THE GREAT LAKES BINATIONAL TOXICS STRATEGY

Lake Superior Inventory

Anita Wong and Shawn Michajluk Environment Canada

May 17, 2006

HCB Information from Draft Lake Superior Report

"Emissions Inventory 2005 for Canadian Portion of Lake Superior Basin – Lake Superior Binational Program (Final Report)", Prepared by Netta Benazon, Benazon Environmental Inc., March 2006

- "…limited data available to assess hexachlorobenzene (HCB) emissions in the Lake Superior Basin…."
- "…was likely emitted from the former iron sintering facility in Wawa which shut down in 1998, from on-site residential combustion, landfill fires, and medical waste incinerators but no data is available to estimate quantities…"
- "...For remaining sources, emissions to environment declined from 224 grams in 1990 to 126 grams in 2005, corresponding to a 44% drop..."
 - "...decrease is largely associated with reductions in the pulp and paper sector, likely related to the conversion of the bleaching process from elemental chlorine to chlorine dioxide..."

HCB Information from Lake Superior Report

"Emissions Inventory 2005 for Canadian Portion of Lake Superior Basin – Lake Superior Binational Program (Final Report)", Prepared by Netta Benazon, Benazon Environmental Inc., March 2006

- "…Thunder Bay Generating Station is the highest source (92 grams), followed by PCP-treated railway ties (21 grams), and residential wood combustion (10 grams)…"
- "...With the conversion of the Thunder Bay Generating Station to natural gas, most or all of the current emissions from this source will be eliminated, bringing total HCB emissions in the Lake Superior Basin to 34 grams/year...This will result in an 85% reduction from 1990 levels..."

THE GREAT LAKES BINATIONAL TOXICS STRATEGY

Table 2.2	Emissions	from	Desidential	Wood Combustion
rable s-z.	EIIIISSIOIIS	nom	Residential	wood Compusuon

Wood-burning	Ontario	LSB		Emission Factors							Emissions						
Applicance	Wood	Wood	Dioxins a	HCB		Mercury		D/F		HCB		Mercury					
	Burned	Burned	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High			
	T/y	T/y	ng I-TEQ/kg	ng I-TEQ/kg	ng/kg	ng/kg	kg/T	kg/T	g I-TEQ	g I-TEQ	g	g	kg	kg			
Notes	a	b	cde	cde	fg	fg	hij	hij									
Quality Rating	L	L	м	M	L	L	P	P	L	L	L	L	P	P			
1990																	
Wood Stoves	897317	21536	0.25	1	13	13	0.000013	0.00005	0.005	0.022	0.28	0.28	0.28	1.08			
Fireplaces	469815	11276	0.35	2.5	300	1000	0.000013	0.00005	0.004	0.028	3.38	11.28	0.15	0.56			
Furnaces/Boilers	311811	7483	0.14	0.8	13	13	0.0000026		0.001	0.006	0.10	0.10	0.02	0.02			
Total									0.010	0.056	3.76	11.65	0.45	1.66			
2000/2005																	
Wood Stoves	998585	18973	0.25	1	13	13	0.000013	0.00005	0.005	0.019	0.25	0.25	0.25	0.95			
Fireplaces	522837	9934	0.35	2.5	300	1000	0.000013	0.00005	0.003	0.025	2.98	9.93	0.13	0.50			
Furnaces/Boilers	347002	6593	0.14	0.8	13	13	0.0000026		0.001	0.005	0.09	0.09	0.02	0.02			
Total									0.009	0.049	3.31	10.27	0.39	1.46			

Blank = data not available

Rating = data quality; H=high; M=moderate; L=low; P=preliminary; U=unknown.

Notes

a. Quantities burned were provided by (1). The quality of the data is considered to be Low based on information from (7). Values were provided for 1990 and 2003. 2000 and 2005 data was not available; therefore 2003 data were assumed for both years 2000 and 2005.

b. Estimated using a population based ratio of 0.024 for 1990 and 0.018 for 2000/2005 (Table 2-1).

c. Because of the variability and uncertainty associated with emissions factors from wood-burning appliances, low and high emission factors were provided.

d. Dioxin and furan emission factors for fireplaces and woodstoves were obtained from (2) and (3).

e. Dioxin and furan emission factors for wood burning furnaces were obtained from (4).

f. Hexachlorobenzene emission factors for woodstoves and firesplaces were obtained from (2).

g. No emissions factors were found for HCB from wood-burning furnaces/boilers so the woodstove emission factor was used as an approximation.

Mercury emission factors for fireplaces and woodstoves were obtained from (5).

Mercury emission factors for wood burning furnaces/boilers were obtained from (6).

Values associated with considerable uncertainty due to limited testing.

References

- Dumitras (2005).
- (2). Gullett et al. (2003).
- (3). Environment Canada (2000).
- (4). Pfeiffer et al. (2000).
- (5). Sunderland and Chmura (2000).
- (6). U.S. EPA (1997).
- (7). Gulland (2006).

Emissions Inventory 2005, Canadian Portion of Lake Superior Basin, Lake Superior Binational Program Benazon Environmental Inc. March 30, 2006

56

