Velocity and Boundary
Shear Stress

[32] The effects of drag on small-scale bank topographic
features on the velocity and boundary shear stress fields are
demonstrated using a channel based on the geometry and
roughness characteristics of a reach near USGS streamflow
gauging station, 12323840, Lost Creek near Anaconda, MT.
The gravel bedded channel is very narrow and has rough
banks as shown in Figure 1a. Quantifying the flow resis-
tance of the banks and including the effects of the banks on
the boundary shear stress field is essential for making
accurate calculations of flow and sediment transport in
narrow, rough channels such as Lost Creek [see Kean and
Smith, 2005]. The model in this paper is used to determine

the roughness height of the bank ((zoT)bank) from the
characteristic size, shape, and spacing of the bank topo-
graphic features of Lost Creek. The value of (zoT)bank and an
estimate of (zoT)bed determined from pebble counts is then
used by the model of Kean and Smith [2004] to compute the
reach-averaged velocity field and boundary shear stress
distribution for a bankfull flow. Their model, which is an
adaptation of the theoretical model of Houjou et al. [1990],
includes the effects of lateral stresses on the velocity and
boundary shear stress fields.
[33] As shown in Figure 1a, the undulations of the bank

surface of Lost Creek can be well approximated by a series
of Gaussian shapes. Although the banks of Lost Creek are
composed of a spectrum of different sized roughness
elements, the irregular surface can be modeled as a regular
sequence of identical roughness elements defining a surface
that would produce the same spatially averaged flow
properties. The characteristic geometry of this regular
sequence can be specified in terms of the moments of the
statistical distributions of the geometric properties of the
measured roughness elements. The conversion of an irreg-
ular sequence of Gaussian roughness elements into an
equivalent regular sequence is the subject of the companion
paper [Kean and Smith, 2006]. On the basis of two sets of
roughness measurements, which include the one shown in
Figure 1a, the characteristic geometry of the Gaussian-
shaped bank undulations is H = 18.6 cm, s = 12.8 cm,
and l = 112 cm. Using equation (16), the drag coefficient
of this feature is found to be 1.05. The surface of the
undulations is assumed to have a skin friction roughness
height equal to 0.0005 m. The skin friction roughness
height could have been estimated from an analysis of
the deviations of the Gaussian fits to the measured sur-
face, which is described by Kean and Smith [2005, 2006].
Using the equations in the Appendix, the total rough-

Figure 7. Comparison of measured (dash symbols with
error bars) and calculated drag forces (solid and dashed
lines). The solid lines are calculated using the expression for
b given by (17). The dashed lines are calculated using b =
bfar, which is 0.226 for the Gaussian elements (s/H = 2/3
and s/H = 4/3) and 0.241 for the flat plate (s/H = 0). The
error bars are ±10% of the measured values based on an
error analysis of the experimental data.

Figure 6. Back-calculated values of the empirical wake
constant, b, needed to have perfect agreement between the
measured and predicted forces. The solid line is the fit to
the data for the Gaussian-shaped elements given by (17). The
dashed line is the fit to the data for the flat plate given by
(17). For reference, b in the wake of a cylinder in uniform
flow has been measured to be 0.18 [Schlichting, 1979].

F04009 KEAN AND SMITH: FORM DRAG ON TOPOGRAPHIC FEATURES, 1

9 of 13

F04009



ness height of the modeled bank is determined to be
0.028 m. The roughness height of the bed is specified from
the size distribution of the bed material using the relation
(zoT)bed = 0.21D84z, where D84z is diameter of the 84th
percentile of the size distribution of the vertically oriented
axis [Wiberg and Smith, 1991]. The value of D84z deter-
mined from an aggregate of two Wolman pebble counts
[Wolman, 1954] was 3.8 cm. The cross section used in
the computation is based on an average of 49 cross sec-
tions, spaced approximately 1 m apart, and surveyed on
10 November 2004.
[34] Figure 10 shows calculated distributions of reach-

averaged velocity and boundary shear stress for a bankfull
flow (case 1). For comparison, total boundary shear stress
distributions also are shown for (case 2) a calculation having
the same bank roughness height as the bed ((zoT)bank =
(zoT)bed = 0.008), and (case 3) a calculation that has equal
bed and bank roughness but does not include the effects of
lateral stress on the velocity and boundary shear stress. In the
later case, the boundary shear stress is given by the local

