
                                                                     March 15, 2001

Dr. William D. Travers
Executive Director for Operations 
U.S. Nuclear Regulatory Commission
Washington D.C., 20555-0001

Dear Dr. Travers:

SUBJECT: ELECTRIC POWER RESEARCH INSTITUTE RETRAN-3D THERMAL-
HYDRAULIC TRANSIENT ANALYSIS CODE

During the 480th meeting of the Advisory Committee on Reactor Safeguards, March 1-3, 2001, we
discussed the status of the Committee’s review of the Electric Power Research Institute (EPRI)
RETRAN-3D thermal-hydraulic transient analysis code.  Our Subcommittee on Thermal-Hydraulic
Phenomena most recently discussed this matter with representatives of the NRC staff, EPRI, and
its contractors during a meeting on February 20, 2001.  We also had the benefit of the documents
referenced. 

In early 1999, we reviewed the RETRAN code documentation.   On July 14,1999, ACRS Member
Dr. Graham Wallis presented a critique of the momentum equations in RETRAN to the ACRS.  
During 1999 and 2000, the staff raised several questions concerning the momentum equations,
both informally and formally, through requests for additional information (RAIs).  EPRI responded
to these RAIs on April 27, 1999, October 22, 1999, and March 6, 2000.  Additional written material
was submitted by EPRI on February 15, 2001.  During the February 20, 2001, Subcommittee
meeting, EPRI representatives agreed to reconsider the justifications of the momentum equations
in RETRAN and the example problems illustrating their use for modeling specific components.

The major concerns identified by the Thermal-Hydraulic Phenomena Subcommittee regarding the
momentum equations are summarized by ACRS Member Dr. Graham Wallis in the attached
documents.  

Sincerely,

      /RA/
George E. Apostolakis
Chairman      

Attachments:
1. “Discussion on Momentum Equations,” by ACRS Member Graham Wallis, dated February

25, 2001.
2. “Comments on EPRI Response to RAIs and Other Recent Submittals Concerning the

RETRAN Code,” by ACRS Member Graham Wallis, dated February 25, 2001.
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ATTACHMENT 1                             1

DISCUSSION ON MOMENTUM EQUATIONS

By ACRS Member Graham Wallis, February 25, 2001

The momentum balance equation for a stationary control volume is (see any
textbook)

d/dt ∫ (ρ v) dv  = -  ∫ p dA  +  ∫ τ . dA  -  ∫ v (ρ v . dA)    (1)

For engineering purposes, this is usually reduced to the form

I dW/dt  =  -  Σ pi Ai    +  Fw   -   Σ (ρ vi . Ai) vi                (2)

Equation (2) is a node/port description where the velocities, v, at each port, i, are
assumed to be uniform.  The usual idea is to compute the rate of change in flow
rate, dW/dt, across some internal surface in the node and step forward in time.  The
flow rates, W, throughout the system modeled by a set of such nodes will be
solution variables that are updated as the numerical transient proceeds.  The
coefficient, I, is the effective vector inertia of the fluid in the node, with units of
length.  It represents an approximation, particularly if the flow is not uniform.  It is
also a significant assumption that the momentum in the node is proportional to the
flow rate, W, (which is a scalar quantity) across some defined surface in the node. 
This is not so bad for single phase incompressible flow with ports at the end of the
nodal volume, because the flow is the same across any surface in the node that does
not intersect the ports.  For more general compressible or multiphase flows with
many ports, the momentum in a nodal volume is not so easy to figure out.  Fw is the
force from the walls.  The shear stress contribution to the forces at the ports is
usually neglected.

To illustrate the importance of the wall force, consider a couple of parallel similar
pipes in the x-direction joined by a 180-degree bend in the horizontal x-y plane and
filled with an incompressible inviscid fluid.  The momentum in the two pipes
cancels and the total momentum in the system is all in the y-direction.  The pressure
and momentum flux terms on the right hand side of Equation (2) all act in the x-
direction, so it is only the net wall force acting in the y-direction that is available to
change the net fluid momentum in the system.  This force may actually be
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computed by first using mechanical energy conservation to get the acceleration and
then using the y-component of the  momentum balance to deduce the wall force.

There are several important features of Equation (2) that present difficulties to the
code developer:

1. It is a vector equation.   It can only be reduced to one-dimensional form if the
flows and forces all act in a single direction, which is not the case for flow
around a bend, for instance.  If it is resolved in some direction to obtain a scalar
component, then all terms must be resolved in a consistent way.

2. The force from the walls is unknown and cannot be determined from known
quantities without invoking some new information, except in trivial cases which
are probably limited to a straight pipe.  This force is made up of resultants from
both normal (pressure) and tangential (shear) components.

3.  The pressures at the ports or junctions (node boundaries) act on areas.  These
areas cannot be made to disappear except when the flow is in a straight pipe and
the equation can be divided through by the area.   No amount of algebra can
make the areas disappear in the general case, though the “momentum” equations
in some codes are written without areas multiplying pressures at the junctions.  
To get an equation like Bernoulli's in which the pressures do not multiply areas
and the formulation is one-dimensional, you have to integrate a differential form
of the momentum balance along a streamline.  This is strictly invalid when
streamlines get mixed up in nodes, through turbulence or  flow separation, but
such an approach has also been tried as an alternative way to get usable
equations for codes.

The biggest problem is Item 2.   It is basically insurmountable in any general way. 
Attempts have been made to derive the force from the walls from another principle,
such as conservation of mechanical energy.  However, the forces from walls are
usually imposed by stationary surfaces.   They, therefore, do not work and do not
contribute to the energy balance.  Therefore, there is no way that the energy balance
can be manipulated to solve for the wall force.
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Conservation of mechanical energy is sometimes used in place of the momentum
balance to provide an expression for dW/dt.   Bird, Stewart, and Lightfoot
[Reference 1] discuss the conditions for validity of such a balance (e.g., constant
density or constant temperature).  They solve the example of oscillations of a
manometer this way.   This method has not been developed as a general derivation
that might apply to two-phase flows of the type that occur in reactor systems.

