The Collaborative Mercury Research Network

An ecosystem approach to describe the mercury issue in Canada: From mercury sources to human health

A few numbers:

- Over 60 researchers and Hg specialists
- from 14 Canadian universities
- in 7 provinces
- 3 research centers
- 7 ministries (provincial and federal)
- Involvement of over 150 « Canadian » graduate students, discovering the beauties of interdisciplinarity ind ... multiculturalism
- Active participation of First Nations and non First Nations communities

Funding Over 5 Years

12.7 M\$ from NSERC Total budget: 18 M\$

Preconceived ideas regarding Mercury in Canada:

• High mercury concentrations in fish caught in "polluted" areas, near industries, cities or downwind major industrial-urban centers

 Most exposed people are found in communities traditionally eating wild fish from these areas

 In the absence of Hg "point source", there is a direct relationship between Hg atmospheric loading and ecosystems response

Atmospheric Hg anthropic enrichment factors across North America

At the local scale,

13

Lake Desjardins

[Hg] in Walleye standardized length

There is NO simple relationships between Hg sources, Hg levels in fish, human Hg exposure and health impacts

So came the ecosystem approach

The structure of our research plan

A unique combination of critical gap studies feeding...

... and case studies with the involvement of communities

Victoria Island Retired Fishers Grassy Narrows Cree Nation A hit Sheshashi Innu Nation

Abitibi-Témis Sports fishers

Lake St. Pierre Sports & comm. fishers

Bay of Fundy

How does this work?

Understanding the ecosystem as a whole...

Including humans...

Three case studies

Sheshashi Innu Nation

Abitibi-Témis. Sports fishers

Lake StPierre Sports & comm. fishers Considering the environmental and socioeconomical characteristics, which community is most at risk in terms of health alterations related to Hg exposure?

> Sheshashi Innu Nation

Abitibi-Témis. Sports fishers

Lake St. Pierre Sports & comm. fishers

System's sensible to bioaccumulate Hg

 Hg weathering from watersheds to aquatic environments (clear cutting, agriculture, etc.)

Lakes under study

	Malartic	Dupar-quet	Preissac	Noname	Panch	Rocky pond	Shipiskan	St. Pierre	
Region	Abitibi				Labrador				
Lake area (ha)	11440	4847	8251	2743	1407	621	1721	31130	
Watershed area (10 ³ ha)	307,1	172,4	99,4	36,2	131,4	30,7	360,4	75050	
Mean slope (%)	3,00	5,24	1,06	2,73	5,08	2,43	3,70	2,3*	
Ratio lake /watershed	27	36	12	13	93	50	209	2411	
Wetland area (% watershed)	8	3	5	NA	NA	14	NA	1*	
Exploitation	Sports- fishing	Sports- fishing	Sports- fishing	Subsistence	Subsistence	Subsistence	Subsistence	Sports Commercial	
agriculture (% watershed)	3	1	1	0	0	0	0	27	
Forestry (% watershed)	3	7	2	0	0	0	0	NA	
Population density (nb/km2)	1 to 9,9	1 to 9,9	1 to 9,9	0 to 0,9	0 to 0,9	0 to 0,9	0 to 0,9	10 to 69,9	
Ethnic groups	Caucasian & First Nations	Caucasian & First Nations	Caucasian & First Nations	Innu	Innu	Innu	Innu	Caucasian	

Natural land cover

Wood cutting

Access to lakes

Mining activities 🙀

Settlements

.

System's sensitivity to bioaccumulate Hg

Hg weathering from watersheds to aquatic environments (clear cutting, agriculture, etc.) Methylation processes (for example flooded environments or presence of wetlands)

Lakes under study

	Malartic	Du- parquet	Preis- sac	Noname	Panch	Rocky Pond	Shipiskan	St. Pierre	
Region		Abitibi			Labrador				
Water color (Pt mg/L)	83,7	58,5	58,5	5,9	1,7	6,3	2,1	50,1	
PO4 (umol / I P)	0,66	0,68	0,44	NA	NA	NA	NA	1,48	
DOC (ppm C)	10,86	10,92	9,05	NA	NA	NA	NA	7,67	
Diss. Hg (ng/L)	1,19	1,67	0,75	2,8	2,2	2,7	2,2	1,10	
рН	7,0	7,4	7,1	5,8	6,0	5,9	6,3	7,6	
Conductivity (µS/cm)	85,99	95,45	110,00	16,52	NA	18,00	35,92	317,24	
SPM (mg/L)	11,85	11,58	3,65	1,55	0,21	0,93	0,14	18,61	
Hg SPM (ppb)	116,50	349,70	155,20	NA	NA	NA	NA	548,33	
chl@	3,07	4,52	3,16	2,68	0,82	1,94	0,67	4,78	
Hg Atm. Ioadings ug/m2/yr	5			5				4.1	

Hg concentration in fish species from lakes of different regions

System's sensitivity to bioaccumulate Hg

- Hg weathering from watersheds to aquatic environments (clear cutting, agriculture, etc.)
- Methylation processes (presence of wetlands)
- Structure of aquatic trophic web

