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BACKGROUND: Single-wall carbon nanotubes (SWCNTs), with their unique physicochemical and
mechanical properties, have many potential new applications in medicine and industry. There has
been great concern subsequent to preliminary investigations of the toxicity, biopersistence, patho-
genicity, and ability of SWCNTs to translocate to subpleural areas. These results compel studies of
potential interactions of SWCNTs with mesothelial cells.

OBJECTIVE: Exposure to asbestos is the primary cause of malignant mesothelioma in 80-90% of
individuals who develop the disease. Because the mesothelial cells are the primary target cells of
asbestos-induced molecular changes mediated through an oxidant-linked mechanism, we used nor-
mal mesothelial and malignant mesothelial cells to investigate alterations in molecular signaling in
response to a commercially manufactured SWCNT.

METHODS: In the present study, we exposed mesothelial cells to SWCNTs and investigated reactive
oxygen species (ROS) generation, cell viability, DNA damage, histone H2AX phosphorylation, acti-
vation of poly(ADP-ribose) polymerase 1 (PARP-1), stimulation of extracellular signal-regulated
kinase (ERKs), Jun N-terminal kinases (JNKs), protein p38, and activation of activator protein-1
(AP-1), nuclear factor kB (NF-kB), and protein serine-threonine kinase (Akt).

RESULTS: Exposure to SWCNTs induced ROS generation, increased cell death, enhanced DNA
damage and H2AX phosphorylation, and activated PARP, AP-1, NF-kB, p38, and Akt in a dose-
dependent manner. These events recapitulate some of the key molecular events involved in
mesothelioma development associated with asbestos exposure.

CoNcLUSIONS: The cellular and molecular findings reported here do suggest that SWCNTSs can
cause potentially adverse cellular responses in mesothelial cells through activation of molecular sig-
naling associated with oxidative stress, which is of sufficient significance to warrant 7z vivo animal
exposure studies.
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By 2015, the worldwide market for products
with nanotechnology components will reach an
estimated $1 trillion (Roco 2005). The unique
behavior and properties of nanoscale materials
have revolutionized technology, producing an
estimated 1,300 materials either in use or being
tested for potential commercial applications.
Enhanced physical and chemical properties
associated with the nanosize of these materials
have been exploited to produce a wide variety
of new products. In addition, nanoparticles are
being explored for several treatment modalities,
including early detection of tumors and other
clinical applications (Gwinn and Vallyathan
2006). With these applications come unprece-
dented avenues of human exposure to nano-
materials. Engineered single-wall carbon
nanotubes (SWCNTs) are a class of nanoparti-
cles being actively evaluated for myriad indus-
trial and biomedical applications (Dresselhaus
et al. 2004). Exponential growth in the use of
SWCNTs potentially can cause exposure to a
large number of workers (Maynard 2007).
SWCNTs have been reported to have
many adverse cellular and animal toxicity

reactions, which may be predictive of detri-
mental human health effects upon exposures
(Lam et al. 2004; Shvedova et al. 2005). The
likely widespread industrial application of
SWCNTs in several consumer products and
medical applications may pose an emerging
human health concern (Donaldson et al. 2006;
Maynard 2007). It has been suggested that
inhaled SWCNTSs and other nanoparticles are
likely to evade phagocytosis, penetrate lung tis-
sue, and translocate to other organs to cause
systemic cell toxicity and injury (Gwinn and
Vallyathan 2006; Oberdérster et al. 2005).
Therefore, toxicity studies of nanoparticles
should not be limited to a single lung cell or
only to the lung, but should involve other
systemic targets.

Preliminary cellular and animal exposure
investigations on toxicity and pathogenicity
of SWCNTs have demonstrated biological
interactions, including toxicity, inflammatory
reactions, oxidative stress, and fibroprolifera-
tive response (Lam et al. 2004; Mercer et al.
2008; Shvedova et al. 2005). SWCNTs are
biopersistent and have the ability to distribute
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to subpleural areas after pharyngeal aspiration
(Mercer et al. 2008). These earlier investi-
gations compelled the present studies of
potential interactions of SWCNTs with
mesothelial cells.

Epidemiologic, animal, and cellular stud-
ies indicate that exposure to crocidolite
asbestos (crocidolite) can cause pulmonary
fibrosis, lung cancer, and malignant mesothe-
lioma (Manning et al. 2002). Data indicate
that mesothelioma in 80-90% of individuals
is associated with crocidolite as the primary
cause. Because mesothelial cells are the
primary target cells of asbestos-induced mole-
cular changes mediated through an oxidant-
linked mechanism, we used well-characterized
SWCNTs with a known concentration of
metal catalyst contamination to investigate the
alterations in molecular signaling in response
to SWCNT exposure in normal mesothelial
(NM) and malignant mesothelial (MM) cells.
We used this form of SWCNTs because
SWCNTs with different redox-sensitive iron
contents have displayed diverse redox poten-
tials, with iron-rich SWCNTs causing a sig-
nificant loss of glutathione and increased lipid
peroxidation in alveolar macrophages (Kagan
et al. 2006).

