Anthropogenic Mercury Emission Inventory in China, 1999 David G. Streets, Ye Wu Argonne National Laboratory USA Jiming Hao, Jingkun Jiang, Hezhong Tian Tsinghua University, China Mercury Workgroup Meeting Chicago, Illinois December 6, 2005 ### **Project Sponsors** National Key Basic Research and Development Program of China, China Melissa Chan, Jim Ekmann National Energy Technology Laboratory, USA Detailed analysis of this study is published in *Atmospheric Environment 39 (2005): 7789-7806.* ### **Objectives of Project** - Develop a detailed inventory of Hg emissions in China, from coal and other sources, at provincial level - Speciate the Hg emissions into Hg(p), Hg(2+), and Hg(0) - Improve the data on Hg content of fuels, coal transportation, coal cleaning, performance of combustion technology, and efficiency of particulate removal devices - Spatially allocate the emissions to a 30 min x 30 min grid for input to atmospheric chemistry/transport models such as U.S. EPA's CMAQ model ### **Schematic of Hg Emissions Calculation Procedure** **Spreadsheet is 107 x 32 (Fuel/Tech combinations x Provinces)** ### **Sources of Data for Model Setup** China Energy Statistics China Energy Statistical Yearbook; China Coal Transportation Association **Tech Splits** Streets et al., *Atm. Env.*, 2001; Bond et al., *JGR*, 2003; Tsinghua University, 2003-2004 Hg in coal USGS, 2004; Zhejiang University, 2003; Huang and Yang, Coal Geology of China, 2002; Wang et al., ES&T, 2000; Zhang et al., Advances in Environmental Science, 1999; Ni et al., **Environmental Chemistry, 1998** F_{REL} Wang et al., ES&T, 2000; Wang et al, China Environmental Science, 1997; US EPA, EPA-600/R- 02-083, 2002; Zhu et al., Power Engineering, 2002; F_{RED} and F US EPA, EPA-600/R-01-109, 2002; US EPA, EPA-452/R-97-004, 1997; Wang et al., *ES&T*, 2000; Zhu et al., Power Engineering, 2002 ### **Inter-province Model of Coal Transportation Flows** # Transportation Matrix of Raw Coal by Province (All Sectors, 10³ tons), 1999 | | Anhui | Beijing | Fujian | Gansu (| Guangdong | Guangxi | Guizhou | Hainan | Hebei | Heilongjiang | Henan | Hong
Kong | Hubei | Hunan | Jiangsu | Jiangxi | Jilin | Liaoning | Macao | Nei Mongol | Ningxia | Qinghai | Shaanxi | Shandong : | Shanghai | Shanxi | Sichuan | Tianjin | Xinjiang | Xizang | Yunnan | Zhejiang | |--------------|-------|---------|--------|---------|-----------|---------|---------|--------|-------|--------------|-------|--------------|-------|-------|---------|---------|-------|----------|-------|---------------|---------|---------|---------|------------|----------|--------|---------|---------|----------|--------|--------|----------| | Anhui | 35925 | 391 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6000 | 0 | 177 | 0 | 1058 | 3 452 | 0 | 0 | | 0 0 | (|) 0 | 1190 | 1490 | 0 | 7678 | 0 | 0 | 0 | 0 | 0 | 370 | | Beijing | 0 | 8113 | 0 | 0 | 0 | 0 | 0 | 0 | 400 | 0 | 0 | 0 | 0 | 0 | (|) 0 | 0 | 0 | | 0 2805 | (| 0 | 0 | 0 | 0 | 10328 | 0 | 0 | 0 | 0 | 0 | 0 | | Fujian | 500 | 0 | 14744 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1000 | 0 | 0 | 0 | (| 300 | 0 | 0 | | 0 0 | (|) 0 | 0 | 0 | 0 | 2944 | 0 | 0 | 0 | 0 | 0 | 340 | | Gansu | 0 | 0 | 0 | 17691 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) 0 | 