The approach taken in all codes is to derive a momentum balance for an extremely
simple geometry, such as a long straight pipe.  The result is then usually applied
with little or no explanation or justification to other shapes and situations.  I think it
is true that the (long) straight pipe is the only case in which it is possible to
overcome the three difficulties listed previously.  With some allowances for
“averaging,” Equation (2) can then be expressed as 

L dW/dt =  p1A – p2A  -  τw πDL   +  ρ1v1
2A  -  ρ2v2

2A         (3)

Where L is the length of the pipe, subscripts denote the inlet and exit; A is the cross-
sectional area, D the diameter (or effective diameter), and the velocities are all in the
direction of the pipe axis.  The wall shear stress is computed from the steady-flow
friction factor, though friction is strictly not the same in unsteady flow.  If Equation
(3) is divided by A and the pipe is assumed to be circular, we get 

L/A  dW/dt =  p1 – p2  -  τw 4L/D   +  ρ1v1
2  -  ρ2v2

2         (4)

If the fluid is incompressible or suffers no change of density, the last two terms
cancel each other and disappear.  Similar equations can be deduced for  each phase
in the two-fluid model.

Even when applying these methods to straight pipes, care may need to be taken near
ends or junctions where flow is not one-dimensional. The lengths, L, of nodes must
be chosen to correspond to regions where the properties do not change too rapidly.

It is not directly evident from the documentation, but presentations from
proponents of the RELAP and TRAC codes lead me to conclude that most of the
reactor system is modeled as a series of straight pipes connected by nodes of zero
length that contribute frictional losses but no inertia.  Bends, for example, are
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modeled as a series of these straight pipe segments and the additional losses
contributed by the non-straight shape are added in between these segments.  More
complex nodes are modeled in an ad hoc manner that has evolved with time and
experience.

RELAP and RETRAN also make use of a derivation for two coaxial straight pipes
connected by a sudden change of area.   The pressure difference across the junction
is taken as given by the steady flow loss coefficient and it is assumed that this all
occurs in zero length.  This is no different from the idea of joining two straight
pipes with a valve or other “resistance” and there is no need for the pipes to be
oriented in the same direction.

Denoting one pipe by the subscript “a” and the other by “b” we have two equations
like Equation (4) as follows:

La/Aa  dWa/dt =  p1 – p2  -  τw 4La/Da   +  ρ1v1
2  -  ρ2v2

2         (5)

Lb/Ab  dWb/dt =  p3 – p4  -  τw 4Lb/Db   +  ρ3v3
2  -  ρ4v4

2         (6)

The pressure change across the junction is assumed to be given by the steady-state
correlation, which could take the form,

p2  -  p3   =    k  ½  ρ2v2
2         (7)

with “k” being a loss coefficient for the junction.

There is nothing special going on here, just building up a composite piece of a
circuit by combining two straight pipes and a junction.

Having read Bird, Stewart, and Lightfoot, the RELAP developers decided to express
the empirical losses across the junction another way.  The pressure change is
expressed in terms of mechanical energy losses, or as a loss in Bernoulli head.  This
is strictly only valid for an incompressible fluid, though some workable derivations
might be possible for other conditions, such as isothermal flow, if done carefully.  
Then Equation (7) is expressed as

p2  -  p3   =   - ½  ρ2v2
2  + ½  ρ3v3

2 -  ke  ½  ρv2         (8)
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where ke is a coefficient of mechanical energy loss.  I have left the velocity and
density in the last term without subscripts as the appropriate conditions have to be
defined.  This, of course, is part of the definition of the empirical loss coefficient
ke.   I have also used subscripts on the “kinetic energy” terms, adding to the
definition of the loss coefficient.  I believe this loss coefficient is simply taken from
single-phase flow tests, so it is something of a reach to apply it to an unsteady two-
phase flow with density change.

If we use Equation (8) to eliminate the intermediate pressures, p2 and p3, from
Equation (6) plus Equation (7) the result is 

La/Aa  dWa/dt + Lb/Ab  dWb/dt =  p1 – p4 +( -  τw 4La/Da  -  τw 4Lb/Db  -          
½  ρ2v2

2  + ½  ρ3v3
2 -  ke  ½  ρv2) + ρ1v1

2  -  ρ4v4
2       (9)

In RETRAN, it is asserted that the two terms on the left hand side can be combined
by assuming that both of the W’s are the same as some “W” for the “junction”.  
The term in parentheses is interpreted as some sort of total loss for the system, and
the two last terms are interpreted as momentum fluxes in and out of the combined
system.   This is how the A’s are made to disappear from what would be an
equation resembling Equation (2) if written as the momentum equation for the
whole works of two pipes plus junction. It then seems to be assumed, without
argument, that a similar equation applies to any shape or component in the system,
except when a special model is derived, as for a pump.  RETRAN has sketches of
more general shapes, but there is no proper derivation of a momentum balance for
them, just an equation written down to look like the “two-pipe-plus- junction”
(TP+J) case.

Note that Equation (9) is a scalar equation, unlike Equation (2).  It does not
represent a “momentum balance” for a control volume and it cannot be “resolved”
in some direction.  However, in RETRAN a modification is made to change the two
final terms in Equation (9) to ρ1v1v1,ψ  -  ρ4v4v4,ψ where the subscript is supposed to
denote the “component that lies in the direction of the junction”.  I have yet to see a
convincing derivation of this result.  It seems to be a sort of hybrid between
Equation (2) and Equation (9) in which the momentum flux terms are resolved in
some chosen direction, as the ones in Equation (2) would have to be to obtain a
scalar result.  Since the direction is arbitrary, different results can be achieved, over
a limited range, at the will of the user.
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If the fluid is incompressible, or of constant density, then v1=v2 and v3=v4 so that
Equation (9) reduces to a form of Bernoulli equation with losses (which the
RETRAN version with “resolved” momentum fluxes does not, an indication that
something is almost certainly wrong).  This particular result can be deduced from
the principle of mechanical energy conservation, as long as the density is constant,
which is not the case in a general two-phase flow.