In this study we examined the toxicity and
alterations in molecular signaling pathways in
mesothelial cells exposed to raw SWCNTSs
with significant metal contamination. We
compared some results with known effects of
crocidolite in cultured mesothelial cells.
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Materials and Methods

SWCNT particles. We obtained commercially
manufactured raw SWCNTs through collabo-
ration with the National Institute of Standards
and Technology (Gaithersburg, MD); a more
detailed description is presented in the
Supplemental Material available online at
http://www.ehponline.org/members/2008/
10924/suppl.pdf. Reported impurities include
nickel and yttrium, which are encapsulated in
carbon shells (see Supplemental Material,
Table 1). Detailed high-resolution transmis-
sion electron microscopy revealed that the
diameters ranged from 0.8 to 2.0 nm (see
Supplemental Material, Figure 1C).

Mesothelial cell culture. Exposure to croci-
dolite is well documented to cause mesothe-
lioma in humans and animals, and cellular
studies using mesothelial cells are reported to
mimic important biologic responses involved
in mesothelioma development. Therefore, in
the present study we used normal human NM
and malignant MM mesothelial cells that we
maintained as described in the Supplemental
Material (available online at http://www.
ehponline.org/members/2008/10924/
suppl.pdf).

Electron spin resonance (ESR) assay. We
determined the production of reactive oxygen
species (ROS) caused by exposing NM and
MM cells to SWCNTs as described in the
Supplemental Material (available online at
http://www.chponline.org/members/2008/
10924/suppl.pdf).

Intracellular detection of O;~ and H,0,
in intact cells by confocal microscopy. We
investigated intracellular production of ROS
generation in mesothelial cells exposed to
SWCNTs, crocidolite, or vehicle [RPMI-
1640 medium containing 0.1% fetal bovine
serum (FBS)]. We used the dyes dihydro-
ethidium (DHE) and dichlorodihydro-
fluorescein diacetate (H,DCFDA) for the
intracellular localization of O% and H,O, and
the intracellular detection of ROS as described
in the Supplemental Material (available online
at htep://www.chponline.org/members/2008/
10924/suppl.pdf).

Cell viability assay. We seeded the NM
and MM cells (5 x 10%) overnight and treated
them with 12.5, 25, or 125 }1g/cm2 SWCNTs
or with vehicle alone for 24 hr. We evaluated
cell viability using 3-[4,5-dimethylthiazolyl-
2]-2,5-diphenyltetrazolium bromide (MTT)
assay kit according to the manufacturer’s
instructions (Roche Molecular Biochemicals,
Indianapolis, IN), and as described in the
Supplemental Material (available online at
http://www.ehponline.org/members/2008/
10924/suppl.pdf).

DNA damage by comet assay. We seeded
the NM and MM cells (10%) overnight and
treated them with vehicle or 25 or 50 pg/cm?
SWCNTs for 24 hr. We assessed DNA damage
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using a commercially available comet assay
according to the manufacturer’s instructions
(Trevigen, Gaitherburg, MD) and as described
in the Supplemental Material (available online
at heep://www.ehponline.org/members/2008/
10924/suppl.pdf).

Histone H2AX phosphorylation of DNA
double-strand breaks. We exposed NM and
MM cells cultured in black-wall/clear-bottom
microplates to 25 or 50 pg/cm? SWCNTs or
crocidolite for 24 hr. We detected H2AX
phosphorylation according to the manufac-
turer’s protocol (Millipore, Billerica, MA) and
as described in the Supplemental Material
(available online at http://www.chponline.
org/members/2008/10924/suppl.pdf).

Western blot analysis of cleaved poly(ADP-
ribose) polymerase (PARP). We subcultured
NM and MM cells and maintained them
overnight in 10% FBS growth medium. We
then replaced the standard growth medium
with 0.1% FBS-containing medium; exposed
the cells to 50 pg/cm? SWCNTs or crocidolite
for 0, 6, or 18 hr; and analyzed PARP activa-
tion as described in the Supplemental Material
(available online at http://www.chponline.org/
members/2008/10924/suppl.pdf).

Protein kinase phosphorylation assay. We
treated NM and MM cells (10°) seeded
overnight with 25 pg/cm? SWCNTs or vehi-
cle for varying times up to 120 min and
assayed phosphorylation as described in the
Supplemental Material (available online at
http://www.ehponline.org/members/2008/
10924/suppl.pdf).