0 | 0 | | 0 0 | 1533 | 3 0 | 1205 | 0 | 0 | 0 | 0 | 0 | 2066 | 0 | 0 | 0 | | Guangdong | 1000 | 0 | 0 | 0 | 15557 | 157 | 2422 | 0 | 0 | 1000 | 3138 | 0 | 0 | 2000 | (|) 0 | 0 | 0 | | 0 3991 | (|) 0 | 0 | 0 | 0 | 22810 | 0 | 0 | 0 | 0 | - | _ | | Guangxi | 0 | 0 | 0 | 0 | 0 | 10180 | 3814 | 0 | 0 | 0 | 1596 | 0 | 0 | 600 | (| 0 | 0 | 0 | | 0 0 | (| 0 | 0 | 0 | 0 | 3511 | 0 | 0 | 0 | 0 | | | | Guizhou | 0 | 0 | 0 | 0 | 0 | 0 | 52027 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) 0 | 0 | 0 | | 0 0 | (|) 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | Hainan | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 379 | 0 | 0 | 100 | 0 | 0 | 0 | (| | 0 | 0 | | 0 0 | (| 0 | 0 | 78 | 0 | 1130 | | | 0 | 0 | | _ | | Hebei | 0 | 2200 | 0 | 0 | 0 | 0 | 0 | 0 | 82577 | 0 | 0 | 0 | 0 | 0 | (| | 0 | 0 | | 0 2828 | | - | 0 | 0 | 0 | 29277 | 0 | | 0 | 0 | | _ | | Heilongjiang | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56098 | 0 | 0 | 0 | 0 | (| | 400 | 0 | | 0 7544 | (| 0 | 0 | 0 | 0 | 0 | _ | 0 | 0 | 0 | 0 | 0 | | Henan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79206 | 0 | 0 | 0 | (|) 0 | 0 | 0 | | 0 0 | (| 0 | 1000 | 0 | 0 | 9523 | 0 | 0 | 0 | 0 | 0 | 0 | | Hong Kong | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (|) 0 | 0 | 0 | | 0 0 | (|) 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Hubei | 1023 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15481 | 0 | 19158 | 1286 | (|) 0 | 0 | 0 | | 0 0 | (|) 0 | 3119 | 1000 | 0 | 11016 | | | 0 | 0 | 0 | _ | | Hunan | 0 | 0 | 0 | 0 | 0 | 0 | 538 | 0 | 0 | 0 | 2200 | 0 | 200 | 28455 | (| | 0 | 0 | | 0 0 | (|) 0 | 300 | 0 | 0 | 2125 | | | 0 | 0 | 0 | _ | | Jiangsu | 10000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2127 | 0 | 4258 | 0 | 0 | 0 | 32450 | | 0 | 0 | | 0 0 | (|) 0 | 5000 | 1297 | 598 | 31142 | | - | 0 | 0 | - | _ | | Jiangxi | 400 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 1028 | 0 | 0 | 0 | (| 19626 | 0 | 0 | | 0 0 | · |) (| 300 | 200 | 0 | 750 | | _ | 0 | 0 | | | | Jilin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7570 | 0 | 0 | 0 | 0 | |) 0 | 22988 | 66 | | 0 9081 | | - | 0 | 0 | 0 | 0 | _ | | 0 | 0 | | _ | | Liaoning | 0 | 500 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4753 | 0 | 0 | 0 | 0 | (| | 699 | 52147 | | 0 7443 | | | 0 | 0 | 0 | 9384 | | _ | 0 | 0 | | _ | | Macao | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | (| | 0 | U | | 0 0 | (| J U | 0 | 0 | 0 | 0 | 0 | - | U | 0 | | _ | | Nei Mongol | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1000 | 1000 | 0 | U | 0 | 0 | | | 0 | 0 | | 0 44939 | | , , | 0 | 0 | 0 | 6756 | | - | 0 | 0 | | _ | | Ningxia | 0 | 0 | 0 | 279 | 0 | 0 | 0 | 0 | 0 | U | 0 | U | 0 | 0 | (| | 0 | 0 | | 0 0 | 13728 | | 0 | 0 | U | 0 | - | - | 0 | 0 | | _ | | Qinghai | 0 | 0 | 0 | 1976 | 0 | 0 | U | U | U | U | U | U | 0 | 0 | (| | U | 0 | | 0 0 | 01 | 3806 | | 0 | 0 | 0 | | U | 571 | U | 0 | _ | | Shaanxi | 0 | 0 | 0 | 214 | 0 | U | U | U | U | U | U | U | 0 | U | 4500 | | U | U | | 0 0 | 644 | 1 U | 29265 | 0 | 0 | 1956 | | U | U | U | 0 | _ | | Shandong | 707 | 200 | 0 | 0 | 0 | 0 | U | U | U | U | 736 | U | 0 | U | 1500 | | U | U | | 0 0 | l | J U | 800 | 87969 | 0 | 15974 | U | 0 | U | U | 0 | _ | | Shanghai | 3147 | 0 | 0 | 0 | U | 0 | 0 | 0 | 0 | U | 2800 | U | 0 | U | 2077 | ' U | U | 0 | | 0 1563
