TOXECON[™] Demonstration We Energies' Presque Isle Power Plant

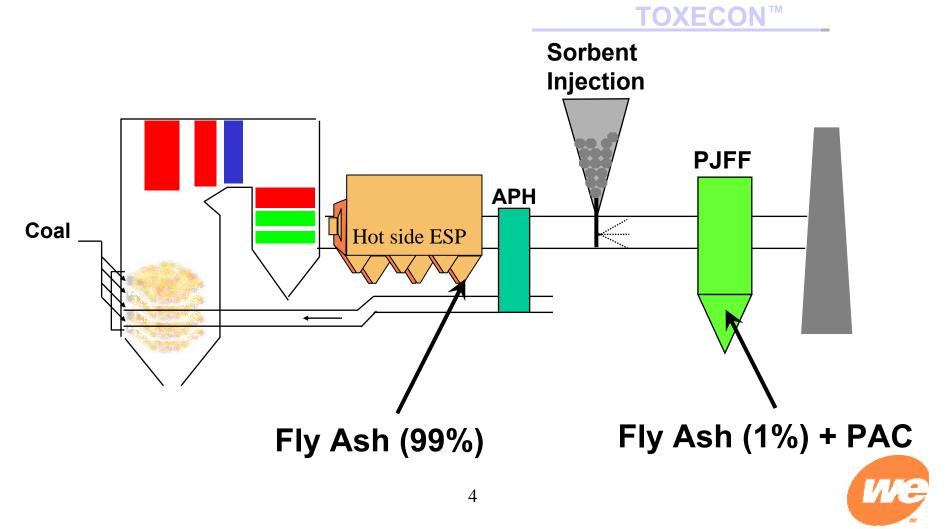
David Michaud Principal Environmental Scientist We Energies December 6, 2005

Project Partners

- We Energies
- DOE NETL
- Cummins & Barnard, Inc.
- ADA-ES

TOXECON™ Demonstration

- Presque Isle Power Plant, Marquette MI
 - Units 7-9 (270 MW)
 - PRB Coal
 - 2004 Hg emissions85 lb
 - (Units 1-6 16-lb)
- \$53.3M
 - \$24.9M DOE
 - \$28.5M We Energies
- Goals:90% Hg Control


*
$$SO_2 \Rightarrow 70\%$$

* $NO_X \Rightarrow 30\%$

TOXECON[™] Configuration

Presque Isle Power Plant

TOXECON Design Basis

- Results from pilot- and full-scale tests funded by NETL and EPRI
 - Pilot-scale proof of concept tests by EPRI
 - NETL, Phase I-funded full-Scale Hg Control Tests –Plant Gaston COHPAC* equipped Unit
 - Year-long test at Plant Gaston-COHPAC operated in TOXECON configuration

*Compact Hybrid Particulate Collector

Project Goals

- Achieve at least 90% mercury removal ($85 \rightarrow 8.5$ lb).
- Increase collection efficiency of PM, especially during upset conditions.
- Demonstrate mercury CEMs as a reliable mercury measuring system.
- Successfully integrate the entire system so that all subsystems are operating at peak performance.
- Determine viability of sorbent injection for SO₂ and NO_x control.
- Recover at least 90% of mercury captured in the PJBH ash.
- Minimize waste disposal with a target of 100% utilization.

Anticipated Benefits of TOXECON™ Project at PPIP

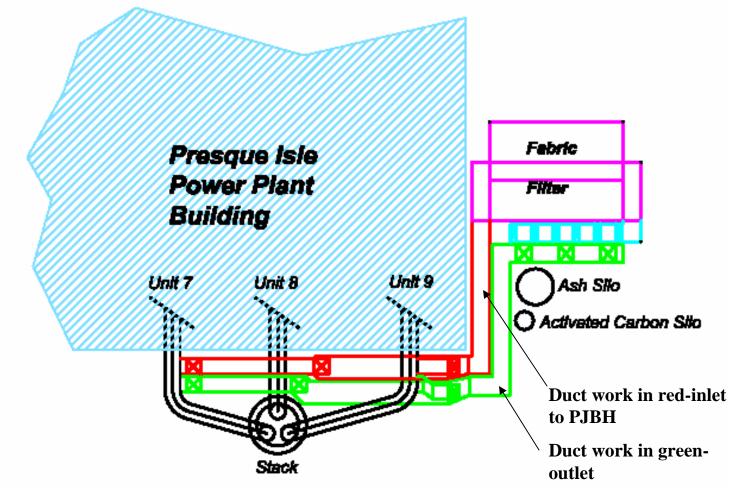
Pollutant	Annual Emission Reduction
Mercury	~77 pounds
Particulate Matter	32 tons
SO ₂	4,020 tons*
NO _x	1,470 tons*

Multi-pollutant aspect of TOXECON may reduce the release of all pollutants at the Presque Isle Power Plant to *very* low levels.