Activation of activator protein-1 (AP-1)
and nuclear factor < B (NF-kB). We seeded the
NM and MM cells (10°) in six-well plates
overnight and treated them with 25 pg/cm?
SWCNTs or vehicle for 1, 2, or 4 hr. We pre-
pared nuclear extractions using a nuclear
extraction kit and determined activation of
AP-1 and NF-kB using an enzyme-linked
immunosorbent assay (ELISA) kit (Panomics
Inc., Redwood City, CA) according to the
manufacturer’s instructions.

Western blot analysis of protein serine-
threonine kinase (Akt). We cultured NM and
MM cells (2 x 10°) in six-well plates with
10% FBS medium. We then washed the cells
and exposed them to 0, 25, 75, or 125 }1g/cm2
SWCNTs in 0.1% FBS for 30 or 60 min. We
analyzed Akt phosphorylation as described in
the Supplemental Material (available online at
htep://www.ehponline.org/members/2008/
10924/suppl.pdf).

Statistics. Data presented are mean + SE of
values compared and analyzed using one-way
analysis of variance. We considered p < 0.05
statistically significant.

Results

Although SWCNTs are not water soluble, in
the present investigation we used a vehicle

containing 1% FBS and ultrasonication to sus-
pend the SWCNTs for cell exposure studies.
Light microscopy, scanning electron micro-
scopy, and transmission electron microscopy
studies of the suspended samples showed that
this technique produced homogeneous disper-
sion of SWCNTs with small agglomerates
of nanoropes and mats of SWCNTSs [see
Supplemental Material, Figure 1A—C (available
online at http://www.chponline.org/members/
2008/10924/suppl.pdf)].

Trace metals in SWCNTs. Among the
31 metals analyzed in three different SWCNT
samples, we identified metals suspected of hav-
ing toxic biological effects [see Supplemental
Material, Table 1 (available online at hetp://
www.chponline.org/members/2008/10924/
suppl.pdf)]. Two redox-sensitive trace metals
(iron, 0.07%; nickel, 20.6%)—in appreciable
concentrations—and yttrium (6.2%) were
present in raw SWCNTs.

ROS generation by SWCNT-exposed
mesothelial cells. Generation of ROS monitored
by ESR in SWCNT-exposed NM and MM
cells revealed that the NM cells generated more
ROS than did MM cells [see Supplemental
Material, Figure 2A, center panel (available
online at http://www.chponline.org/members/
2008/10924/suppl.pdf)]. The reaction mixture
with the cells in the absence of SWCNTs did
not produce any detectable ESR signals, whereas
addition of SWCNTs produced a distinct ESR
signal spectrum with cells [see Supplemental
Material, Figure 2A, center panel). The hyper-
fine splitting of the spin adduct produced by
SWCNT's were characteristic evidence of
hydroxyl radical (*OH) generation.

Exposure of NM and MM cells to
500 pg/mL SWCNTs significantly increased
*OH radical generation [see Supplemental
Material, Figure 2B (http://www.ehponline.
org/members/2008/10924/suppl.pdf)], which
was higher in NM cells than in MM cells (see
Supplemental Material, Figure 2B). When
catalase, a decomposing enzyme of H,O,, was
present, the SWCNT-induced ESR signal
5,5-dimethyl-1-pyrroline-1-oxide (DMPO)-
*OH was inhibited by 39% in NM cells
(p < 0.05) and by 43% in MM cells [see
Supplemental Material, Figure 2A, right panel;
Figure 2B). Deferoxamine, a metal iron chela-
tor, produced a similar inhibition pattern in
both cell types. The SWCNT-induced ESR
signal intensity decreased 38% in NM cells
and 44% in MM cells (see Supplemental
Material, Figure 2B). This indicates that some
chelatable metals are partially involved in the
generation of SWCNT-induced *OH radicals.
However, because the chelation did not com-
pletely nullify the generation of ROS, the cell
stimulation by SWCNTs could be considered
a potential source of ROS generation. We pre-
sent data on semiquantitative measurement of

