

UNITED STATES NUCLEAR REGULATORY COMMISSION ADVISORY COMMITTEE ON REACTOR SAFEGUARDS WASHINGTON, DC 20555 - 0001

September 21, 2005

The Honorable Nils J. Diaz Chairman U.S. Nuclear Regulatory Commission Washington, DC 20555

SUBJECT: REPORT ON TWO POLICY ISSUES RELATED TO NEW PLANT LICENSING

Dear Chairman Diaz:

During the 523rd meeting of the Advisory Committee on Reactor Safeguards, June 1-3, 2005, we met with the NRC staff and discussed two policy issues related to new plant licensing. We also discussed this matter during our 524th, July 6-8, 2005, and 525th, September 8-10, 2005 meetings. We had the benefit of the documents referenced. These policy issues were:

- What shall be the minimum level of safety that new plants need to meet to achieve enhanced safety?
- How shall the risk from multiple reactors at a single site be accounted for?

In SECY-05-0130, the staff recommends that the expectation for enhanced safety be met by requiring that new plants meet the Quantitative Health Objectives (QHOs), i.e., by applying the QHOs to individual plants. The staff maintains that this would represent an enhancement in safety over current plants, which are now required to meet adequate protection, but may not meet the QHOs. The staff argues that this position is consistent with the Commission's Policy Statement on Regulation of Advanced Nuclear Power Plants.

The staff proposes to address the risk of multiple reactors at a single site by requiring that the integrated risk associated with only new reactors (i.e., modular or multiple reactors) at a site not exceed the risk expressed by the QHOs. The risk from existing plants, which may already exceed the QHOs, is not considered.

We discussed these issues and concluded that use of the existing QHOs is not sufficient to resolve either of these issues. In considering the overall scope of the issues raised by the staff, we found it more apt and effective to reframe the two issues into the following questions:

1. What are the appropriate measures of safety to use in the consideration of the certification of a new reactor design?

- 2. Should quantitative criteria for these measures be imposed to define the minimum level of safety?
- 3. How should these measures be applied to modular designs?
- 4. How should risk from multiple reactors at a site be combined for evaluation by suitable criteria?
- 5. How should the combination of new and old reactors at a site be evaluated by these criteria?
- 6. What should these criteria be?
- 7. How should compliance with these criteria be demonstrated?

DISCUSSION

Question 1. What are the appropriate measures of safety to use in the consideration of the certification of a new reactor design?

The QHOs are criteria for the risk at a site and thus involve not only the design and operation of the reactor(s), but also the site characteristics, the number and power level of plants on the site, meteorological conditions, population distribution, and emergency planning measures. By themselves, the QHOs do not express the defense-in-depth philosophy that the Commission seeks to limit not only the risk from accidents, but also the frequency of accidents.

Although core damage frequency (CDF) and large, early release frequency (LERF) have been viewed by the NRC as light water reactor (LWR)-specific surrogates for the QHOs, they have come to be accepted as metrics to gauge the acceptable level of safety of certified designs and the acceptability of proposed changes in the licensing basis. They are measures of reactor design safety that incorporate a defense-in-depth balance between prevention and mitigation. Currently used values of these metrics have been derived from the QHOs. If they were no longer to be viewed as surrogates, acceptance values for these metrics could be independently specified and need not be derived from the QHOs. Thus, they would be fundamental characteristics of reactor design independent of siting and emergency planning requirements.

If these measures are no longer viewed as surrogates for the QHOs, the appropriate measure of a large release need not be restricted to "early" but could be a "large release frequency" (LRF) which would apply to the summation of all large release frequencies regardless of the time of occurrence. The LRF would thus have broader applicability to designs in which the release is likely to occur over an extended period.

A majority of the Committee members favors the use of CDF and LRF as fundamental measures of the enhanced safety of new reactor designs and not simply as surrogates for the QHOs.

In SECY-05-0130, the staff argues that it will be difficult to derive such measures for different technologies, although the staff proposes to include them as subsidiary goals in their technology-neutral framework document. Although the processes and mechanisms for failure and release will differ greatly for different reactor technologies, technology-neutral definitions in terms of a release from the fuel (the accident prevention/CDF goal) and from the containment/ confinement (the large release goal) seem feasible to us. For example, the CDF of a Pebble Bed Modular Reactor (PBMR), would be an indicator of the success criteria for the design measures intended to prevent release from the fuel of that module. It could be defined in terms of the frequency of exceeding a fuel temperature of 1600 °C.

Question 2. Should quantitative criteria for these measures be imposed to define the minimum level of safety?

