Industrial Applications

John W. Lund Director

Geo-Heat Center Oregon Institute of Technology Klamath Falls, OR USA

INTRODUCTION

- Many applications over a wide range of temperatures – however, the use is normally associated with high temperature requirements: >212°F, such as:
 - Evaporation
 - Drying (fish, grain, timber, fruit, vegetables)
 - Distillation
 - Refrigeration
 - Washing and sterilization
 - Chemical extraction (salt, boric acid, silica)
 - Pulp and paper manufacturing

ZINC EXTRACTION

- CalEnergy Operating Corp. \$200 million Mineral Recovery Project
- Located on the shore of the Salton Sea in southern California Imperial Valley
- CalEnergy operates 10 geothermal power plants = 347 MWe
- 9,000 tons/hr brine at 600 ppm zinc
- Recover 33,000 tons/yr @ \$/0.50/lb = \$33 million/yr

HEAP LEACHING 1

- Used in gold recovery from Nevada mines
- Process consists of dripping a dilute sodium cyanide solution over a crushed ore pile or heap
- The gold, in solution, drains from the heap and extracted by a charcoal process producing a bar of impure gold (doré).
- The cyanide solution is then recycled

HEAP LEACHING 2

- Operation can recover up to 95% of gold
- Also, used for silver extraction
- Under normal circumstances in Nevada operation takes place mid-March to late-October (min. production temp. = 40°F)
- Using geothermal energy
 - Recovered enhanced by 5 to 17% by accelerating the chemical reaction
 - Year-around operation possible

HEAP LEACHING

Geothermal @ 180 to 210°F @ 350 to 1,000 gpm

Round Mtn – 95,000 tons of ore/day @ 1g/ton Florida Canyon – 13,000 tons/day @ 0.7g/ton

Round Mountain, Nevada

MILK PASTEURIZATION

- Plate heat exchanger's 3 sections:
- 1. Preheats incoming milk at 37°F by outgoing (pasteurized) milk to 160°F
- 2. Pasteurizes milk with geothermal water (in at 189°F and out at 171°F)
- Second Sec

Medo-Bel Creamery, Klamath Falls, Oregon

SLUDGE DIGESTION

- City of San Bernardino has a geothermal district heating system serving 14 major buildings = 13 MWt
- The city installed a primary anaerobic sewerage digester in 1983
- Process uses 136°F geothermal fluid which replaced methane fuel
- The digester, which uses living anaerobic microorganisms to feed on the organics, uses geothermal to assist the process

San Bernardino, California

AGRICULTURAL DRYING

- Two large geothermal onion and garlic dehydrators are located in NW Nevada
- These units can process 10,000 to 15,000 lbs of wet onions/hr – drying them from 85% to 5% moisture (output = 2,000 lbs/hr)
- 15,000 Btu/dry lb used = 100 billion Btu/yr (150 days period) – 210 to 120°F air
- Product used in soups, baked goods, salt, & seasoning as powders to slices

Noi'i O Puna 1985-89

CAUN.

Puna Geothermal Research Center

FISH DRYING- ICELAND

- Drying of cod heads 12,000 tons/yr
- Primary drying rack or conveyor-belt cabinet – 5 lbs/ft² @ 64 to 77°F – 24-40hrs –moisture content reduced from 82 to 55%
- Secondary drying in containers 72 to 79°F - 3 days – moisture content reduced from 55 to 15%
- Exported to Asia and Africa as a protein source

Rack drying cabinet for primary fish drying in Iceland

138ºF geo. 6 lbs/h 4t/yr dried

WEGGOODDE -----

Tomato drying - Greece

Batch Grain Drying

Rice dryer in Macedonia – 1360 kWt (4.6 mill. Btu/hr) 167°F resource - 95°F air – 10t/h – moisture 20% to 14%

SMALL FRUIT DRIER

- Designed for Los Azufres, Mexico
- Design (for pears, prunes, peaches):
 - Building 12 ft. x 4 ft. x 10 ft. high
 - Two trucks with 30 trays each
 - Each tray 3 ft. x 3 ft. x 2 in. high
 - Each tray will carry 33 lbs of wet fruit
 - Approx. one ton of fruit/cycle
 - Fruit dried from 80% to 20% moisture in 24 hr

Fruit drier in Mexico

TRUCK BASE DESIGN

TRAY DESIGN (30 partruck)

Trays

Details of the Los Azufres geothermal fruit dryer

End view of cabinet

SECTION B-B

495 -----

SECTION C-C

•15 MWe - 363°F •54 acres houses •186°F - 2000t/hr Flowers/plants •Feed/vegetables •650 employees

KILN TIMBER DRYING

- Two basic purposes of drying timber
 - Set the sap
 - Prevent warping
- Sap sets at 135 to 140°F
- Warping is prevented by establishing uniform moisture content throughout the thickness of the wood
- If left exposed to the sun (air drying)
 - Exterior loses moisture faster than the interior
 - Sets up stresses causes warping

Long-shaft, double track, compartment kiln with fans

GEOTHERMAL KILN OPS.

- 1.5 to 3 x energy to evaporate moisture from wood as it does from pure water
- Entering water temperature (geothermal) must be 15 to 25°F above temperature required in kiln
- Only 10 to 15% of heat used in geo. water
- Thus, discharge water can be cascaded for heating office buildings, greenhouses
- Since,175 to 195°F geothermal supply water will be wasted at 160 to 175°F.
- Using geothermal steam noncondensable gas can be a problem when steam condenses at HEX surface

Fletcher Challenge Forest Operation – Kawerau, NZ

ORADEA, ROMANIA

- Furniture Manufacturing
 - 175,000 ft³/yr of oak
 - 5,000 ft³ in 3 bins
 - 8 to 16 gpm of 212°F water
 - 122°F drying temperature
 - 2 weeks to 1 month per batch
 - Italian made dryer

Lumber drying – Oradea, Romania

SUMMARY

- Industrial use dominated by large facilities (onion dehydration, heap leaching, zinc processing)
- Small industrial uses include: laundries, mushroom growing, mineral water processing, grain drying, and an industrial park in Hawaii (experimental work)
- Higher temperature industrial applications include vegetable, fruit and timber drying/dehydration, refrigeration and enhanced oil recovery

CONCLUSIONS 3

• Power plant vs dehydration plant Dehydration Power plant plant \$50 mill. \$15 mill. Capital Expenditure **Gross Revenue** \$11 mill. \$18 mill. \$ 9 mill. \$10 mill. Net Revenue Resource require. 12,000 gpm 1,200 gpm Employees 15 75

*source: D. Mendive, Geothermal Development Assoc., Reno, NV

Thank you