n n | | J U | 0 | 1400 | 5068 | 14337 | U | 0 | U | 0 | 0 | | | Shanxi | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | U | 0 | U | l l |) 0 | U | 0 | | 0 0 | | J U | U | 0 | 0 | 157029 | | | U | 0 | | _ | | Sichuan | 0 | 0 | 0 | 0 | 0 | 0 | 2126 | 0 | 000 | U | 0 | U | U | U | (| | U | 0 | | 0 0 | | , , | 0 | 0 | 0 | 42420 | 72220 | | U | 0 | | | | Tianjin | 0 | 2549 | 0 | 0 | 0 | 0 | 0 | 0 | 389 | U | U | U | 0 | U | (| | U | 0 | | 0 1500 | l |) 0 | 0 | 0 | 0 | 12428 | | 3666 | 20000 | 0 | | _ | | Xinjiang | 0 | U | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 0 | 0 | (| | U | 0 | | 0 0 | l |) 0 | 0 | 0 | 0 | 0 | _ | | 25662 | | - | _ | | Xizang | 0 | 0 | 0 | 0 | 0 | 0 | 1707 | 0 | 0 | 0 | 0 | U | 0 | 0 | (| | U | 0 | | 0 0 | l | J | 0 | 0 | 0 | 0 | | | U | 0 | | | | Yunnan | 0 | 0 | 2020 | 0 | 0 | 0 | 1797 | 0 | 0 | 0 | 2000 | U | 0 | U | 407/ | | 0 | 0 | | 0 0 | | J U | 000 | 4400 | 0 | 222.42 | | | 0 | 0 | | | | Zhejiang | 4459 | U | 2625 | 0 | 0 | 0 | U | 0 | 0 | U | 2000 | U | 0 | U | 1875 | 400 | 0 | 0 | | 0 1000 | ļ l | J U | 800 | 1100 | 450 | 22243 | 0 | 0 | U | 0 | U | 9936 | ## Coal Transportation Flows by Usage, 1999 # Hg Content of Raw Coal as Mined, g/Mg | - · | This | USGS, | Wang, | Huang, | ITPE, | Zhang, | Ni, 1998 | |--------------|-------|-------|-------|--------|-------|--------|----------| | Province | Study | 2004 | 2000 | 2002 | 2003 | 1999 | • | | Anhui | 0.26 | 0.19 | 0.22 | 0.26 | 0.37 | | | | Beijing | 0.44 | 0.54 | 0.34 | | | | | | Fujian | 0.08 | 0.07 | | | 0.08 | | | | Gansu | 0.05 | 0.05 | | | | | | | Guangdong | 0.15 | 0.05 | | | 0.25 | | | | Guangxi | 0.30 | 0.33 | | | 0.28 | | | | Guizhou | 0.52 | 0.20 | | 0.52 | 0.14 | 0.55 | 0.50 | | Hebei | 0.14 | 0.14 | 0.13 | 0.80 | | | | | Heilongjiang | 0.09 | 0.06 | 0.12 | 0.14 | | | | | Henan | 0.25 | 0.21 | 0.30 | 0.17 | 0.32 | | | | Hubei | 0.16 | 0.16 | | | | | | | Hunan | 0.10 | 0.14 | | 0.07 | | | | | Jiangsu | 0.16 | 0.34 | | 0.09 | 0.04 | | | | Jiangxi | 0.22 | 0.27 | 0.16 | | | | | | Jilin | 0.20 | 0.07 | 0.33 | | | | | | Liaoning | 0.17 | 0.18 | 0.20 | 0.13 | | | | | Nei Mongol | 0.22 | 0.15 | 0.28 | 0.02 | 0.63 | | | | Ningxia | 0.20 | 0.20 | | | | | | | Qinghai | 0.04 | 0.04 | | | | | | | Shaanxi | 0.11 | 0.13 | 0.16 | 0.08 | 0.07 | | | | Shandong | 0.18 | 0.13 | 0.17 | 0.21 | 0.22 | | | | Shanxi | 0.16 | 0.15 | 0.22 | 0.20 | 0.07 | 0.16 | | | Sichuan | 0.14 | 0.11 | 0.18 | | | | | | Xinjiang | 0.02 | 0.02 | 0.03 | | | | | | Yunnan | 0.29 | 0.14 | | 0.34 | | 0.38 | | | Zhejiang | 0.35 | | | | 0.35 | | | | China | 0.19 | | | | | - | | # Examples of Average Hg Content of Raw Coal as Mined and as Burned, g/Mg | Provinces | Coal as mined | Coal as burned, 1999 | | | | | | | | | | |--------------|---------------|----------------------|--------|----------|--------|--|--|--|--|--|--| | FIONITICES | Coar as mineu | Power Plants | Coking | Industry | Others | | | | | | | | Anhui | 0.26 | 0.23 | | 0.24 | 0.24 | | | | | | | | Beijing | 0.44 | 0.24 | 0.16 | 0.26 | 0.31 | | | | | | | | Fujian | 0.08 | 0.11 | 0.08 | 0.12 | 0.08 | | | | | | | | Gansu | 0.05 | 0.07 | 0.05 | 0.06 | 0.05 | | | | | | | | Guangdong | 0.15 | 0.18 | | 0.19 | 0.16 | | | | | | | | Guangxi | 0.30 | 0.28 | | 0.32 | 0.28 | | | | | | | | Guizhou | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | | | | | | | | Hainan | 0.15 | 0.16 | | 0.21 | 0.15 | | | | | | | | Hebei | 0.14 | 0.15 | 0.15 | 0.16 | 0.15 | | | | | | | | Heilongjiang | 0.09 | 0.14 | 0.09 | 0.09 | 0.09 | | | | | | | | Henan | 0.25 | 0.23 | 0.23 | 0.24 | 0.25 | | | | | | | | Hongkong | | 0.18 | | | | | | | | | | | Hubei | 0.16 | 0.18 | | 0.19 | 0.17 | | | | | | | | Hunan | 0.10 | 0.13 | 0.10 | 0.13 | 0.10 | | | | | | | | Jiangsu | 0.16 | 0.16 | 0.16 | 0.19 | 0.18 | | | | | | | | Jiangxi | 0.22 | 0.22 | | 0.22 | 0.22 | | | | | | | | Jilin | 0.20 | 0.20 | | 0.16 | 0.18 | | | | | | | # **Examples of Shares of Boiler Types with PM Control Devices for Coal-fired Power Plants by Province, 1999** # **Examples of Shares of Boiler Types with PM Control Devices for Industrial Coal Use by Province, 1999** # **Examples of Shares of Boiler or Cookstove Types for Residential Raw Coal Use by Province, 1999** ## **Hg Remaining in Bottom Ash** | Sectors | Boiler types | Ratio, % | |---------------------------------|-----------------------|----------| | | Traditional cookstove | 17.0 | | Residential Use | Improved cookstove | 17.0 | | | Stoker | 17.0 | | Industrial Use | FBF/PC | 8.0 | | industriai Use | Stoker | 17.0 | | Darran Dlant | PC | 1.0 | | Power Plant | Stoker | 2.0 | | Farming, Construction, and etc. | Stoker | 17.0 | The ratios shown here are Hg remaining in bottom ash ### Hg Removal Efficiencies by PM Control Device, Power Sector | | | | Removal Efficiency (%) | | | | | | | | | | |------|---------------------|---------------|------------------------|---------|--------|-------|-----------|--|--|--|--|--| | Case | Fuel/Combustor Type | PM Control | Provinces of China | | | | | | | | | | | | | | Anhui | Beijing | Fujian | Gansu | Guangdong | | | | | | | 31 | Hard coal/PC | filter or ESP | 30.6 | 30.6 | 30.6 | 30.6 | 30.6 | | | | | | | 33 | Hard coal/PC | scrubber | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | | | | | | | 34 | Hard coal/PC | cyclone | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | 32 | Hard coal/stoker | filter or ESP | 30.6 | 30.6 | 30.6 | 30.6 | 30.6 | | | | | | | 35 | Hard coal/stoker | scrubber | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | | | | | | | 36 | Hard coal/stoker | cyclone | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | 85 | Hard coal/cyclone | scrubber | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | | | | | | | 86 | Hard coal/cyclone | cyclone | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | 37 | Cleaned coal/PC | filter or ESP | 30.6 | 30.6 | 30.6 | 30.6 | 30.6 | | | | | | | 39 | Cleaned coal/PC | scrubber | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | | | | | | | 40 | Cleaned coal/PC | cyclone | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | | | | | 38 | Cleaned coal/stoker | filter or ESP | 30.6 | 30.6 | 30.6 | 30.6 | 30.6 | | | | | | | 41 | Cleaned coal/stoker | scrubber | 6.5 | 6.5 | 6.5 | 6.5 | 6.5 | | | | | | | 42 | Cleaned coal/stoker | cyclone | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | # Total Hg Emissions by Province, 1999 (Coal Combustion Sources) Total Hg emissions from coal combustion: 202.4 tons The 3 highest emitting provinces: 1) Guizhou (19.2 t); 2) Shanxi (15.3 t); and 3) Henan (14.0 t) ## **Other Source Types** #### Other combustion sources - Fuel oil (gasoline, diesel, kerosene, and residual oil) - Biofuels - Grassland/Savanna/Forest fires - Agricultural residue/Household waste burning - Coal mines spontaneous burning #### Non-combustion sources (feedstock emissions only) - Mercury mining - Battery/Fluorescent lamp production - Cement production - Iron and steel production - Caustic soda production - Nonferrous metals smelting (zinc, copper, gold, and lead) # **Total Hg Emission Factors of Other Sources** | | Source category | Unit | Emission factor | Pacyna et al,
2002 | |-----|--|-----------------------|-------------------|-----------------------| | 1. | Fuel oil for stationary sources (e.g., power plants, industrial use, etc.) | g/t oil | 0.014 | 0.06 | | 2. | Gasoline, diesel and kerosene | g/t oil | 0.058 | | | 3. | Biofuels | g/t biofuels | 0.020 | | | 4. | Grassland/savanna burning | g/t grass burning | 0.080 | | | 5. | Forest burning | g/t forest
burning | 0.113 | | | 6. | Waste and residue burning | | | | | | agricultural residue | g/t residue | 0.037 | | | | house hold waste | g/t waste | 2.80 | 1.0/5.0 | | 7. | Coal mines spontaneous burning | g/t coal | 0.02 -0.43 (0.16) | | | 8. | Cement production | g/t cement | 0.04 | 0.1 | | 9. | Iron and steel production | g/t steel | 0.04 | 0.04 | | 10. | Caustic soda production | g/t caustic soda | 20.4 | | | 11. | Non-ferrous metal smelting | | | | | | Zinc (Zn) | g/t Zn | 13.8-156.4 (86.6) | 20.0 | | | Copper (Cu) | g/t Cu | 9.6 | 10.0 | | | Lead (Pb) | g/t Pb | 43.6 | 3.0 | | | Gold (Au): large scale production | t/t Au | 0.79 | | | | Gold (Au): artisanal pro duction | t/t Au | 15.0 | | | 12. | Mercury mining | kg/t Hg | 45.0 | | | 13. | Battery & fluorescent lamp production | kg/t Hg | 50.0 | | ### **Emissions from Other Source Types for 1999** ### **Total Hg Emissions by Sector, by Province,** and by Species Total Hg emissions (all sources together): 535.8 tons The 3 highest emitting provinces: 1) Liaoning (54.1 t); 2) Guangdong (44.2 t); and 3) Guizhou (39.0 t) ### **Uncertainty in Hg Emission Estimates by Sector** Hg emission estimates for non-coal-combustion sources are subject to much higher uncertainties. # Gridded Total Hg Emissions, All Sources Together (30 min × 30 min resolution, unit: t yr⁻¹ per grid cell) #### **Areas for Improvement and Further Cooperation** - Energy use and coal transportation - Improvements to our characterization of source mix by sector, especially industry - Hg retained in ash, by combustor type ☑, but need test data for small cookstove and small boilers - Hg content of raw coal, cleaned coal, and briquettes by province ☑, but need to resolve differences for raw coal - Effect of coal cleaning on Chinese coals (% Hg removed) ☑, but need more test data from Chinese sources - Hg releases from small, unconventional sources (stokers, stoves, etc.) ☑, but need more test data from Chinese sources - Measurement of Hg collection efficiencies in China ☑, but need more test data from Chinese sources - Smelting process ☑, but need more test data from Chinese sources - Speciation of Hg from sources in China context - Types of coal preparation/cleaning typically performed