In the current Policy Statement on the Regulation of Advanced Nuclear Power Plants, the Commission decided not to set numerical criteria for enhanced safety but rather focused on aspects which might make designs more robust. In addition, the Safety Goal Policy Statement was intended to provide a definition of "how safe is safe enough." If a plant would meet the QHOs at a proposed site, then the additional risk it imposes is already very low compared to other risk in society. It now seems possible to build economically competitive reactors with risks at most sites that would be much lower than implied by the QHOs. The Electric Power Research Institute (EPRI) and European Utility Requirements Documents specify CDF and LERF values that would provide large margins to the QHOs for virtually all sites. An explicit commitment to lower values of CDF and LRF would be responsive to the Commission's desire for enhanced safety and may have significant impact on public perceptions and confidence.

We considered the following alternatives, identifying arguments in favor of each. Since such a decision has broad practical implementation and policy implications, we recommend that the staff further explore the consequences of these (and possibly other) choices as a basis for an eventual Commission decision.

a. Set maximum values for CDF and LRF at 10⁻⁵/yr and 10⁻⁶/yr for new reactor designs. This would make more explicit the Commission's stated expectation that future reactors provide enhanced safety. This could also provide a basis for establishing multinational design approval (as these would now be independent of U.S. QHOs). The suggested values are consistent with those in the EPRI and the European Utility Requirements Documents, the EPR Safety Document, and

those used in the certification of advanced reactors (the ABWR, AP600 and CE-System 80+). These values are also consistent with the generic values for an accident prevention frequency and a LRF in the staff's draft technology-neutral framework document.

b. Leave the values unspecified. CDF and LRF would be considered along with other aspects of the design, such as defense-in-depth and passive safety features, in reaching a decision about design certification. This would give the staff more flexibility to respond to technology-specific features.

On a preliminary basis, the majority of the Committee members favor Alternative (a), but is not ready to make a recommendation until more is understood about the likely consequences and policy implications of the decision.

Question 3. How should these measures be applied to modular designs?

The staff's considerations of integrated risk do not distinguish between criteria for modular reactor designs and criteria for the risk due to multiple plants on a site. Thus, the staff treats CDF and LRF (or LERF) for modular designs and/or multiple plants on a site as still being QHO risk surrogates. In our view, the CDF and LRF metrics are design criteria that are to be "imposed" at the plant design certification stage independent of any site considerations.

New reactors could include PBMR, AP600, AP1000, Economic and Simplified Boiling Water Reactor (ESBWR), and EPR, and the number of new reactors at a site could vary by an order of magnitude.

Some Committee members believe that to get consistency in expectations of enhanced safety in all cases, the integrated risk from all new reactors on a site is the appropriate measure. This is true both for the risk metric LRF and the defense-in-depth accident prevention metric CDF. Thus, for the PBMR, which is proposed in terms of an eight-module package, the CDF and LRF goals (e.g., 10^{-5} /ry and 10^{-6} /ry) would be applied to the package. In effect each module would have to have a somewhat lower CDF and LRF. Because of the potential for interactions, analysis of individual modules may not be meaningful and the analysis should focus on the "eight pack."

Other Committee members prefer CDF and LRF design specifications that are independent of the number of modules. These members believe the specified acceptable CDF for enhanced safety (e.g. 10⁻⁵/yr) should be applied to each module at the design stage and would be an indicator of the success criteria for the design measures provided for each module intended to prevent release from the fuel of that module. Similarly, LRF would be on a modular basis. As it may be possible to restrict

the total power of a given module to a level that the quantity of fission products releasable cannot exceed the acceptance LRF value (e.g. 10⁻⁶/yr), a modular design implicitly represents a kind of defense-in-depth (given appropriate consideration of common-mode failures and module interactions).

Question 4. How should risk from multiple reactors at a site be combined for evaluation by suitable criteria?

The QHOs address the risk to individuals that live in the vicinity of a site. Logically, the risk to these individuals should be determined by integrating the risk from all the units at the site. The manner by which the risks of different units at a site are to be integrated must address the treatment of modular designs, units with differing power levels, and accidents involving multiple units.

Question 5. How should the combination of new and old reactors at a site be evaluated by these criteria?

Any new plant that meets the independent safety criteria discussed in Questions 1 through 3 would be expected to add substantially less risk to an existing site than that already provided by existing plants on the site. If a proposed site already exceeds the QHOs, it should not be approved for new plants. For existing sites not being proposed for the addition of new plants, there would be no need to assess their risk status because they provide adequate protection. These sites would, thus, be grandfathered in the new framework.

Question 6. What should these criteria be?