The TP+J model can also handle some aspects of momentum addition from side
branches, as in ECC injection into a cold leg.  If a flow Wsa is injected from a
connection to the side of pipe “a” with velocity component vsa in the direction of
the pipe axis, then an additional source of momentum equal to Wsavsa appears on
the right hand sides of Equations (5) and (9).   RETRAN also has such a term, but
the definition of the velocity component is ambivalent.  The example of the wye-
junction in the RETRAN text (EPRI NP-1415 [Reference 2]) seems to indicate that
this term was improperly evaluated in that case.

The RETRAN documentation at least acknowledges that there is a need to develop
an equation describing a general shape with several connections to ports or
junctions. There is just no good rationale for the result and no examples showing
how to use the method for the sorts of nodes, other than straight pipes, that occur in 
models of nuclear systems.  There are some other concerns with the documentation,
including:

1. Derivations of momentum equations in various forms that appear
questionable.

2. Examples of applications to bends, tee-junctions, wye-junctions that   appear
wrong at an elementary level, even if one accepts the basic   equation used.

3. Strange features, such as resolving the scalar flow rate in each coordinate
direction as if it were a vector and interpolating these components in ways
that seem to defy physical reality.  This shows up also in the worked
examples, where some odd terms are derived.

4. Misplaced appearance of rigor, when it would be better to explain and justify
assumptions.
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5. A method of “resolving” the momentum flux terms that seems to be    
arbitrary and makes it possible to achieve a range of different results,  
depending on the user’s choice of the angle ψ .

These points are examined in more detail in the accompanying document
“Comments on EPRI Response to RAIs and other Recent Submittals concerning the
RETRAN code.”

Do these inadequacies or limitations or “assumptions” matter for the purposes of
nuclear safety calculations?   Perhaps.   In some cases, the transients are so slow
that the momentum balance collapses to the steady flow result and correlations for
“pressure drop” suffice.   Some transients appear to be dominated by the mass and
energy balances, which are much easier to compute, as they deal with scalar
quantities and the transfer from walls can be evaluated.   In other cases, things may
not be so simple.   Because all the treatments of momentum balances are very rough
approximations, it would seem a good idea to run sensitivity tests on all the
coefficients, and perhaps on the structure itself, in these equations to explore if and
when this makes any significant difference to safety conclusions and to provide
explicit guidance for a user about possible problems or limitations.

In any case, it is not good for public confidence to have documentation that appears
of doubtful validity to an informed observer. 

Nomenclature:

A     area
D     diameter
F     force
k     loss coefficient
L     length
p     pressure
t      time
v     velocity
W    mass flow rate

ρ     density
τ      shear stress
ψ      angle defined in RETRAN
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Bold symbols denote vectors or tensors

Subscripts:

a, b     Two pipes
e        energy
i         a general port or junction
s from a side junction
w       at the wall
1,2     ends of the first pipe
2,3     before and after the junction
3,4     ends of the second pipe
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COMMENTS ON EPRI RESPONSE TO RAIs AND OTHER RECENT
SUBMITTALS CONCERNING THE RETRAN CODE
By ACRS Member Graham Wallis, February 25, 2001

ACRS reviewed the documentation of the RETRAN code in early 1999.   On July
14, 1999, Dr. Wallis presented a critique of the momentum equations in RETRAN
to the ACRS.  During 1999 and 2000 the staff raised several questions concerning
the momentum equations, both informally and as formal requests for additional
information (RAIs).  EPRI submitted responses to these RAIs on April 27 and
October 22, 1999 and March 6, 2000.  Additional written material was submitted by
EPRI on February 15, 2001.  On February 20, 2001 representatives of EPRI and
their contractors met with the ACRS Subcommittee on Thermal-Hydraulic
Phenomena at NRC headquarters in White Flint.  At this meeting, EPRI agreed to
reconsider the justifications of the momentum equations in RETRAN as well as the
example problems illustrating their use for modeling specific components.

This document has been prepared to assist EPRI in identifying the major concerns
of the ACRS and to facilitate their response.   Since the uses of the momentum
equations are pervasive in RETRAN, it is likely that some illustrations and
derivations, resembling those cited in this report, have not been specifically
identified.   EPRI should therefore ensure that any proposed modifications or
corrections to the RETRAN documentation and/or code content are
comprehensively and consistently applied in any new versions.

Reference is made to the accompanying “Discussion on the Momentum Equations”
prepared by Dr. Wallis.

REVISED DOCUMENTATION SUBMITTED WITH RAI RESPONSES

EPRI enclosed “Revision 5” [Reference 1] of their RETRAN documentation.   The
momentum equations are described in Section 3.

Figure II.3-1 shows a straight pipe, about which there is little disagreement.

Figure II.3-2 shows a bend. It is described as “a slight generalization.”  The bend
looks rather gentle, but there is nothing in the text that says that the angle through
which the flow is turned is small.  No approximations seem to be made assuming
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that the angle is small, so it appears that the method should apply to any bend,
including a 180 degree one, for example.   Section 3.1.2.1 is entitled “Constant Area
Channels,” yet the equations retain different areas Ak and Ak+1 which appear later in
the supposedly more general form Equation (II.3-27) which is written down with
no additional explanation.