depth-slope product, and the velocity field is defined by
vertical profiles based on the two-part eddy viscosity of
Rattray and Mitsuda [1974] (see Wiberg and Smith [1991]).
Figure 10b shows that the additional flow resistance created
by drag on the topographic features has a substantial effect
on the distribution of stress in the channel. More fluid stress
is transmitted to the rough banks, which, in turn, reduces the
near-bank bed stress relative to what it would be if the banks
were smoother or if lateral stresses were neglected.
[35] A summary of the flow and roughness properties for

all three cases is listed in Table 2. Table 2 shows that the
flow resistance created by the bank topographic features
causes an 18% reduction in discharge from the case with
equal bed and bank roughness. Neglecting both the drag on
the topographic bank features and the effects of lateral
stresses results channel results in a 56% overestimate in
discharge. Table 2 also contains back-calculated values of
the Manning coefficient for each case. A description of
another application of the methods described in this paper to
the data from the two other streams presented in Figure 1

Figure 8. Comparison of measured (symbols) and calculated (line) velocities at wavelengths including
the closest and farthest spacings for each of the three element types. The measured velocities are averaged
over one wavelength in the streamwise direction, and the calculated profile is made at x = l , which is the
center of the measurement element. The entire wake profile has been drawn to show the top of the wake.
The internal boundary layer profile is not shown. The reference velocity used to calculate the drag on the
element is found by averaging the calculated velocity profile over the plan view area of element. The
limit of this average in the z direction is 0.03 m, the height of the elements.
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(Rock Creek and Whitewater River) is given by Kean and
Smith [2005].

7. Summary and Conclusions

[36] This paper demonstrates that including the effects of
drag on natural topographic features is essential for deter-
mining the flow and boundary shear stress fields near
boundaries with small-scale roughness. This can be done
by explicitly calculating the drag on the features using its
drag coefficient and an appropriate reference velocity that
includes the wake of the upstream feature. Field measure-
ments of surface topography showed that the shape of a
wide variety of natural topographic bank features can be
approximated suitably by a Gaussian curve. The drag
coefficients of these shapes can be estimated from the
laboratory measurements of Hopson [1999]. A simple
model for flow over a regular sequence of topographic
features is validated in this paper using the Hopson [1999]
measurements. The experimental data set also was used to
determine the constant that scales the eddy viscosity in
the wake of the Gaussian features. Using this constant, the
model is in good agreement with the measurements of the

widely spaced features and is within 20% for the close
spacings. The approach is successful because it identifies
the appropriate turbulent length scales of the flow regions
used to determine the reference velocity. An empirical
adjustment is developed to account for the nonlinearities
in the near-field wake and improve the agreement for
closely spaced features.
[37] The effects of topographic features on reach-

averaged patterns of velocity and boundary shear stress
can be determined by combining the methods described in
this paper with a flow model such as that of Kean and Smith
[2004]. Application of such an approach to a channel based
on that of Lost Creek, near Anaconda, MT, demonstrates
that drag on topographic bank features substantially reduces
the near-bank velocity and boundary shear stress. In narrow
channels the influence of the bank extends to the center of
the channel.
[38] The methods presented in this paper provide a

foundation for determining the near-bank flow and bound-
ary shear stress fields that control lateral erosion in natural
channels, as well as making accurate predictions of stage-
discharge relations. Owing to the fact that drag on a feature
is primarily controlled by the wake of the feature upstream,
a generalization of the model presented in this paper is
needed to address the flow effects of irregularity in the size,

Figure 10. Calculated reach-averaged (a) velocity and
(b) boundary shear stress distributions for a channel
modeled after Lost Creek near Anaconda, Montana. The
cross section in Figure 10a is drawn without any vertical
exaggeration. The stress profiles have been normalized by
the depth-slope product in the center of the channel, to =
rghoS = 147 N/m2. Also shown is the boundary shear stress
distribution for the case with (zo)bank = (zo)bed = 0.008 m
(dashed line) and the stress profile given by the local depth-
slope product (dotted line).

Figure 9. Scatter plot comparisons of (a) calculated and
measured forces and (b) calculated and measured velocities
for the data shown in Figures 7 and 8. The solid line is the
line of perfect agreement. The slope, intercept, and r2 of the
line of best fit (not shown) through all of the data are listed
in the top of each plot.
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shape, and spacing of roughness elements. This subject is
the focus of our companion paper [Kean and Smith, 2006].