differential DMPO-*OH signal intensities and

voLuMmEe 116 | NumBer 9 | September 2008 « Environmental Health Perspectives



inhibition induced by catalase and deferoxam-
ine in the Supplemental Material (Figure 2B).
Intracellular detection of ROS generation
in intact cells. To further confirm the ability of
NM and MM cells to generate ROS after
exposure to SWCNTs and crocidolite, we ana-
lyzed the cells treated with particles by intracel-
lular staining for O3~ and H,0,. DHE (a
specific fluorescent dye for O37), and
H,DCFDA (a fluorescent dye specific for
H,0,) were used to monitor ROS generation.
In the presence of 150 pg/mL SWCNTs for
90 min, the fluorescence for O3 and H,O,
were increased in both NM and MM cells.
ROS generation was much greater in NM cells
than in MM cells, confirming the ESR studies
(Figure 1). Fluorescence for O3™ and H,0O,
was significantly greater with crocidolite than
with SWCNTs in both cell types (Figure 1).
Catalase or superoxide dismutase (SOD) pre-
treatment abolished most of the particle-
induced generation of ROS (data not shown).
Effects of SWCNTs on cell viability. We
evaluated the effects of SWCNTs and crocido-
lite on cell viability of NM and MM cells using
MTT, lactate dehydrogenase (LDH), and try-
pan blue assays. However, LDH enzyme mole-
cules were adsorbed by the SWCNTs, and only
crocidolite caused a strong cytotoxicity in
increasing doses (data not shown). Therefore,
only MTT and trypan blue viability assay
results are presented for comparison of cytotox-
icity [see Supplemental Material, Figure 3A,B
(available online at http://www.ehponline.
org/members/2008/10924/suppl.pdf)]. Cell
viability studies using the MTT assay indicated
that SWCNTs in increasing mass concentra-
tions of 12.5, 25, and 125 pg/cm? (incubated
for 24 hr at 37°C) caused a dose-dependent
decline in cell viability in both NM and MM
cells. The SWCNT-dependent decrease in cell
viability was significant compared with control
samples in both cell types (see Supplemental
Material, Figure 3A). The trypan blue exclusion
assay showed that exposure of both cell types to
mass doses similar to those used for the MTT
assay also caused decreasing cell viability with
increasing doses. However, cell viability by try-
pan blue assay was significantly decreased only
with the two higher doses of 50 and
125 pg/cm? SWCNTs (see Supplemental
Material, Figure 3B). Exposure of NM and
MM cells to 12.5, 25, and 50 pg/cm2 crocido-
lite for time points similar to those for
SWCNTs resulted in a dose-dependent
decrease in cell viability, and the decrease was
significantly greater compared with SWCNT
samples over the tested doses. A concentration
of 50 pg/cm? crocidolite decreased cell viability
by 75-77%, whereas SWCNTs at the same
concentration and exposure time decreased cell
viability by only 30% and 27%, for NM and
MM cells, respectively (see Supplemental
Material, Figure 3C). We also obtained similar
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results for crocidolite in the MTT cell viability
assay (data not shown).

DNA damage induced by SWCNTs.
Because SWCNT exposure caused generation
of ROS, we investigated whether raw
SWCNT-induced oxidative stress resulted in

DNA damage. DNA damage, investigated
using a comet assay in NM and MM cells
exposed to 25 or 50 pg/cm? SWCNTs or vehi-
cle for 24 hr, showed that the SWCNTs
induced DNA damage in both cell types
(Figure 2A). Figure 2B shows semiquantitative

Figure 1. Confocal micrographs of 0," and H,0, generation in intact NM cells (top) and MM cells (bottom)
treated with SWCNTs and crocidolite. a, control; b and ¢, SWCNT; d and e, crocidolite; b and d, DHE staining;
c and e, H,DCFDA staining. Red, localization of 0,™; green, localization of Hy0,. blue, diamidinophenylindole.
Bars =20 pm.
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Figure 2. Effect of SWCNTs (25 or 50 pg/cm?) on DNA migration in NM and MM cells using the comet
assay. (A) Micrographs of NM (a,b) and MM (c,d) cells treated with vehicle (control; a,c) or 50 pg/cm?
SWCNTs (b,d) for 24 hr: (B) Semiquantitative analysis of concentration-dependent effects of SWCNTs on
DNA migration in NM and MM cells using the comet assay. Data are presented as the mean + SE of three
experiments. Bars = 25 pym.

*Significant increase from control (p < 0.05).
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measurements of SWCNT-induced dose-
dependent DNA tail migration, demonstrating
significant DNA damage at both doses in NM
and MM cells (Figure 2B). Exposure of NM
cells to 25 or 50 pg/cm? SWCNTs for 24 hr
resulted in a 5.2- and 6.6-fold increase in
DNA tail length migration, respectively. In
contrast, exposure of MM cells to the same
mass concentrations of crocidolite for 24 hr
caused an increased DNA tail migration of
7.9- and 11.1-fold, respectively. Coincubation
of MM cells with SWCNTs (25 pg/cm?) and
catalase (100 U/mL), SOD (100 U/mL), or
deferoxamine (1 mM; an iron chelator) for
24 hr resulted in a 35%, 30%, and 32%
decrease in DNA damage, respectively.

H2AX phosphorylation by SWCNTs and
crocidolite. Exposure of NM and MM cells to
25 or 50 pg/em? SWCNTs resulted in a nom-
inal increase in phosphorylation of H2AX on
Ser139, which was moderately higher in MM
cells. The same concentrations of crocidolite
induced a significantly greater phosphoryla-
tion in both cell types (Figure 3).