Equation (II.3-4) is the vector momentum balance.  It should contain the resultant
forces from normal and tangential stresses at the wall. Reference is made to
Equation (II.2-34) to explain how the wall forces are divided up, but this equation
(in Revision 1[Reference 2], which is what we have as the original basic document)
only gives a very general form and does not explain the three terms appearing in
Equation (II.3-4).   Floc later gets called the “form losses”.  It is presumably the
resultant of normal stress components, because it gets combined with the surface
pressures on the fluid surfaces later down the page.  This combination does not
help, as the components are later separated again.

“Assuming a uniform pressure along the surface within each region” to get
Equation (II.3-7) is not useful because it throws out the important physics.  If the
fluid were subjected to uniform pressure, there would be no resultant force from
that source.   Even if true, it would not lead to the disappearance of the wall force
due to normal stresses.  In steady flow around a bend, the wall reaction is the force
that turns the flow and enables the exit momentum to be in a different direction
from the inlet momentum. This is especially evident for a 90 degree or 180 degree
bend.  When the flow accelerates, as in a transient, the wall force must also be
considered.  It is the only force providing the y-momentum change for a horizontal
180 degree bend with end faces in the x-direction, for example.

Equation (II.3-7) appears to be the component of a momentum conservation
equation in the direction “i” and ψ  is the angle between the directions k and i.   The
momentum fluxes are resolved in this direction.  None of the friction forces, the
gravitational forces or the pressure forces are resolved in this direction,  therefore
this cannot be the scalar component of a vector equation.  Also, if this were based
on a vector equation, the inertia terms on the left-hand side would have to be
resolved in the chosen direction, so that the L’s appearing in Equation (II.3-9)
would have to be projected in that direction or redefined somehow. 
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The momentum flux terms contain different areas with subscripts k and k+1.  The
pressure terms do not.  This is either an inconsistency or a sign of conceptual
confusion.   

The resultant of normal forces from the walls is omitted, though playing a key role
in all bends that turn a flow through a significant angle.

The equation at the bottom of the page defines “a component of the volume
centered flow.”  Now, W is a scalar and does not have components.  It is possible
to define a variable by using the form at the bottom of the page, but it has to be
used very carefully, as it has no direct physical interpretation and may well mislead
(or itself be a symptom of misunderstanding).

(Many of these points were brought up in previous ACRS critiques of this work.)

Section 3.1.2.2 is entitled “Variable Area Channels.”  Figure II.3-3 actually shows a
very specific shape.  It is analyzed in its one-dimensional form rather like the TP+J
model discussed in the “Momentum Discussion,” though the figure should show
two long pipes for this to be at all a good approximation.  Equation (II.3-12) differs
from the TP+J model in that the exiting momentum is resolved in the (mysterious)
direction ψ  which does not appear in the figure and should not be there if this is
really a TP+J model.  If this is supposed to be a momentum balance then all other
terms, such as the pressure forces on the ends, must be resolved in this direction
too.  The gravitational terms should be resolved in appropriate directions along the
pipe axes, and they are not, even if this is to be a TP+J model.  This is another
inconsistency.  The equation is neither a true momentum balance nor representative
of a true TP+J model but some sort of unjustified hybrid.  The same is true of
Equation (II.3-20), which is the more usual form of the RETRAN equation,
containing those unusual “resolved” flow rates. 

The idealization shown in Figure II.3-5 to represent “any junction” is so abstract
and unexplained that it is hard to tell why it should be useful or how to use it
without reference to worked examples.  It seems unlikely that all configurations of
interest can be forced into such a framework.  There seems to be a leap of faith
required to use Equation (II.3-27), which is merely a repetition of Equation (II.3-
26).
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It is stated that flow velocities are not necessarily normal to junctions, but have
angles φ  to them.  This leads to discussions on Pages II-84 and II-85 of “Revision
5" in which the flow rates seem to be treated as vectors, which is unphysical. 
Figure II.3-5 is drawn with the end faces parallel to each other and normal to the
direction “i” which seems to be defined by the junction around the middle of the
picture.  Are these features requirements of the model?  What happens with less
one-dimensional shapes?  This figure is vague, and there is no derivation of the
momentum equation for it, so there is really no way to check the validity of the
result without looking at specific examples.  However, it is probable that the
momentum balance for a general control volume cannot always be idealized
realistically in some arbitrary way like this.

Tee Example

The noding in Revision 5 is quite different from that in Revision 1.  Does this mean
that the “rules” for noding have changed in the code?  How sensitive are the
answers to the actual noding employed?

Equation (II.3-35a) is the x-direction momentum balance for the shaded volume in
Figure II.3-7a.   The contribution of W4 in taking x-momentum out of the volume is
ignored, though significant in reality, presumably because this flow is assumed to
be all in the y-direction.  

It seems to be being assumed that the zetas in Equation (II.3-28) are each 1/2. 
W1,x(bar)  (I can’t figure out how to put a bar on the variable using this computer
program, so I’ll have to write them in) is set equal to (W1+ W2)/2.  Because some
flow is diverted to the side branch, it seems better to use (W1+ W2 + W4)/2.  

The use of W1,y(bar) requires explanation as the flow appears to be perpendicular to
the left-hand boundary of the control volume and not to have a y-component. 
Making it equal to W4/2 is arbitrary and appears dubious.  If one is going to reason
this way, it should be considered that if only one half of W4 comes in through the
surface 1 (circled) then the other half must come in through the surface labeled 2
(circled) which is unlikely as flow is going out that way.  

The arbitrary appeal to “applying the assumptions of steady-state conditions” is odd
since the whole point is to develop methods for transients.  Even more confusing is
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the expression for “volume centered flow” at the bottom of the page.  It doesn’t
appear later, but would it somehow be used in the transient term in the momentum
balance if this were to be shown in Equation (II.3-35b)?

