Michigan's Anthropogenic Mercury Emissions Inventory

GLBTS Meeting Dec 6, 2005

Chicago, IL

Leah Granke Environmental Quality Analyst Michigan Department of Environmental Quality

Overview

- Past Inventories
- Methods used to derive estimates
- Sources of Mercury Emissions in MI
- Planned Future Work

Brief History of Hg Inventories in Michigan

• 1989

- Mercury in Michigan's Environment: Causes and Extent of the Problem
- 1994
 - Mercury Pollution Prevention in Michigan: Summary of Current Efforts and Recommendations for Future Activities

• 1999

- Michigan Hg Electric Utility Report
- 2002
 - Still in draft form

Reductions in Mercury Emissions from Medical Waste & Municipal Waste Incineration

Air Rules-MDEQ actions to reduce Hg emissions

- Medical Waste Rule (Rule 933 of MI Air Pollution Control Rules)
 - Adopts federal rule by reference but sets more stringent limits for Hg (2000)
- Municipal Waste Rule (Rule 932)
 - Adopts federal rule by reference (1999)

Air Rules

 MI uses its base regulatory program to reduce mercury from point sources through the air permitting process.

How sources are calculated

 Stack tests are preferred Mass balances TRI data Lumex Flux Calculations Emission factors Estimated products using a flow model Other methodology (ie cremation)

2002 Anthropogenic Mercury Emissions in MI

Fuel Combustion

Fuel Combustion

Coal Combustion
Oil Combustion
Natural Gas Combustion
Wood Combustion
Petroleum Refining
Residential LPG Propane Combustion

Incineration

- Biosolids Incinerators (7)
- Municipal Waste Incinerators (4)
- Hospital Waste Incinerators (1)
- Hazardous Waste Incinerators (2)

Industrial Sources

Industrial Sources

Cement Manufacturing (3) Taconite Processing (2) Lime Manufacturing (5) **Dental Amalgam Manufacturing (1) Brick Manufacturing** Coke Production (1) **Metals Production** Blast/BOFs (2) EAFs & EIFs (10) Cupolas (13)

Mercury Emissions Calculated Using Lumex Data

- Dental Amalgam Manufacturer
- Shredders
- Fluorescent Lamp Recycler
- Grey Iron Cupola

Area Sources

Area Sources

- Dental Amalgam
- Auto Switches-shredders (18)
- Measurement & Control Devices (incl. Thermometers)
- Consumer use of Bulk Mercury
- Thermostats
- Fluorescent Lamps (Breakage & Recycling (5))
- Non-fluorescent lamps
- Battery Recycling
- Waste Disposal

Flow Model for Products

• As part of US population:

- Measurement & Control Devices (incl. thermometers)
- Switches & Relays (incl. thermostats & auto switches)
- Non-fluorescent lamps
- Fluorescent lamps
- Bulk Mercury

Michigan Specific Values:
 Dental Amalgam
 Auto Switches-shredding

Waste Disposal

Volatilization during solid waste collection and processing
Landfill volatilization
Disposal of products in burn barrels
Cremation
Volatilization: land application of biosolids

Mobile Sources

Vehicle Type	1999 Emission factor	2002 Emission factor
Light-duty Diesel	6,579 ng/mi	6.4-11.1 ng/mi
Heavy-duty Diesel	86,577 ng/mi	6.4-11.1 ng/mi
Light-duty Gasoline	875 ng/mi	0.3-1.4 ng/mi
Heavy-duty Gasoline	839 ng/mi	0.3-1.4 ng/mi

Future Work

- 2005 Inventory
- Update past inventories so that meaningful comparisons can be made
- Refine some sources
- Mercury Strategy Workgroup

Thanks to...

• Ed Swain

Alexis Cain

 Joy Taylor Morgan, Dennis McGeen, District staff, and others at MDEQ who provided me with information and guidance

Questions