Effects of SWCNTs and crocidolite on
PARP. Apoptosis is often associated with
PARP cleavage, leading to the activation of
caspase; therefore, we investigated the effects
of exposure to SWCNTs or crocidolite in NM
and MM cells. PARP, a chromatin-bound
enzyme activated by DNA strand breaks, may
alter the chromosomal proteins to facilitate
DNA repair. Our studies with SWCNTs and
crocidolite show time-dependent activation of
cleaved PARP in NM cells. Crocidolite and
SWCNTs induced significantly greater activa-
tion of PARP in NM cells compared with
MM cells (Figure 4). MM cells showed mod-
erate activation of cleaved PARP after 18 hr
exposure to SWCNTs or to crocidolite.
SWCNTs caused only a 2-fold activation after
6 hr compared with 2.8-fold activation by cro-
cidolite (Figure 4). These results indicate that
enhancement of DNA repair is significantly
impaired in MM cells.

25
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E = 25 ug/ml
S 20 - = 50 yg/ml .
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)
o
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SWCNT  Crocidolite SWCNT  Crocidolite

Figure 3. Effect of 24-hr exposure to SWCNTs or
crocidolite (25 or 50 pg/mL) on the activation of
y-H2AX (Ser139) in NM and MM cells. Absorbance
values were normalized to control values; data are
presented as mean + SE of three experiments.
*Significantly different from control (p < 0.05).
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Effect of SWCNT exposure on AP-1 and
NFXB activation. We examined effects of
SWCNT-induced ROS on the activation of
redox-sensitive signaling pathways, especially
the activation of two important transcription
factors, AP-1 and NF-xB. AP-1 was activated
in NM cells incubated with 25 pg/cm?
SWCNTs in the first 1-2 hr and then declined
after 4 hr (Figure 5A). On the other hand, in
MM cells, the same mass concentration of
SWCNTs induced a smaller early response,
with an activation similar to that seen in NM
cells only after 4 hr (Figure 5A).

Exposure of NM and MM cells to
25 pg/cm? SWCNTs resulted in a similar
response in the activation of NF-kB
(Figure 5B). In NM cells, the NF-«B activa-
tion was maximal at 1-2 hr and then declined
by 4 hr. In MM cells, a time-dependent peak
response of NF-kB activation was achieved
only after 4 hr. This delayed activation of
NF-xB in MM cells was 2-fold greater than
the basal level at 4 hr.

Effect of SWCNT exposure on mitogen-
activated protein kinase (MAPK) phosphoryla-
tion. Because MAPKs are the upstream kinases
responsible for c-Jun phosphorylation and
AP-1 and NF-kB activation, we investigated
which classes of MAPKs are activated by
the SWCNTs. We examined the effects of

EI 0 6 18 6 18 0 6 18 6 18

Cleaved
PARP

1
FUIPARP o sy ™ it 0 e = @

Crocidolite

B-Actin

SWCNT Crocidolite SWCNT

S —— . = W e -

SWCNTs on phosphorylation of extracellular
signal-regulated kinase 1/2 (ERK1/2), Jun N-
terminal kinases (JNKs), and protein p38
kinase in NM and MM cells. Treatment of
MM cells with SWCNTs led to increased
phosphorylation of ERKs and p38 (Figure 6A)
but not JNKs (data not shown). Alterations in
the phosphorylation of ERKs and p38 in NM
cells were very minimal and occurred only at
the 15-min time point, where both p38 and
phosphorylated ERK1/2 (p-ERK1/2) showed
significant phosphorylation in MM cells com-
pared with NM cells (Figure 6B,C). The stud-
ies using Western blot and densitometry
clearly demonstrate the significant difference
in response of MM cells at 60 and 120 min
(Figure 6B,C). These results indicate that acti-
vation of AP-1 and NF-xB by SWCNTs may
be mediated through the induction of ERKs
or p38 signaling in NM and MM cells.

Effect of SWCNTs on Akt. Involvement of
Ak, a signal transduction protein regulated by
downstream signaling by phosphoinositide
3-kinase (PI-3K), is reported to play a major
role in lung tumor and mesothelioma genesis.
Because of this important role of Akt in
tumorogenesis, we examined the association
between SWCNT exposure and activation of
Akt in NM and MM cells. Western blot analy-
sis of Akt (Thr308) after 30 and 60 min of

1 Control
= 6 hr
. 18 hr

o

Cleaved PARP
(fold activation)

NM MM

SWCNT

SWCNT  Crocidolite
MM

Crocidolite
NM

Figure 4. Effects of SWCNTSs and crocidolite on the activation of PARP in NM and MM cells. (4) Cells were
exposed to 50 pg/cm? SWCNTSs or crocidolite for 6 or 18 hr and then examined by Western blot analysis for
cleaved PARP (each blot is from one representative experiment per treatment). Detection of full PARP and
B-actin of the same membrane ensured equal sample loading. (B) Results of densitometric analysis of PARP
activation to total PARP; the fold activation is relative to normalized values of unstimulated control speci-
mens. Data shown are mean + SE of three experiments.