Since A1=A2, there is no need for two areas in Equation (II.3-35b).  The loss term is
presumably quite small, if evaluated for the steady flow going straight through from
1 to 2.  If some flow goes out the side branch, then it will influence the losses. 
Then, e2* must depend on W4. 

The momentum flux term for area 1 is incorrect in Equation (II.3-35b).  If W2=0
and flow is steady, then W1 = W4.   The flow coming into the control volume is W1;
therefore, the first momentum flux term should not have the 4 in the denominator. 
This correction would make p2 = p1+ W1

2/ρ1A1
2.  But this answer defies Bernoulli’s

equation, if the fluid is inviscid and incompressible, which states that the maximum
pressure rise is one half of this at the stagnation point somewhere on surface 2. 
The average pressure at 2 must be less than this maximum pressure.  In reality a
significant x-direction momentum is carried out of the cell by the flow W4 ,
reducing the predicted pressure rise at 2 to reasonable values.  This important
physical mechanism is ignored in Equation (II.3-35b)

The sign of the term in square brackets in Equation (II.3-35a) and Equation (II.3-
35b) is the opposite of what it is in the original general Equation, Equation (II.3-
26).

Equation (II.3-36a) is odd.  It cannot be the y-component of a momentum balance
because the pressure acting on surface 1 is in the x-direction while that on surface 4
acts in the y-direction.  The subscript ψ  is supposed to signify the component in
some specified direction (here unspecified).  If ψ  is y, as implied, then we should
be multiplying W1 by W1,y in the first momentum flux term and not getting a factor
of 4 in the denominator in Equation (II.3-36b) but a factor of 2.  The second
momentum flux term does seem to correspond to a y-direction flux, but it is unclear
why the “assumption of steady-state conditions” can be used in a transient.  

The sign of the term in square brackets in Equation (II.3-36a) and in Equation (II.3-
36b) is wrong. The area A2 in the square brackets in Equation (II.3-36b) should be
A1.  
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 If this were a real momentum equation in the y-direction, p1 would not appear, but
the forces on the bottom and top walls in the y-direction would have to be
evaluated.  There is also flow out of the 2 face; presumably it is assumed to carry
no y-momentum, though the flow across the 1 face was assumed to have this
capability.  

This Equation cannot be an example of the TP+J approach because the control
volume has three connections to the outside world and cannot be modeled by two
pipes.   In any case, the pipes are not “long” by any means, and that is the condition
needed for this approximation to be good. 

It is actually not easy to derive a valid transient motion equation for this control
volume.  It cannot be analyzed using the overall ”momentum equation” because of
wall forces, and it does not conform to a simplified model, such as the TP+J case. 
It really needs to be modeled by some special method, such as running a CFD code
and/or conducting experiments and fitting the results for a range of flow splits
(main branch versus tee-branch) with an empirical “three-port” model.  However,
this does not excuse what appear to be conceptual errors in the RETRAN
documentation.

Elbow Example

At the bottom of Page II-91, the “steady-state assumption” appears to be being
used.  This obscures the understanding of how the method is to be used to
represent a transient.   It would help if Equation (II.3-37b) included the transient
term so that we could see how it is to be evaluated (e.g., what L’s and W’s are to be
used).  This is not clear from any description in the text.

This solution has changed from the previous version in Revision 1.  In that case,
the second  momentum flux term was evaluated as the square of W2,x so that the
factor in the denominator in Equation (II.3-37c) was 4 and not 2√2.  Neither
version reflects the physics.  If this is a TP+J model (how does that work for a
bend?), then the factor should be 1.  If it is a momentum balance in the x-direction,
then the total flow, W2, should be multiplied by the velocity component in the x-
direction, giving a factor of √2 in the denominator.  In this latter case, the pressure
force on the surface 2 would have to be resolved in the x-direction and the reaction
from the wall somehow determined and resolved in the x-direction too.  
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The “flow rates in the x- and y- directions” in the middle of Page II-93 appear
contrary to any physical interpretation.  If some sort of numerical interpolation is
going on, it does not seem to correspond even to the simple  situation in which the
flow rate in the pipe is constant, as  in steady flow.  The “magnitude of the volume-
averaged flow” likewise cannot be 1/√2 times the steady-state flow and there is no
reason to make this the case in unsteady flow either.  

Why are A1 and A2 being retained when the pipe has a constant cross-section?  If it
does not, then the pressure forces need to be multiplied by different areas if a true
momentum balance is being performed. 

If Equation (II.3-37c) is evaluated for constant area and steady frictionless flow, it
turns out that there is an artificial pressure recovery in the bend because the first
term on the right-hand side is bigger than the second.   One would expect the
pressure to stay constant.  During the February 20, 2001 meeting, EPRI claimed that
this did not matter much as this pressure recovery was canceled out by the pressure
loss in the second half of the bend.  This is not necessarily so.  If the angle ψ  for
the second part of the bend is chosen in the same way as for the first part of the
bend, being in the direction of the inlet face, then the same artificial pressure
recovery occurs.  In a coil of several 360-degree bends, this pressure could be used
to build up as much pressure as desired and create a “pump” with no energy input.

In the previous paragraph, it was shown that the answer depended on the choice of
the arbitrary angle ψ  .  This appears to be a general fault with the “vector”
RETRAN momentum equation.  One can change the momentum flux terms,
without changing anything else in the equation, just by changing  ψ  and resolving
them in a chosen direction.   For frictionless steady flow in a bend, for example, the
pressure difference can be made to take any value between some positive and
negative limits, depending on the user’s choice of ψ .  This is a very undesirable
feature of what should be a deterministic method.

