Mercury Product Life-Cycle Model: Uses and Results

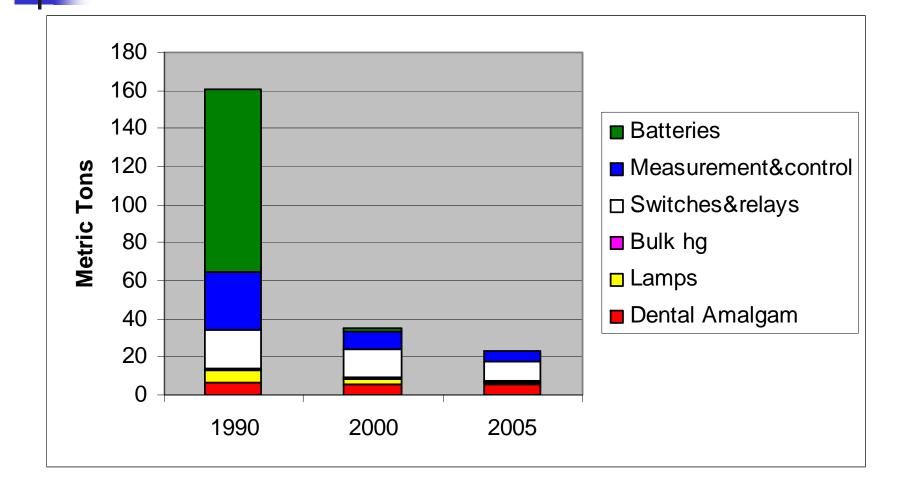
Alexis Cain, US Environmental Protection Agency, Region 5 Binational Toxics Strategy Mercury Workgroup December 6, 2005

Questions

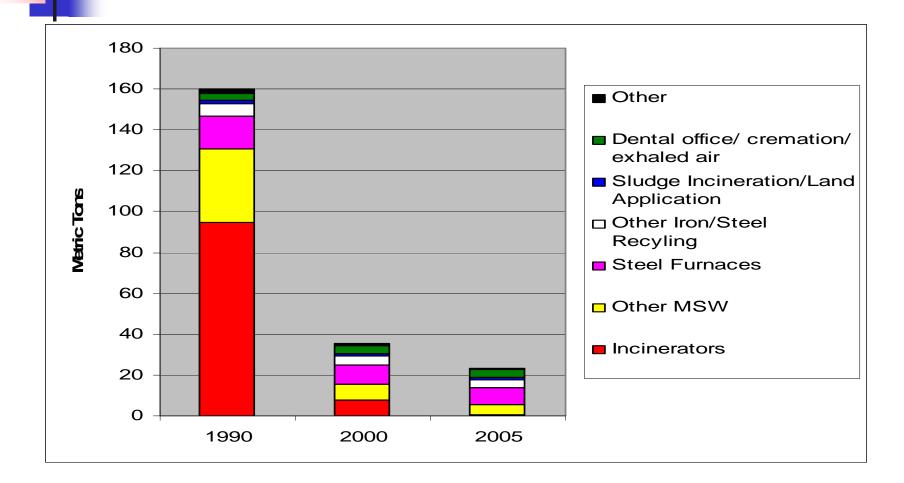
- Are Products (Still) Important Sources of Mercury to the Environment?
 - Incinerators have been controlled
 - Mercury thermometers have become rare
- Which Products Contribute the Most?
- Which Pathways Contribute the Most?
- Which Interventions Will Reduce Mercury the Most?

Mercury Product Life-Cycle Release Estimation Project

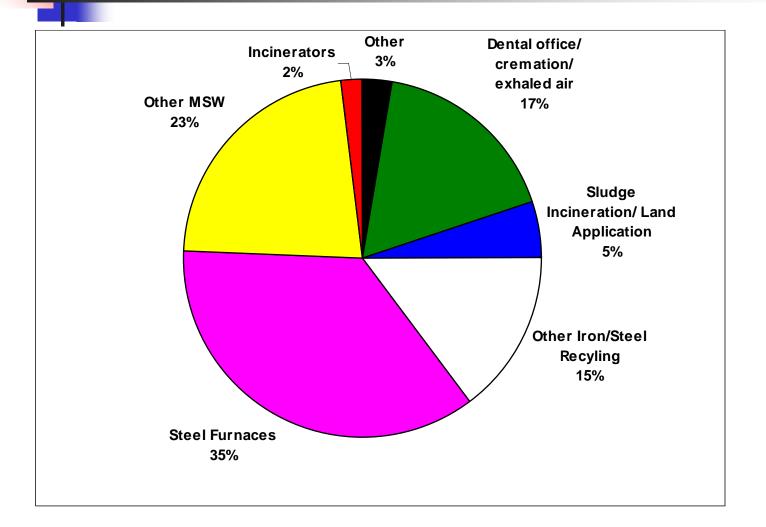
- Minnesota PCA (Ed Swain)/Barr Engineering (Carol Andrews, Bruce Monson) – estimates for MN in 2001 – Used to improve MPCA mercury emissions inventories
- Wisconsin DNR/Barr/Dane County– adapted for WI in 2003-2004
- 2004-5; EPA Region 5, WDNR (Randy Case), Dane County (John Reindl), Barr (Cliff Twaroski, Sarah Disch) develop national estimates