*Significantly different from control (p < 0.05).
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Figure 5. ELISA assay results showing the effect of 1-, 2-, or 4-hr treatment with 25 pg/cm? SWCNTs on the
activation of AP-1 (A) and NF-xB (B) in NM and MM cells. Data shown are the mean + SE of three
experiments.

*Significant increase from controls (p < 0.05).
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exposure of NM and MM cells to SWCNTs
induced activation of phosphorylated Akt
(p-Akt) only in MM cells to the level slightly
lower than the positive control, epidermal
growth factor (EGF) (40 ng/mL) (Figure 7A).
This activation was dose and time dependent
at 30 min of SWCNT exposure and then
remained at the same level after 60 min
(Figure 7A). Densitometric analysis indicates a
1.6-fold increase by 125 pg/cm? SWCNTs
compared with 1.7-fold increase by EGF at
60 min in MM cells (Figure 7B). In NM cells,
p-Akt was not expressed after exposure to the
same or higher concentrations of SWCNT.

Discussion

Several studies have shown that occupational
and environmental exposures to particulate
matter with mean diameters of < 10 pm or
nanoparticles with a size dimension < 100 nm
are associated with respiratory diseases, includ-
ing cancer (Knaapen et al. 2004). The present
study focused on raw SWCNTs, which repre-
sent one of the most widely investigated nano-
particles with enormous potential for
industrial, technologic, and medical applica-
tions. SWCNT's have been shown to translo-
cate to subpleural areas in the lung, and
therefore may have the potential to cross the
cell membrane to the mesothelial layer (Mercer
et al. 2008). Although SWCNTs have been
the subject of extensive research over the last
few years, their potential interactions with
human mesothelial cells have not been
reported. Because they behave like asbestos,
with biopersistence and ability to generate
ROS, the potential human health impacts and
risks compel us to understand the toxic and
molecular interactions reported here. These
studies are further justified by a recent report
on the induction of mesothelioma in p53+/~
mice by multiwall carbon nanotubes (Takagi
et al. 2008). The data presented in the present
study provide basic information regarding the
potential health hazard of SWCNTs and sup-
port the bioactivity of SWCNTs on mesothe-
lial cells in vitro, although with lower levels of
activity compared with crocidolite.

NM MM
Elo 5 15 30 60 120 0 5 15 30 60 120
—_— s -

— e ——— —— e —— —

SWCNT-induced molecular changes in mesothelial cells

Asbestos fibers have high aspect ratios, are
biopersistent, and contain high concentrations
of iron with the potential to generate ROS.
These characteristic fiber features, combined
with the ability to translocate to mesothelium,
are well documented as major contributing
factors triggering the development of mesothe-
lioma by asbestos, leading to the activation of
cell signaling pathways, early response genes,
and carcinogenesis (Manning et al. 2002).
Because raw SWCNTs used in this study also
have a high aspect ratio, have high metal cont-
amination (nickel, yttrium, iron), are bioper-
sistent, and are reported to translocate to
subpleural areas in the lungs, the present
investigation is warranted. SWCNT exposures
to animals indicate that SWCNTs are not well
recognized by macrophages and that the pul-
monary inflammatory response to SWCNTs
is not persistent, yet progressive interstitial
fibrotic response has been noted (Kagan et al.
2006; Lam et al. 2004; Shvedova et al. 2005).
Mercer et al. (2008) reported deposition of
labeled SWCNT to the distal alveolar inter-
stitium including subpleural areas and
mesothelium. Therefore, transport of
SWCNTs from the distal airspaces to the
pleura and/or extrapulmonary locations,
including mesothelium, is a possibility. The
present study indicates that SWCNTSs are
toxic to NM and MM cells. However, the
degree of toxicity of SWCNT's was one-third

m C PC  SWCNT SWCNT SWCNT
25 75 125

——
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t-Akt

S ———

p-Akt (308) 30 min

that of crocidolite in NM and MM cells [see
Supplemental Material, Figure 3B,C (available
online at http://www.chponline.org/members/
2008/10924/suppl.pdf)].

Oxidative molecular mechanisms triggered
by the persistent ability of asbestos fibers to
cause injury to the mesothelial cells have been
reported to be features involved in asbestos-
fiber—induced mesothelioma development
(Heintz et al. 1993). Cellular reactions
observed in animal models, mesothelial cell
lines, and patients with crocidolite-induced
mesothelioma are reported to be similar
(Altomare et al. 2005a; Kane 2006; Ramos-
Nino et al. 2006; Vaslet et al. 2002).
Therefore, recapitulation of biochemical and
molecular events observed in human mesothe-
lial cells exposed to raw SWCNTs reported in
the present study may provide a functional
basis to explore the potential of SWCNTs to
induce mesothelioma in animal models.

