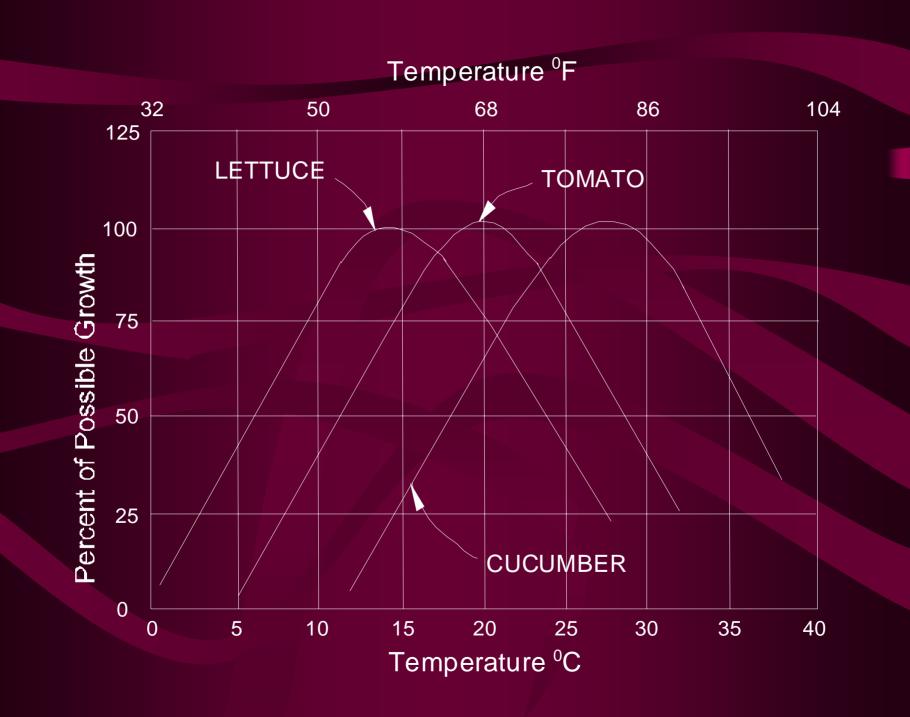

Greenhouse and Aquaculture Applications of Geothermal Energy

Presented by
Tonya "Toni" Boyd
Geo-Heat Center
Oregon Institute of Technology
Klamath Falls, OR
geoheat@oit.edu

Geothermal Greenhouse Heating


Geothermal Greenhouse Heating

- Geothermally heated greenhouses
 - Have been in place since 1970
 - 44 applications in the 9 western states in the US
 - Utilization factor of 0.30
 - Approx. 93 MWt installed capacity
 - Approx. 201 GWh/yr utilization
 - Many installation in over 30 countries

Geothermal Greenhouse Heating

- One of the most common uses of geothermal resources
- Using geothermal energy is fairly simple
 - Use off the shelf equipment
- Most greenhouse heating systems are adaptable to geothermal
- Growth can be optimized in a controlled environment

Geothermal Greenhouse Information Package

- Introduction
- Section 1 Crop Market Prices
- Section 2 Greenhouse Operating Costs
- Section 3 Crop Culture Information
- Section 4 Greenhouse Heating Systems
- Section 5 Greenhouse Heating Equipment Selection Spreadsheet
- Section 6 Greenhouse Heating with Geothermal Heat Pumps
- Section 7 Case Studies of Geothermal Greenhouse Operations
- Section 8 Farm Bill Information
- Section 9 Vendor Information
- Section 10 Other Information Services

Introduction

 Intended to provide a foundation of background information for developers of geothermal greenhouses

Section 1 – Crop Market Prices

- US wholesales price information for typical vegetable and flower crops grown in greenhouses
- US national and regional prices are included along with indication of seasonal variations
- Sources for current price information provided at the end of the section

- Outlines ranges of costs for a typical operation
 - Such as labor, utilities, plant stock, and mortgage components
- Market concerns and cost ranges for structure construction are also provided

- Greenhouse structure capital costs in the US varied with location
 - Total greenhouse costs (includes greenhouse and operating equipment) \$11.34 14.24/ft²
 (avg. 12.65/ft²) 1997 costs
 - Construction costs alone \$7.30 8.05/ft²
 (avg. \$7.44/ft²) 1997 costs
 - Land costs is a significant portion of the total capital investment

Depending on the region in the US, the operating budget distribution could look like this:

Labor	40-45%
Plants, supplies and materials	16-25%
Utilities (heating, lights, and water use)	6-16%
Loan Payment	17-19%
Other (miscellaneous)	8-10%

- Questions to ask yourself before you grow anything are:
 - What is my product?
 - How much can be produced in the greenhouse?
 - Who will be buying my product?
 - How much will they pay for my product?
 - How much will it cost to produce this type of crop?
 - Finally, is this enough to make a profit or break even?