Life-Cycle Mercury Flow Approach

- Mass Balance
- Spreadsheets
- Distribution Factors
- Release Factors
- Estimated releases to air, water, land in 1990, 2000, 2005-10
- Mercury used in products is released, recycled, or maintained in inventory
- Estimates are rough, preliminary


Products Covered

- Dental amalgam
- Fluorescent lamps, other lamps
- Bulk liquid mercury
- Switches and relays
 - Auto switches
 - Thermostats
- Measurement and Control Devices
 - Thermometers
- Batteries a back of the envelope analysis
- Did not evaluate chemicals, paint, fungicides


Product-Related Air Emissions, by Product

Product-Related Air Emissions, by Pathway

Product-Related Air Emissions by Pathway: 2005

Total: 23 metric tons

Selected 1999 NEI* Emissions Compared with Model (2000)

	NEI	Model
Medical/Municipal Incinerators	5.9	7.5
Burn Barrels	?	2.1
Lamp Breakage	1.4	1.6
Breakage of Products other than Lamps	?	3.0
Mercury Recycling	0.2	0.6
Iron and Steel Furnaces*	12.4	9.8
Zinc Production	?	2.0
Metal Shredders	?	1.7
Auto Fluff	?	0.3

NEI: EPA's National Emissions Inventory.

* Steel furnace estimate from regulation development for foundries and electric arc furnaces.

Iron and Steel Recycling

- Less decrease than in most other categories
- Not just autos autos account for under 1/2 of steel furnace emissions (high uncertainty)
- Other switches and relays commercial appliances? Industrial equipment?
- Not just steel furnaces: shredders, auto fluff and
- Secondary zinc production emissions (TRI, 2003)
 - Inmetco International Metals, Ellwood City, PA: 1900 lbs mercury air emissions
 - Horsehead Resource Development
 - Chicago: 210 lbs mercury air emissions
 - Palmerton, PA: 220 lbs mercury air emissions
 - Rockwood, TN: 99 lbs mercury air emissions

Solid Waste Management System

- Emissions declining rapidly
- Big impacts from battery P2; incinerator regulations
- Emissions could be significant for:
 - Burn barrels
 - Product breakage during use, transport to disposal sites
 - High uncertainty

Dental Amalgam

- Significant water releases (391 kg in 2005) >50% of product-related total
- Air releases from sludge incineration and land application, dental office vacuum system, cremation, exhaled air (high uncertainty)
- Potential BMP/Separator impact?

Evaluation of Potential Control Options: Dental Amalgam, 2005

	Inputs to		
	Sludge	Water	Air
BMP Status quo,			
Zero separators	5,542	429	5,542
100% BMP adherence,			
Zero separators	4,391	330	5,088
100% adoption of BMPs			
and 95%-effective separators	1,360	102	4,538
In kg. Assumes that WWTPs are equally effective at removing			

dental amalgam and other mercury from sewage.

Evaluation of Potential Control Options—Air Emissions Impact

Auto switches, 2005

- 0 switch removal- 3,492 kg emissions
- 20% removal- 2,829 kg
- 80% recycling—838 kg
- Fluorescent lamps, 2005
 - 25% lamp recycling—1,142 kg emissions
 - 75% lamp recycling– 599 kg emissions

Conclusions

- Products Are Still Important Sources of Mercury to the Environment
 - Releases reduced significantly
- Important reduction opportunities in iron and steel production/recycling; dental, lamps
- Model provides opportunity to better understand release pathways and to test impact of potential control strategies
- Quantification is rough—many uncertainties
- Model can be adapted for state/local use