Use of the QHOs for evaluating the site suitability for new reactors is attractive because the QHOs represent a fundamental statement about risk independent of any particular technology. The current QHOs (prompt and latent fatalities), however, only address individual risk and do not directly address societal risks such as total deaths, injuries, non-fatal cancers, and land contamination. These societal impacts are addressed somewhat in the current regulations by the siting criteria on population.

Some ACRS members believe that measures of societal risk need to be an explicit part of any new technology-neutral framework. The staff argues in the technology-neutral framework document that the limits proposed there for CDF and LRF limit societal risks such as land contamination and dose to the total population. However, these members recognize that CDF and LRF are not equivalent to risk and disagree with the staff's position. Other ACRS members believe that the current siting criteria have served to limit societal risks. In addition, societal risks are considered in the environmental impact assessments of license renewal. The estimates presented in NUREG-1437 Vol. 1 indicate that the risk of early and latent fatalities from current nuclear power plants is small. The predicted early and latent fatalities from all plants (that is, the risk to the population of the United States from all nuclear power plants) is approximately one additional early fatality per year and approximately 90 additional latent fatalities per year, which is a small fraction of the approximately 100,000 accidental and 500,000 cancer fatalities per year from other sources. The evaluation of Severe Accident Mitigation Alternatives (SAMAs) as part of the license renewal process also considers societal risk measures and monetizes them to perform cost benefit studies. Based on current NRC regulatory analysis guidance, very few of these SAMAs appear cost beneficial.

Environmental impact statements (EISs) also assess the societal costs of probabilistic accidents at the current sites. The results, although very approximate, indicate that the societal costs at many current reactor sites would likely exceed a reasonable societal cost risk acceptance criterion. For example, these would exceed the cost associated with 0.1% of the above noted 100,000 early fatalities due to all accidents.

Thus, the inclusion of a quantitative societal risk acceptance measure appears important and could add to greater public confidence and understanding of the risks of nuclear power. It may be worthwhile for the staff to consider supplementing the current QHOs with additional risk acceptance measures that relate directly to societal risks.

7. How should compliance with these criteria be demonstrated?

The establishment of goals or criteria of various kinds cannot be divorced from the ability to demonstrate compliance. Considerable improvement in PRA practice will be needed to provide confidence that the goals on CDF and LRF for future plants will be met in a meaningful way. Operating experience has been crucial for the analysts to appreciate the significance of potential errors/faults. For example, before TMI, it was assumed that operators would not have problems diagnosing what is going on under certain conditions.

Some of the challenges that new plants will create for PRA analysts are:

- I. Operating experience on component failure rate distributions and frequencies developed for light-water reactors has limited applicability to other reactor types.
- ii. Some designs are considering components, e.g., microturbines and fuel cells, for which reliability data are nearly non-existent.
- iii. Digital Instrumentation and Control systems are expected to be an integral part of future reactor designs. The risk consequences of such practice are difficult to quantify at this time.

Thus, in addition to the imposition of design goals for low CDF and LRF, it will be important to maintain sufficient defense-in-depth in the technology-neutral framework.

We look forward to additional discussion with the staff on these issues.

Sincerely,

/RA/

Graham B. Wallis Chairman

Additional comments from ACRS Members Dana A. Powers and John D. Sieber

We disagree with our colleagues on the matter of this letter. The Commission has indicated a laudable expectation that future reactors will be safer than current reactors. The question that our colleagues should have addressed first is whether a quantitative metric is needed to substantiate this expectation. It is by no means obvious that such a metric is essential. We can well imagine future plants designed in conjunction with far more comprehensive probabilistic safety analyses that realistically address all known accident hazards during all modes of operation to a depth far greater than is attempted now for elements of the fleet of operating reactors. Our experience has been that whenever improvements are made in quantitative risk analysis methods, unforeseen, hazardous, plant configurations, systems interactions and operations become apparent. Hidden, these configurations, interactions and operations may arise unexpectedly with undesirable consequences. Revealed, they can be avoided often with modest efforts. This is exploitation of the full potential of quantitative risk analysis to achieve greater safety in nuclear power plants. It contrasts with the more effete pursuit of the "bottomline" results of PRA to compare with arbitrarily proliferated safety metrics.

Our objective should be to foster the voluntary development of quantitative risk analysis methods both in scope and depth in order to improve the safety of nuclear power plants. Fostering voluntary development of methods by nuclear community is especially important now when methods developments have stagnated at NRC relative to the situation a decade ago.