Wye-Junction Example

Dr. Wallis’ presentation to the ACRS in 1999 also included similar critiques of the
way in which the wye-junction was analyzed in EPRI NP-1415 [Reference 3],
which is the twenty-year old report out of which the present RETRAN
documentation evolved.  The conceptual problems appear similar to those
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described above, though more extensive, partly because of the “cross-momentum”
effects when flow crossing a surface introduces or removes momentum with a
component in a direction parallel to the surface.  If the documentation is to be
modified to respond to the above points, then that example should probably also be
corrected.

The Porsching Paper (The “old” one, dated October 15, 1999 [Reference 4], that
came with the RAI responses)

This paper appears to be an attempt to justify the form of the RETRAN equation,
such as Equation (II.3-26), apart from the “loss” terms.

Perhaps the first thing to note is that Porsching’s Equation (10) is not compatible
with Equation (II.3-26).  Equation (10) is a momentum balance for the control
volume, whereas the RETRAN equation is not.  Dividing Equation (10) by Ao we
find that the momentum flux terms have A1A0 and A2A0 in their denominators and
not A1

2 and A2
2 as in Equation (II.3-26).  The latter resembles the TP+J form,

except for the (inappropriate) resolution of the momentum flux terms in the
direction ψ .  The RETRAN momentum flux terms are neither correct from the
TP+J  viewpoint nor from the “momentum balance resolved in a chosen direction”
viewpoint.  They are an invalid hybrid form.

The momentum flux terms in Equation (II.3-10) only have the same denominators
because for this example all the areas are the same.  The form in Equation (II.3-26)
and Equation (II.3-27) has no physical basis, nor is one provided in the text.

Porsching’s Equation (4) is acceptable if one is careful about the integration that
enables the volume integral of momentum to be expressed in terms of an average
flow rate across slices perpendicular to n0 throughout the volume.  This is not
spelled out in the paper.  If the flow is incompressible or steady and the ends S1 and
S2 are parallel to S0 , W0 can be related to the flow rate across the particular surface
S0,  but this is probably not possible in general.   It is not correct that L0 in Equation
(4) is equal to VΩ  /A0 for the incompressible or steady flow cases.  It should be
equal to the physical distance between S1 and S2 in the “0” direction, if the ends are
perpendicular to this direction.  Otherwise there are corrections for the pieces of
volume that involve partial slices parallel to “0” that intersect the end faces.  In a
compressible or multiphase flow, it is quite possible for the flow rate across other
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surfaces in the volume to be unrelated to that across S0 so that L0 in Equation (4)
becomes a variable that is dependent on all the details of the flow.  In any case,
something like Equation (4) may be acceptable as an engineering approximation if
careful definitions and restrictions are specified. 

Porsching’s Equation (5) is also in the form of a common engineering
approximation.  The final step in that equation is not exact, any more than the
square of  an average value of something is equal to the average of the square of 
something.  This is well known in fluid mechanics and is the basis of correction
factors for the momentum flux in a pipe with a velocity profile, for example. 
However, Equation (5) and the resulting Equation (6) are usually acceptable as
engineering approximations which might require reevaluation if the velocity
profiles are far from uniform.

The major error, or at least misleading derivation, in the Porsching paper concerns
the pressure term in Equation (10).  The integrals in Equation (7) are over all the
areas of surfaces to the left and right of S0.  They include the walls of the duct as
well as the areas for flow, S1 and S2.  It is usual to separate out the net pressure
forces on the flow areas, i.e., the ports or junctions connecting to other volumes,
and the net pressure force on the walls.  Porsching’s mathematics in Equation (7)
defines p1 as the average pressure on components of surface in the “0” direction
over both the area S1 and all the area of duct walls on the left hand side of S0. 
Physically, this has the effect of combining the forces on the fluid area and on the
wall area into one average pressure times a reference area A0.  The quantities p1 and
p2 used in  RETRAN are averages over the fluid areas alone and are quite different
from Porsching’s average pressures in his Equation (8).  Similarly, the pressures
used by Bird, Stewart, and Lightfoot [Reference 5] in Porsching’s Equation (13) are
averages over the fluid areas and are quite different from those in Equation (8).  

New Material Submitted by EPRI on 2/15/01

This consists of a letter from Lance Agee, a “new” paper by Porsching [Reference
6] (dated April 18, 2000), and a further revision (5b) to part of the RETRAN
documentation.  The letter claims that the concerns were suitably addressed in the
RAI responses and by the Porsching papers.  As mentioned above, they do not
remove ACRS concerns and rather serve to reinforce previous conclusions.
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The new version of the documentation addresses the momentum equation for a 
bend, illustrated in Figure II.3-2.   There is nothing about the bend being slight. 
Indeed the method is later applied to a 90-degree bend.

Here, for the first time, the authors consider the resultant of normal forces on the
wall. [Actually also friction, if one wants to be exact.  It is not true that the net
friction and form forces are all taken care of by the steady-state pressure gradient,
as claimed.  A proper momentum balance for a general shape in steady flow will
show that the net frictional force on the wall and the normal stresses associated with
“form losses” do not just “balance the pressure difference” because the end forces
have to be multiplied by the corresponding areas and resolved like vectors, while
the pressure change does not.  This is part of the continuing confusion in RETRAN
between a true momentum balance and a “pressure difference” that crops up in a
Bernoulli-like or  “mechanical energy” or TP+J equation.  To demonstrate this,
consider a 180-degree bend of constant cross-section, with an incompressible fluid
flowing through it in steady flow. The resultant of the wall shear stresses is in the
diametral direction (0 degrees to180 degrees) while the pressure forces on the ends
reinforce each other (rather than being in opposition) and act in the 90-degree
direction, being balanced by the wall forces in that direction.  The idea that friction
forces and form losses balance pressure drop in the momentum equation is naïve
and based on extrapolation of experience with a straight pipe].  