Section 3 - Crop Culture Information

- Some parameters that can affect growth in a greenhouse are:
 - Temperature requirements, relative humidity,
 CO₂, lighting, dissolved oxygen, pH, electrical conductivity and disease issues.
- Abbreviated culture information is provided for:
 - Tomatoes, cucumbers, hydroponic lettuce, carnation, roses

Section 4 – Greenhouse Heating Systems

- Chapter 15 Greenhouses
 - from the <u>Geothermal Direct Use Engineering</u>
 and <u>Design Guidebook</u>
- Covers greenhouse construction, heating requirements, and greenhouse heating systems.
- Heating systems covered are finned pipe, standard unit heaters, low temperature unit heaters, fan coil units, soil heating and bare tube.

Section 5 – Greenhouse Heating Equipment Selection Spreadsheet

- A tool for evaluating the economics of various types of heating systems
- Seven systems are considered
 - Unit heaters (UH), finned pipe (FP), bare tube (BP), fan coil units (FC), combination fan coil/bare tube (FC/BP), low temperature unit heaters (GLW) and propane unit heaters (PP)

Section 6 – Geothermal Heaitng with Geothermal Heat Pumps

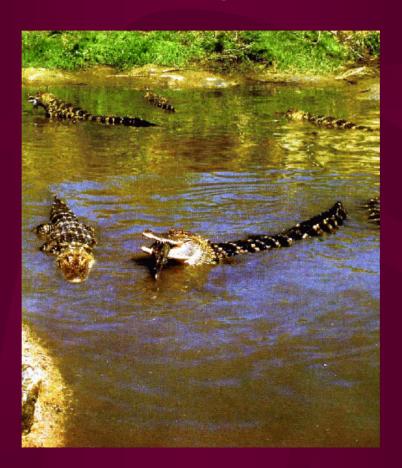
- Examines the feasibility of greenhouse heating with a geothermal heat pump system
- Closed- and open-loop systems are examined at four locations
- Net present value analysis is conducted for a 20-year life-cycle cost for various baseload fractions

Section 7 – Case Studies of Geothermal Greenhouse Operations

- Recent Case Studies of successful operations in the U.S.
 - Milgro-Newcastle Greenhouse, Newcastle, UT
 - Canyon Bloomers Greenhouse, Hagerman, ID

Section 8 – Farm Bill Information

- Information on the Farm Bill Initiative
 - Current link to the website
 - Information contained on the website
 - Links to the templates for geothermal direct-use and geothermal applications

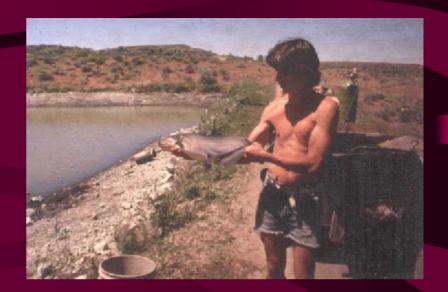

Section 9 – Vendor Information

- Provides a list of US vendors for
 - Components of geothermal systems
 - Greenhouse structures and equipment
 - Space heating equipment
 - Well pumps
 - Plate heat exchangers
 - Plant materials (seed and plants)
 - Hydroponic systems