* Potential reductions

Project Tasks-Outline, Schedule

- Pre-award (Feb '03 to Feb '04)
 - Project Management Plan
 - NEPA
- Design & Construction (Mar '04-Jan '06)
 - Tie in-existing plant systems (controls, flue gas duct work, booster fans)
 - Equipment Procurement
 - Construction
 - Start-up
- Demonstration (Jan '06-Mar '09)
 - Mercury Optimization Jan '06–Dec '06
 - SO₂/NO_X/Ash- 2007



Project Milestones

- FONSI (Finding of No Significant Impact) issued September, 2003
- Fabric Filter vendor selected August, 2004
- First unit tie in scheduled for November, 2005
 - All units serviced by TOXECON January 2006
- Public Design Document Issued July, 2005
- Pre-operation testing work
 - Sorbent screening tests, April 2005
 - Mercury CEM launched commercially in May 2005
 - Thermo Electron's Mercury Freedom System

Schematic of TOXECON Layout

Ductwork Before

New TOXECON-Related Ductwork

New Duct work in place

PIPP Duct Installation

TOXECON Baghouse

Aerial View-TOXECON Baghouse

New TOXECON ID Fan-Baghouse

Public Design Document

Purpose - to provide non-proprietary design information (DOE requirement)

Includes

- Technology Overview
- Design Basis
- Costs

Equipment Costs

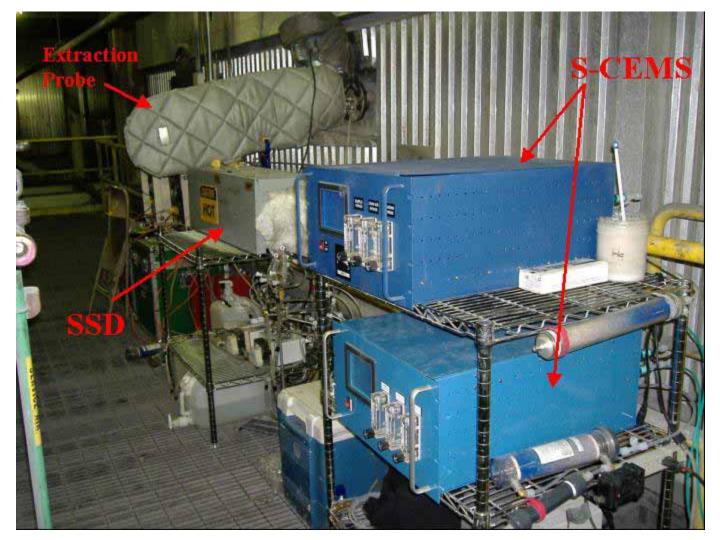
TOXECON [™] and Balance-of-Plant Equipment and Installation Costs Presque Isle Power Plant Units 7, 8, and 9		
Budget Item Description	Cost	
Baghouse		
Baghouse Supply and Erection	\$10,000,000	
Equipment		
Electrical Equipment	\$600,000	
Controls (Including Enclosure)	\$425,000	
Air Compressor/Dryer	\$140,000	
ID Booster Fans	\$1,200,000	
Ash System	\$650,000	
PAC System	\$700,000	
Dampers	\$650,000	
Expansion Joints	\$100,000	
Ductwork and Structural Steel	\$3,100,000	
Erection		
Construction Supervision and Indirects	\$2,400,000	
Foundations	\$1,550,000	
Electrical Installation	\$1,200,000	
Mechanical and Structural Installation	\$7,500,000	
Other		
Engineering Costs (A/E and Utility)	\$3,930,000	
Mercury Continuous Emissions Monitors (2)	\$300,000	
TOTAL (excludes testing program costs)	\$34,445,000	

Temperature Issues

Inlet temperature to PJBH (350 – 370°F)

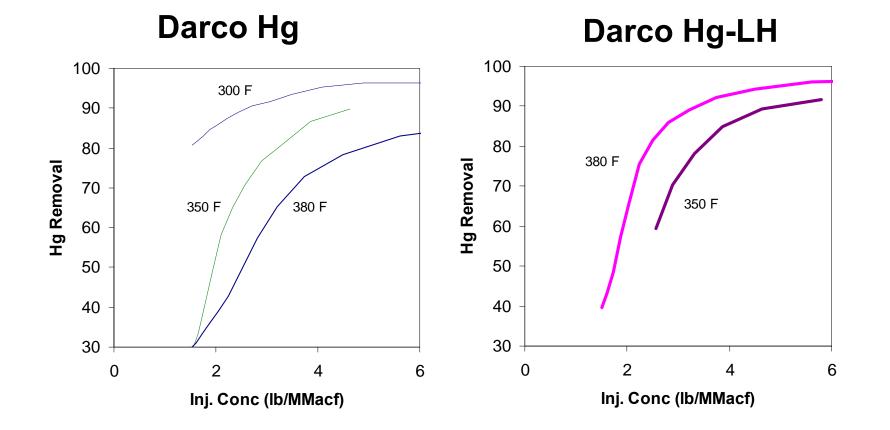
Concern

- Performance of activated carbons
- Bag life
- Options being evaluated
 - Air heater modifications
 - Spray cooling
 - Alternative sorbents



Sorbent Screening Tests

- Evaluated standard and treated activated carbons at three different temperatures (300, 350 and 370°F)
- Evaluated seven experimental sorbents



Sorbent Screening Tests

Temperature Effect

Test Bags

- Evaluating alternative fabric designs
- Test fabrics will be installed for start-up
 - High perm PPS fabrics
 - Lower pressure drop
 - Dual density
 - High efficiency, lower pressure drop
 - P84
 - High temperature fabric
 - Kermel
 - New fabric

Mercury CEM

- Partnership between ADA-ES and Thermo Electron to field validate new Mercury CEM components
- First tests February, 2004
- Commercial system launched May 2005
- Installed at PIPP June, 2005

Conclusions

- DOE's CCPI demonstrations provide key support for the commercialization of new technologies
 - CCPI provides mechanism to evaluate strategic design components
- Preliminary full-scale testing essential for establishing design basis and reducing risk
- First commercial mercury control system will be operational this year