The ability of engineered nanomaterials to
interact with biological tissues and generate
ROS has been proposed as possible mecha-
nisms involved in the toxicity (Nel et al. 2006).
ROS are well known to play both a deleterious
and a beneficial role in biological interactions.
Oxidative damage due to ROS results in dam-
age to DNA, proteins, and lipids and in the
activation of cell signaling pathways that are
associated with loss of cell growth regulation,
leading to carcinogenesis (Valko et al. 2006).
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Figure 7. Activation of p-Akt (Thr308) induced by SWCNTs. Abbreviations: C, control; PC, positive control
(EGF, 40 ng/mL). (A) Western blot analysis of Akt in MM cells treated with 25, 75, or 125 pg/cm? SWCNTs
for 30 or 60 min in medium containing 0.1% FBS; detection of total Akt of the same membrane was used to
ensure equal sample loading per lane. (B) Densitometric analysis of Western blots showing p-Akt signal
normalized to total Akt (t-Akt). The fold activation is relative to normalized values of unstimulated control
specimens; data shown are mean + SE of four experiments.
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Figure 6. Effect of SWCNTSs on the activation of MAPKs in NM and MM cells. Abbreviations: p-p38, phosphorylated p38. (A) Western blot analysis of NM and MM
cells treated with vehicle or 25 pg/cm2 SWCNTSs for 5-120 min showing phosphorylated and nonphosphorylated ERK1/2 and p38. (B) Densitometric analysis of
Western blots of p-ERK1/2 signal normalized to total ERK1/2. (C) Densitometric analysis of Western blots of p-p38 signal normalized to total p38. Fold activations are
relative to normalized values of unstimulated cells; data shown are mean + SE of three experiments.
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In the present study, raw SWCNTs upon
interaction with NM and MM cells induced
the formation of ROS, as demonstrated by
ESR as well as 7 situ localization. The level of
raw SWCNT-dependent *OH radicals gener-
ated was approximately 1.6-fold higher in NM
cells than in MM cells. In situ localization of
ROS confirmed the ESR data and provided
parallel results indicating greater generation of
ROS in NM cells by the interaction of both
SWCNTs and crocidolite. The increased gen-
eration of ROS caused by exposure to particles
has been shown for many different forms of
fine, ultrafine, and nanoscale particles, includ-
ing SWCNTs, to be associated with minimal
metal contamination (Sharma et al. 2007;
Shvedova et al. 2003).

Nanoparticles, because of their physical
and chemical properties, are unique compared
with known fine-sized parent compounds that
behave differently in toxicity and DNA dam-
age (Knaappen et al. 2004). Also, the mecha-
nism of particle-induced DNA damage could
be direct or indirect and is not fully under-
stood. Genotoxic effects may be produced
either by direct interaction of particles with
genetic material or by secondary damage from
particle-induced ROS. Biopersistence of parti-
cles and the potential to translocate through
the lung to the mesothelium is a major con-
tributing factor involved in sustained ROS
generation and DNA damage of mesothelial
cells. In the present study, addition of ROS
scavengers resulted in a moderate reduction of
the extent of DNA damage and not in a com-
plete abrogation of the damage. These results
suggest that genotoxic effects of SWCNT's
occur in part through direct damage to DNA
and not solely through oxidative stress. In
addition, asbestos-like fibrous characteristics of
SWCNTs are likely to contribute to the
mechanisms involved in a sustained level of
ROS generation inducing DNA damage. In
support of this potential of SWCNTs to gen-
erate ROS, Kisin et al. (2007) demonstrated
that exposure of lung fibroblast V79 to acid-
purified SWCNTs also resulted in DNA dam-
age. The present results and the existing
literature therefore suggest that the genotoxic
effects of SWCNTs result from a combination
of direct effects of crocidolite-like behavior
and the potential of metal catalysts associated
with SWCNTs to induce oxidative stress on a
sustained basis. However, the exact genotoxic
mechanism of SWCNTSs iz vitro remains to
be elucidated. ROS in the absence of anti-
oxidant protection can directly interact or
modify cellular proteins, lipids, and DNA,
which in turn may alter cellular functions and
predispose the cells to impaired apoptosis and
abnormal cell growth. Continued oxidative
stress induced by these mechanisms may dis-
rupt DNA repair, cause mutations, and
change growth patterns and gene expression.
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These events are well documented in animals
exposed by intraperitoneal injections of croci-
dolite and have been linked to the develop-
ment of malignant mesothelioma (Goodglick
et al. 1997; Vaslet et al. 2002). Although
ROS have been linked to the development of
mesothelioma, the exact mechanisms by
which mesothelial cells are transformed to
malignant cells by asbestos are not fully
understood. Animal and cellular studies show
that asbestos fibers induce mesothelioma by
direct interaction of the fibers with the
mesothelial cells and the generation of ROS,
which in turn promotes signaling and activa-
tion of cascades of events that may finally
induce cancer.