Walleye total length versus Hg concentration

Walleye Growth

From Simonneau et al, 2004

Communities vulnerably to Hg exposure

Proportional consumption of local fish vs. market fish

Region	Lakes	Species	Standard length (mm)	Hg levels (ppm)	% of total fish meals from the regions	Food web structure	
		Atlantic Salmon ²	715	0.01			
		Lake Trout	590	0.67		Salmonidae Simple	
Labrador	Data	Lake Whitefish	420	0.18	100 %		
	combined	Northern Pike	660	0.30			
		Smelt ²	170	0.22			
		Brook Trout	440	0 0.05 0 0.32			
	Preissac	Walleye	350	0.32		Percidae Simple	
		Sauger	350	0.85			
		Northern Pike	545	0.45	47,8%		
	Duparquet	Walleye	350	0.45	Other sources :		
Abitibi		Sauger	350	0.43	Tuna : 7,2%		
		Northern Pike	545	0.45	Mar. fish : 35,3%		
	Malartic	Walleye	350	0.79	Seafood: <1%		
		Sauger	350	0.47			
		Northern Pike	545	NA			
	St. Pierre	Walleye	350	0.17	44%		
		Sauger	350	0.21	Other sources :		
St. Lawrence		Northern Pike	545	0.16	Tuna : 4,9%	Percidae Complex	
		Yellow Perch	155	0.10	F.W. fish:11,7% Mar. fish : 24,4%	Complex	
		Burbot	253	0.09	Seafood:15%		

Hg in market fish...

- MeHg in canned pale tuna*: 0.02 to 0.16 ppm MeHg in canned white tuna*: 0.15 to 0.7 ppm
- MeHg in fresh tuna**: 0.2 to 1.3 ppm
- MeHg in fresh swordfish**: 0.7 to 3.7 ppm
- MeHg in fresh mackerel**: 0.1 to 1.7 ppm
- MeHg in fresh shark**: 0.05 to 4.5 ppm

(* COMERN 2003; **FDA 2002)

Communities unerably to Hg exposure

Proportional consumption of local fish vs. market fish Relationship between Hg dose and Hg

response

Region	Number fish meals local (3 months)	Number fish meals all sources (3 months)	Calculated mean Hg level in fish diet (ppm)	Calculated daily exposure (ugHg/day/kg bodyweight)	Modeled Hg levels in hair using calculated exposure (ppm)	Measured Hg levels in hair (ppm) (first 3 cms)
St. Lawrence	7,3	16,6	0,09	0,033	0,6	0,8 (SD 0,97)
Abitibi	8,1	16,9	0,27	0,100	1,6	0,8 (SD 1,47)
Labrador	46,9	46,9	0,25	0,243	4,1	0,4 (SD 0,39)

COMING BACK ON THE THREE CASE STUDIES...

Sheshashi Innu Nation

Abitibi-Témis. Sports fishers

Lake StPierre Sports & comm. fishers

Mercury in « polluted » lake St Pierre

SENSITIVITY

Industrial inputs of Hg and other pollutants Downwind atm. inputs of Hg and other pollutants Surrounding wetlands as active Hg methylation sites

VULNERABILITY

Frequent consumption of local fish-

Fast growing fish

Mercury in « pristine » subsistence fishing lakes of Labrador.

VULNERABILITY

- - Heavy consumption of local fish
 - Low dose-response to Hg of the Innu community

SENSITIVITY

- Slow growing fish
- Small Fishing intensity

- Atmospheric Hg reactivity at high latitudes
- Small inputs of Hg from watershed

Mercury in « pristine » sports fishi lakes of the Canadian Shield

SENSITIVITY

- Low inputs of Hg from watersheds
- Unfavorable methylation conditions
- Moderate fishing intensity
 - Slow growing fish

VULNERABILITY

Moderate local "trophy" fish consumption

The sensitivity of ecosystems to Hg loadings

The vulnerability of communities to Hg exposure

How is this achieved?

Involvement of communities Sharing of knowledge

Outcome

Empowerment of the communities on how to safely enjoy their fish meals

www.unites.uqam.ca/comern

	118 participants						
Labrador	Fish meals	SD	minimum	maximum			
fish meals/year							
Salmon	29.1	57.5	1	336			
Lake Trout	40.7	117.0	1	1008			
Arctic Char	44.7	102.6	1	536			
Northern Pike	12.6	28.3	1	120			
meals/spring	(total for three-months)						
Salmon	3.2	11.9	0	84			
Lake Trout	11.9	34.7	0	252			
Arctic Char	9.9	41.0	0	252			
Northern Pike	3.8	12.4	0	60			
Smelt	7.9	15.9	0	84			
Brook Trout	10.0	21.8	0	168			
Mean Hg levels in first 3cm of hair (ppm)							
mean std		minimum	maximum				
0.39		0.39	0.2	2.47			

Lake St.			130 participants		
Pierre	Fish meals	SD	minimum	maximum	
fish meals/year					
Yellow Perch	15,3	22,7	0	163	
Walleye	13,0	16,4	0	112	
Northern Pike	1,1	4,2	0	39	
meals/spring					
Yellow Perch	3,7	9,3	0	76	
Walleye	3,1	6,2	0	39	
Northern Pike	0,5	3,5	0	39	
Mean Hg levels in first 3cm of hair (ppm)					
mean	std		minimum	maximum	
0.83	0,97		0,04	5,23	

	146 participants					
ΑΟΙΤΙΟΙ	Fish meals	SD	minimum	maximum		
fish meals/year						
Walleye	18,1	21,8	0	96		
Northern Pike	5,1	10,0	0	48		
meals/spring	(total for three-months)					
Walleye	6,6	12,0	0	70		
Northern Pike	1,5	3,1	0	12		
Mean Hg levels in first 3cm of hair (ppm)						
mean		std	minimum	maximum		
0,78		1,47	0,01	13,47		

Building exemplary science Breakthrough on the fractionation of Hg isotopes Breakthrough on reactivity of newly deposited atmospheric Hg Perfecting our understanding of Hg/organic matter interactions Perfecting our understanding methylation processes **Developing usable models Developing integration tools**

Building exemplary science

Revising the human metabolic response to Hg exposure