Appendix A: Roughness Height for a Regular
Sequence of Topographic Elements

[39] The roughness height for a regular sequence of
topographic features can be determined from the geometric
properties of the features. This is done by first expressing
the reference velocity, uref, as fraction of the velocity at the
top of the wake, ub:

uref ¼ a2ub ðA1Þ

where

a2 ¼
1

AIBL

Z
AIBL

a1

k
ln

z

zoSF

� �
dAIBL

þ 1

Awake

Z
Awake

1� g xð Þf z

b

� �h i
dAwake ðA2Þ

and AIBL is the plan view area of the element within the
internal boundary layer, and Awake is the plan view area
within the wake. The coefficient a2 does not contain any
flow-related parameters. Substituting (A1) into (15) and
dividing the result by tSF gives

tT
tSF

¼ 1þ 1

2
CD

H

l
a2

a0a1

� �2

ðA3Þ

The square root of (A3) gives the ratio between the shear
velocities of the outer flow and the internal boundary layer,
(u*T /u*SF), and substituting u*SF = a0a1ub into that
expression yields an expression for (u*T /ub) that is in
terms of known geometric parameters:

u*T

ub
¼ a0a1 1þ 1

2
CD

H

l
a2

a0a1

� �2
" #1=2

ðA4Þ

[40] This expression can be substituted into the velocity
matching condition (11) between the wake and the outer
profile to give an alternative expression to (12) for the
matching height, zm. Imposing the shear matching condition
leads to a different sixth-order polynomial expression for
zm. As a result of employing (A4), the coefficients of this
polynomial do not depend on the zoT. Taking the physically
meaningful root of this polynomial leads to an expression
for the matching height, which is

zm ¼ b xcð Þ
21=3

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

u
*T

ub

� �,
3kg xcð Þð Þ

vuut
2
4

3
5
2=3

ðA5Þ

Having determined (u*T / ub) and zm, the matching condition
(11) can be used to obtain an expression for the roughness
height for a regular sequence of elements in terms of known
parameters:

zoT ¼ zm exp �k
u
*T

ub

� ��1

1� g xcð Þf zm

b

� �h i( )
ðA6Þ

Notation

A plan view area of element.
AIBL plan view area of element within internal

boundary layer.
Awake plan view area of element within wake.
A1, A2 constants in wake solution.

B length of element along axis perpendicular to x
and z coordinates.

CD drag coefficient of an individual element.
D84z diameter of 84th percentile of size distribution

for vertical axis of bed material.
F drag force on an individual element.
Fr Froude number.
H protrusion height of element.
Q discharge.
R reattachment point.
S water surface slope.

a1,a2,a3 coefficients in equation for zm.
b(x) wake thickness.

c empirical constant.
f(x) vertical structure function in wake solution.
g(x) horizontal structure function in wake solution.
ho depth in center of channel.
n Manning coefficient.
u velocity in downstream direction.
ub velocity at top of wake.
ud velocity at top of internal boundary layer.

u*IBL shear velocity inside internal boundary layer.
u*SF shear velocity acting on surface of element.
uref reference velocity.
x downstream coordinate.
xc x position of crest of element.
xdn x position of downstream end of element.
xo virtual origin.
xup x position of upstream end of element.
x0 distance downstream from beginning of internal

boundary layer.
z distance away from reference level of elements.

zm matching level between wake and outer flow
region.

zoSF roughness height due to skin friction.
zoT roughness height due to skin friction plus form

drag.

Table 2. Roughness and Flow Parameters for Lost Creek Bankfull Calculationsa

Case Lateral Stress (zoT)bed, m (zoT)bank, m (tT/to)center Q, m3/s Manning n

1 yes 0.008 0.028 0.60 5.26 0.037
2 yes 0.008 0.008 0.66 6.38 0.030
3 no 0.008 0.008 1.00 8.18 0.024
aDepth = 1 m, slope = 0.015, area = 2.53 m2, and wetted perimeter = 5.11 m.
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(zoT)bank bank roughness height due to skin friction plus
form drag.

(zoT)bed bed roughness height due to skin friction plus
form drag.

h i average of variable over unit cell.
a0 ratio u*SF/hu*IBLi.
a1 ratio hu*IBLi/ub.
a2 ratio uref/ub.
b empirical constant scaling eddy viscosity in

wake.
bfar empirically determined far-field value of b.
b0 value of b needed by model to have perfect

agreement with measurements.
d height of internal boundary layer.
g constant in internal boundary layer equation.
h value of the z coordinate at the boundary.
k von Karman’s constant.
l spacing of elements.
r density of water.
s streamwise length scale of element.
tD form drag shear stress.

tIBL skin friction shear stress present if element
where removed from flow.

to depth-slope product shear stress.
tSF skin friction shear stress on surface of element.
tT total shear stress.
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