There is an Stot on the integral in Equation (II.3-5).  Equation (II.3-5a) breaks this
down into forces from the end faces and from the walls. Equation (II.3-6a) is
similar to the derivation in the “old” Porsching paper.  In this equation, the pk and
pk+1 are not average pressures over the junctions but are averages over the entire
surface of the control volume including the walls.  They are quite different from the
average pressures over the ends.  The math from Equation (II.3-6b) to Equation
(II.3-6e) is essentially the same as was used by Porsching (“old” paper), except that
in his more general case, the A in Equation (II.3-6e) would have the subscript 0. 
Equation (II.3-7) is essentially Porsching’s Equation (10) with no allowance for the
different subscripts on the areas, which confuses its later modification to a form in
which the areas of the inlet and outlet and some characteristic area (A0) of the
volume are all different.  (The earlier version of this derivation, Revision 1,
contained an upstream area Ak and a downstream area Ak+1.  These multiplied the 
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corresponding pressures in the momentum balance, Equation (II.3-9) but were not
resolved in the direction ψ .  These area factors were made to disappear in Equation
(II.3-10) of Revision 1, the “RETRAN equation,” by making the areas equal and
dividing the equation by the area.  When the areas are unequal this cannot be done
and the RETRAN equation does not result.  It is even stated in Revision 1 that
Equation “(II.3-10) is valid only for the case of flow in a channel of constant cross-
sectional area.”

At the presentation on February 20, an argument was advanced that the pressures
could be assumed to be uniform in the two regions before and after the “junction.” 
In this case, there is no need to perform the integrations between Equation (II.3-5a)
and Equation (II.3-6e).  ACRS consultants opined that such sweeping assumptions
in effect throw out the major physical phenomena and should not be made.  In a
more mathematical sense, there is no direct relationship between the average
pressure over a volume and the average pressure over the surface area surrounding
that volume.  As an example, the force from the walls that turns the flow in a bend
reflects the difference in the pressure forces on the inner and outer sides of the
bend.  If one applies the volume-average pressure over the whole surface, there is
no force to prevent the flow from continuing straight ahead.

In sum, the critique of Porsching’s “old” paper outlined above appears to apply
equally well to the newest attempt to justify the RETRAN equation, albeit in a
simplified form.  Average pressures of various sorts should not be mixed up. 
There is also a sleight of hand in deriving a result in which all areas are equal and
later generalizing it to cases where they are not.

The new Porsching paper (April 18, 2000) appears to recognize two of the basic
problems outlined in the “Discussion,” but his resolution of them seems
inconclusive, merely suggesting that some sort of engineering approximation might
be found. 

His Option 1 is the old story.  Equation (19) is the former Equation (10) with all the
previous faults. The pressures appearing there are averages over the entire surface
and not just over the ports or ends.  

Option 2 is a new variation that appears essentially the same, but seems to involve
resolving the total areas on each side of A0 into two arbitrary directions.  It is not
clear how this helps to get rid of the net force from the wall (it is physically real and
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cannot be excluded from a macroscopic momentum balance by mathematical
juggling).

It is unclear if there is a problem with the orientation of surfaces, as discussed
under “Remarks.”  The area A0 is equal to the area of any closed surface built on it,
to the right or left, as long as one keeps track of the vector nature of surface
elements. These surfaces can have any number of folds and wrinkles.  That is not
the problem.

Equation (26) seems to face up to the real problem.  The total pressure force on one
side is made up of the contribution from the walls and that from the end.  The
average pressure on the end is defined in Equation (27) as p1 with a bar on it,
recognizing that it is distinct from the p1 that appeared in Equation (19).  The effort
now becomes to make the wall force, the last term in Equation (28), go away
somehow.  This is acceptable for a straight pipe [Case (a)], and perhaps as an
approximation for a pipe with a slight bend or wrinkle in it [Case (b)].  But there is
no justification for neglecting the term in general and none seems to be offered.

Section 2 of the “Remarks” admits another fundamental problem, how to relate the
various W’s to each other.  However, there appears to be nothing definite in this
section that resolves the problem, just a discussion of how “averaging’ might be the
way to do it. 

RAI 1 

This refers to Attachment 2 and is concerned with explaining how the RETRAN
momentum equation applies to nodes of more complex shapes.
  
Figure 1 shows a straight pipe and is useful for defining the staggered grid
approach and nomenclature. 
 
Equation (3a) is said to be the ”one-dimensional mixture momentum equation.”  As
it involves two different areas, it cannot be a momentum balance equation because
the pressure terms in Equation (3a) do not multiply areas.  It must apply to a
different shape than in Figure 1, probably a tapered pipe or two pipes joined
together.  It resembles Equation (9) in the “Discussion,” the “two-pipe-plus-
junction” model (TP+J), yet does not contain the 1/2 ρ v2 terms and does not



13

reduce to Bernoulli’s equation (as it must) when there is no friction.  So,  this seems
to be an equation that does not conform to any known pattern.

On page 5 (about the middle of the page), there is mention of “the component of
the volume average flow which lies in the direction of the momentum cell.”  Now,
there is no component of a scalar quantity like W, so it is unclear what this means. 
It is also uncertain what the “direction of a momentum cell” is when it has multiple
inlets and exits or a complex shape.

The shapes shown in Figure 2 should be very useful for checking what the
RETRAN momentum approach actually implies.  “Junction 2 Cold Leg to
Downcomer” is a bend, a classical sticking point for use of momentum
conservation.  Equation (5) is to be applied.  It more closely corresponds to the
TP+J model mentioned in the “Discussion” but (only) the momentum flux terms are
resolved in a chosen direction.   Wk,ψ  is said to be the “component (of the flow)
that lies in the direction of the junction.”  As W is a scalar, it is unclear what this
means and one has to look at the examples to figure out how to interpret the
concept. 