Our colleagues seem to presume it essential that future reactors meet the Quantitative Health Objectives (QHOs). These QHOs define a very stringent safety level that has always been viewed as an "aiming point" or a benchmark and not as some minimum standard that cannot be exceeded. Indeed, the definition of the QHOs was undertaken to define "how safe is safe enough" so that no additional regulatory requirements for greater safety would be needed. Requiring such a stringent standard as the QHOs as a minimum level of safety for advanced reactors appears to go well beyond the authority granted by the Atomic Energy Act that requires adequate protection of the public health and safety. We are unaware that the Commission has made such a demand for advanced reactors. Were the Commission to make such a demand, we would question the wisdom of doing so. By demanding such a stringent level of safety, our colleagues appear to be willing to forego great strides in safety that can be achieved with advanced plants if these plants fail to live up to what can only be viewed as an extreme safety standard.

The demands our colleagues appear to make on the safety of advanced reactors lack a critical dimension of practicality since we do not believe the technology now exists to do the calculations needed to compare a plant's safety profile to the QHOs. By the very definitions of the QHOs, such calculations would entail analyses of modes of operation only very crudely addressed today by most (fire risk, shutdown risk and natural phenomena risk) and the conduct of uncertainty analyses dealing with both parameters and models that to our knowledge have been done by no one.

Because of the limitations of risk assessment technology available today for the evaluation of the current fleet of nuclear power plants, surrogate metrics such as core damage frequency (CDF) and large early release frequency (LERF) have been introduced and widely used. Our colleagues seem to believe that there are known critical values of these surrogate metrics that mark the point at which a plant meets the QHOs. We know of no defensible analysis that establishes such critical values of these surrogate metrics. We are, of course, quite aware of very limited analyses considering only risk during normal operations that purport to show existing reactors meet the QHOs. Such limited analyses are simply not pertinent. They do not meet the exacting standards required by the definitions of the QHOs. Should defensible analyses ever be done, we are sure that they will show the critical values of the surrogate metrics are technology dependent. Indeed, more defensible analyses will show in all likelihood that better surrogate measures can be defined for advanced reactor technologies.

Our colleagues are sufficiently enamored with the existing surrogate metrics that they recommend these surrogates be enshrined on a level equivalent to QHOs. More remarkable, our colleagues want to establish critical values of the metrics that are a factor of ten less than the values they assert mark a plant meeting the rather stringent level of safety defined by the QHOs. They do this, apparently, for no other reason than the fact that clever engineers can design plants meeting these smaller values at least for a limited number of operational states. While we are willing to congratulate the engineers on their designs, we can see no reason why such stringent safety

requirements should be made regulatory requirements to be imposed on the designers' efforts. Again, we worry that doing so may create unnecessary burdens that cause our society to sacrifice for practical reasons great improvements in power reactor safety simply because these improvements fall short of our colleagues unreasonably high safety expectations.

Though surrogate metrics have been useful, it is important to remember that they are only expedients. The full promise of risk-informed safety assessment will not be realized until it is possible to do routinely risk assessments of sufficient scope and depth so it is possible to dispense with surrogate metrics. Enshrining these surrogates along with the QHOs will only delay efforts to reach this preferred status.

The potential of our colleagues recommendations have to stifle new technology and forego improved safety reaches a crisis when they speak to the location of modern, safer plants on sites with older but still adequately safe plants. Our colleagues have no tolerance for a single older plant if a newer, safer plant is to be collocated on the site. They are willing to tolerate any number of similarly old plants on a site if a new, safer plant is not added to this site. We find this remarkable. Our colleagues' recommendations give no credit for experience with a site. They fail to recognize the finite life of older plants even when licenses have been renewed. We fear that our colleagues have failed to assess the integral safety consequences of their stringent demands on this matter. A very great concern is that our colleagues pursuit of ideals in risk avoidance may well arrest the current, healthy quest for improved safety among those exploring advanced reactor designs.

References:

- 1. U.S. Nuclear Regulatory Commission, SECY-05-130," Policy Issues Related to New Plant Licensing and Status of the Technology Neutral Framework for New Plant Licensing," dated July 21, 2005
- U.S. Nuclear Regulatory Commission, "Safety Goals for the Operations of Nuclear Power Plants, Policy Statement," Federal Register, Vol. 51, (51 FR 30028), August 4, 1986
- 3. U.S. Nuclear Regulatory Commission, "Commission's Policy Statement on the Regulation of Advanced Nuclear Power Plants," 59 FR 35461, July 12, 1994
- U.S. Nuclear Regulatory Commission, NUREG-1437, Volume 1, "Generic Environmental Impact Statement for License Renewal of Nuclear Plants," May 1996