Section 10 – Other Information Services

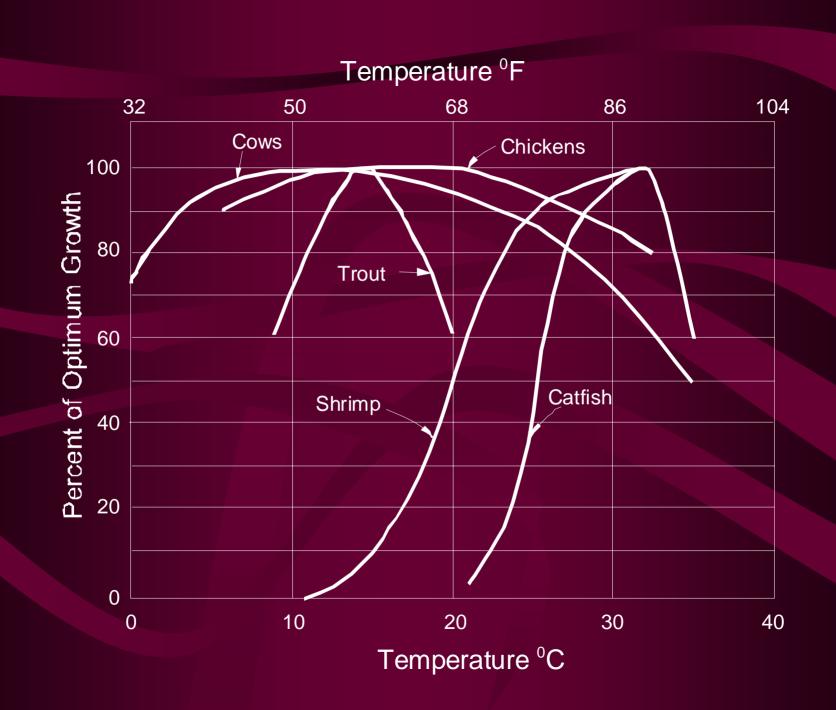
- Extensive list of sources including
 - State extension agencies
 - USDA state offices

Geothermal Aquaculture Pond and Raceway Heating


Geothermal Aquaculture Pond and Raceway Heating

- Geothermal aquaculture projects
 - Been in place since 1970
 - 48 applications in the 11 western states in the US
 - Utilization factor of 0.69
 - Approx. 133 MWt installed capacity
 - Approximately 800 GWh/yr utilization
 - (660,000 bbl of oil equivalent)
 - Many installation in 17 countries

Geothermal Aquaculture Pond and Raceway Heating


- One of the most common uses of geothermal resources
- Using geothermal energy is fairly simple
 - Use off the shelf equipment
- A number of freshwater or marine organisms can be raised
 - Including Tilapia, catfish, Malaysian prawns, tropicals, alligators and eels
- Enhanced production rates can be optimized in a controlled environment

Aquaculture Information Package

- Introduction
- Section 1 Market and Price Information
- Section 2 Water Quality Issues in Aquaculture
- Section 3 Culture Information
- Section 4 Pond and Raceway Heat Loss Calculations
- Section 5 Aquaculture and Geothermal Heat Pumps

Aquaculture Information Package

- Section 6 Case Studies of Geothermal Aquaculture Operations
- Section 7 Farm Bill Information
- Section 8 Aquaculture Bibliography
- Section 9 Aquaculture Glossary
- Section 10 State/Regional/University/ Extension Aquaculture Offices
- Section 11 State Aquaculture Permit Requirements

Introduction

 Intended to provide background information to developers of geothermal aquaculture projects

Section 1 – Market and Price Information

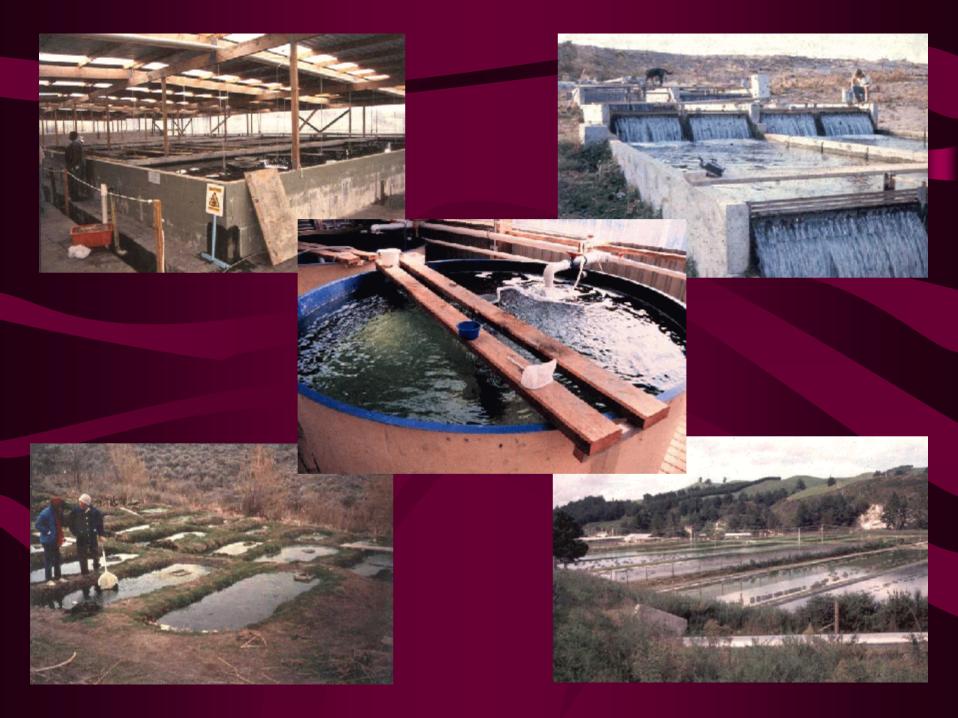
- Information on the current status of the catfish and Tilapia markets in the US
- The Catfish market
 - US production, pond acreage, type of production and end market served
- The Tilapia market
 - US production figures, current price data and brief summary of the international import volume