Tables 1 and 2 are intended to explain things.  From Equation (3) and Equation (5),
it appears that the W’s with bars over them describe the flows at the boundaries of
the momentum cells and the W’s without bars are the flow rates in the cells that are
part of the inertia term on the left hand side of the “momentum equation.”  What is
meant by a “junction” is less clear, since the momentum and mass cells have
different (staggered) boundaries.  It looks as if the idea is that the numbers without
circles on them in Figure 2 label “junctions” while the circled numbers label
“volumes,” so these must be the mass and energy nodes that are being described. 
(It looks as if the 1 above the cold leg in the lower figure should be circled.)  These
roles are reversed for the momentum cells.

The sketches at the bottom of Figure 2 help to show how the momentum cell is
drawn.  It appears that one takes a junction, such as 3, and adds together about one
half of the volumes 2 and 3 (circled) in each side of it.   In this way a piece, such as
the top of the lower plenum, forms part of more than one momentum cell, as in the
central and right-hand figures.  The bottom part of the lower plenum apparently
forms part of nothing and might as well not be there as far as the momentum
balances go.   It is difficult to relate these cells to the “generalized control volumes”
on Page II-82 as that would seem to make the flow come out of the bottom of the
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volumes in Figure 2 and go into the bottom of the lower plenum with no way to get
out.  The specific examples do not seem compatible with the “generalized”
approach.

Tables 1 and 2 are baffling, apart from the directions associated with the arrows
drawn at junctions which appear in the second column in Table 1.  Because the
momentum cells are staggered from the others, the momentum flux terms at the
boundaries of a momentum cell do not correspond to these “junctions” but should
be evaluated at the boundaries of the shaded volumes in the lower figures, where
the Ws have bars and the “junctions” have circles.   The Tables appear to contain a
mixture of what appear to be Ws to be used to evaluate flux terms for the uncircled
junctions and Ws to be used to describe the average momentum in the circled ones. 
The text below Table 1 states “The momentum flux terms are evaluated using the
averaging model for the volume centered flows, where the volume centered flow is
the arithmetic average of the inlet and exit flows.”  There is no explanation of how
averaging led to the entries in Tables 1 or 2.  “The actual equations implemented in
RETRAN-3D to perform this task are given in Appendix A,” but it is no help
because it is not explained how the general equations are applied to the particular
example.   

It would be very desirable to have the actual momentum equations deduced from
these tables presented in full.   It should also be made clear what the specific values
of all the  terms actually are and how they are evaluated.  This would help to clarify
the procedures to be applied by a user and to remove ambiguities that remain in the
present definitions and  methods.  It would additionally make it possible to evaluate
the reasonableness of the results, as was done above for the bend and tee-junction.

Describing what appear to be some of the ambiguities and uncertainties with the
existing documentation may help EPRI to respond more fully.  For example, the 
Wk and Wk+1 terms with bars are defined to be the flow rates into and out of a
momentum cell.  They seem to be resolved into a direction ψ , though scalars
cannot be resolved.  In Table 1, it seems that at Junction 2  W2  goes in and 1/2W2

comes out.  This does not correspond to any identifiable cell in Figure 2.  One-half
of W2 is not the flow into or out of any region.  One-half is not the cosine of any
angle of relevance to the situation even if flows could be resolved.  In the next line,
Junction 3 has 1/2 W3 going in  and nothing coming out.  This is probably another
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example of the  “interpolation” that gave strange results that defied the concept of
continuity in the bend example.

In any case, there is no indication of how these values might be incorporated into
the momentum equation for the shaded region called “Junction 2, cold leg to
downcomer” in Figure 2.   There is also no discussion of how to evaluate the “L”
factor in the transient term and what appropriate “W” to use there.  Therefore, this
example does little to help the user understand the approach.

The text on Page 10 does not help either.  If steady state conditions are assumed so
that “W1=W2=W3,” then how is this compatible with a “transient” analysis?   Why is
W1 with a bar  “simply W2” and not something like (W1+ W2)/2?  Flow rates do not
have components so how can x- and y- components be defined, and how can they
be deduced to be 1/2 W2 which seems physically unreasonable? 

The average orientation of the shaded volume is called theta and said to be 315
degrees (not a volume average) but this is not the same as ψ  and anyway there is no
theta in equation (5) so it is unclear what this is to be used for.   At the end of the
discussion of Junction 2 on Page 10 it is said that the factor 1/4 arises because of
angular effects.  Now, remember that the TP+J model is a scalar model (see the
“Discussion”) and the ρv2 terms do not have to be “resolved” any more than the
pressure terms do, so there are really no “angular effects” if this model is being
used.  During the meeting on February 20, a few examples were given to show how
these hypothesized “angular effects” could give rise to significantly different results,
for example at the tee-junction between the surge line and the hot leg, that might
influence flow distribution during a transient. 

Looking briefly at the other examples involving the lower plenum, it is unclear why
the Junctions 5 and 6 are said to have no momentum flux when they have flows
through them, why W5 plays no role, and how W4 can describe the momentum in
the sum of the two shaded partial volumes for volume 4.  In Table 2, it looks as if
Volume 3, presumably the momentum cell around Junction 3, has no momentum in
it; why?  What pressure terms are to be used to describe Junctions 3 and 4?  They
have four boundaries that connect to regions containing other fluid. Equation (5)
only has two pressures in it. 
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In reality, the lower plenum part of the reactor vessel is like a turbine bucket that
turns the flow coming down out of the downcomer around in the direction of the
core.  A momentum balance would have to include the force from this structure. 
If, on the other hand, this is to be modeled as a TP+J, so that Equation (9) in the
“Discussion” can be used to describe it, then it is unclear how the shaded volumes
as drawn can be forced into such a conceptual framework.  The various sketches of
“general” volumes, such as Figures II.3-5 and II.3-6, do not help explain either the
basis of the general RETRAN equation or how it is used to analyze a case like this.
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