Section 2 – Water Quality Issues in Aquaculture

 A listing of some of the major water quality issues for aquaculture and explains the importance of these factors important for fish survival

- Temperature
- Dissolved oxygen
- Nitrogenous wastes
- pH
- Alkalinity
- Hardness
- Carbon Dioxide
- Salinity
- Chlorine
- Hydrogen sulfide

Section 3 – Culture Information


- Cultural information provided for the following species
 - Tilapia
 - Channel catfish
 - Prawns

Temperature requirement and growth periods for selected aquaculture species

	Tolerable	Optimum	Growth Period
<u>Species</u>	Extremes (°F)	Growth (°F)	to Market Size (mos)
Oysters	32 to 97	76 to 78	24
Lobsters	32 to 88	72 to 75	24
Penaeid Shrimp			
Kuruma	40 to ?	77 to 87	6 to 8 typ
Pink	52 to 104	75 to 85	6 to 8
Freshwater Prawns	75 to 90	83 to 87	6 to 12
Catfish	35 to 95	82 to 87	6
Eels	32 to 97	73 to 86	12 to 24
Tilapia	47 to 106	72 to 86	
Carp	40 to 100	68 to 90	
Trout	32 to 89	63	6 to 8
Yellow Perch	32 to 86	72 to 82	10
Striped Bass	? to 86	61 to 66	6 to 8

Section 4 – Pond and Raceway Heat Loss Calculations

- Chapter 16 Aquaculture
 - From the Geothermal Direct Use Engineering and Design Guidebook
- The maximum pond area that can be developed is restricted by the maximum heat available from the resource
- Heat losses to take into consideration are evaporation, convection, radiation and conduction
- Some ways to reduce heat losses are discussed such as surface covers, pond enclosures and thermal mass

Section 5 – Aquaculture with Geothermal Heat Pumps

- Examines the feasibility of aquaculture tank heating with a geothermal heat pump system
- Closed- and open-loop systems are examined for heating uncovered and greenhouse covered tanks at three locations
- Net present value analysis is conducted for a 20year life-cycle cost for various base-load fractions with natural gas-fired boiler peaking

Section 6 – Case Studies of Geothermal Aquaculture Operations

- Recent Case Studies of successful operations in the U.S.
 - "Gone Fishing" Aquaculture Project, Klamath Falls, OR
 - Fish Breeders of Idaho Inc., Hagerman, ID

Section 7 – Farm Bill Information

- Information on the Farm Bill Initiative
 - Current link to the website
 - Information contained on the website
 - Links to the templates for geothermal direct-use and geothermal applications

Section 8 – Aquaculture Bibliography

- Provides a list of useful aquaculture references in the areas of
 - General aquaculture
 - Economics
 - Culture systems
 - Broodstock
 - American eel
 - American lobster

- Channel catfish
- Freshwater prawns
- Lake trout
- Striped bass
- Tilapia
- Information is also provided on where to obtain these publications and how to order them

Section 9 – Aquaculture Glossary

- Defines typical terms used in the aquaculture industry such as
 - Broodstock
 - Fingerlings
 - Seine

Section 10 – State/Region/University / Extension Aquaculture Offices

 Contact information provided for a variety of technical experts in the US who may be of use to the aquaculture developer

Section 11 – State Aquaculture Permit Requirements

- Summarizes the permits and regulations impacting the aquaculture industry for the following states
 - Arizona, California, Colorado, Idaho, Montana,
 Nevada, New Mexico, Oregon, South Dakota,
 Utah and Washington
- The four main issues covered are
 - Water use, effluent discharge, production and marketing

How to Obtain These Publications

Available for downloading from the

Geo-Heat Center Website

http://geoheat.oit.edu

Downloadable Papers page

http://geoheat.oit.edu/pdf/pdfindex.htm