H2AX phosphorylation is a very rapid
and sensitive response to DNA damage and
occurs within a short time after exposure to
ionizing radiation and environmental stress
(Redon et al. 2002). As a result of the DNA
double-strand breaks, the histone H2AX pro-
tein can be distinguished from other histones
by a unique carboxy-terminal sequence that is
rapidly phosphorylated at the fourth residue
(Ser139) in response to DNA damage
(Rogakou et al. 1998). H2AX phosphoryla-
tion occurs rapidly irrespective of the type of
DNA damage, resulting in the phosphoryla-
tion of thousands of H2AX molecules (Pilch
et al. 2003). The detection of H2AX phos-
phorylation and the induction of double-
strand breaks induced by SWCNTs and
crocidolite complement other molecular evi-
dence supporting potential carcinogenic activ-
ity. However, H2AX phosphorylation by
SWCNTs was less than that observed with
crocidolite exposure.

In this study, we observed a dramatic
time-dependent increase in cleaved PARP
after exposure to SWCNTs and crocidolite at
6 and 18 hr in NM cells. This high activation
of PARP can lead to depletion of ATP and
nicotinamide adenine dinucleotide levels and
cell death in NM cells. Similar concentrations
of SWCNT:s or crocidolite in MM cells
caused relatively lesser activation of cleaved
PARP at 6 and 18 hr. The enzymatic activa-
tion of PARP is induced when DNA damage
occurs and PARP protein is cleaved during
apoptosis to signal the repair pathways that
contribute to posttranslational modification
of histones and nuclear proteins (Huber et al.
2004). The higher levels of ROS seen by ESR
and in situ localization, as well as the
increased activation of PARP in NM cells by
SWCNTs, support the potential to induce
transformation of NM cells.

A growing body of evidence suggests that
EGF, platelet-derived growth factor, and the
insulin signal transduction pathway mediated
by PI-3Ks play important roles in the activa-
tion of Akt. PI-3K/Akt has been shown to be

associated with carcinogenesis, and this signal

pathway is important in cell survival and pro-
liferation (Nicholson and Anderson 2002).
The PI-3K phosphorylated membrane phos-
pholipid products induce the activation of
Akt. Akt-1 is an important modulator of
insulin signaling and cell proliferation, and
Akt-2 plays a major role in cell survival
(Heron-Milhavet et al. 2006). In malignant
mesothelioma cells and many other types of
human cancers, Akt is constitutively activated
and is reported to play important roles in the
development and aggressiveness of mesothe-
lioma (Altomare et al. 2005b; Nicholson and
Anderson 2002). Akt is also a redox-sensitive
target for oxidant and growth factor stimula-
tion, such as hepatocyte growth factor and its
receptor tyrosine kinase, c-Met, which are
highly expressed in mesotheliomas through
the activation of PI-3K/Akt pathway (Ramos-
Nino et al. 2008). Akt activation may also be
involved with the functional changes in tumor
suppressor genes involved in the pathogenesis
of mesothelioma. Elevated levels of Akt trigger
antiapoptotic events and activation of NF-«B,
angiogenesis, telomerase activity, and tumor
metastasis. Current evidence also suggests that
growth-promoting genes, such as c-fos and
c-jun, are activated by these signaling mecha-
nisms that are involved in the development of
mesothelioma (Heintz et al. 1993).

Induction of oxidative stress by raw
SWCNTs containing redox active iron has
been reported in human keratinocyte (HaCaT)
cells (Shvedova et al. 2003). This oxidative
assault to cells could lead to cytotoxic
responses or even cell death via an apoptotic
pathway or by necrosis (Higuchi 2004). ROS
are involved in activation of AP-1 and NF-kB,
and both transcription factors play an impor-
tant role in carcinogenesis (Ding et al. 2001).
AP-1 is one of the transcription factors
involved in the oxidative stress response after
changes in cellular oxidative status. In this
respect, AP-1 has been identified as a target of
the MAPK family, including ERKs, JNKs,
and p38 kinase (Karin et al. 1997). In addi-
tion, the activation of NF-kB has been shown
to be regulated by some upstream MAPKs
that regulate JNK activation in the cells (Ding
etal. 2001).

In summary, the cellular studies reported
here clearly demonstrate that NM cells are
more susceptible to raw SWCNT-induced
injury. Exposure of mesothelial cells to raw
SWCNTs resulted in the generation of *OH,
leading to several molecular alterations, activa-
tion of important signaling pathways, and tran-
scription factors. Such responses are similar to
reported asbestos-induced changes common in
animal and human mesothelioma development.
In this study, we found that i vitro exposure of
NM and MM cells to SWCNTs altered molec-
ular pathways associated with carcinogenesis.
However, uncertainty lingers as to whether
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SWCNT exposure is a risk for mesothelioma
development in humans. To address this ques-
tion, in vivo animal studies are warranted. In
human mesotheliomas, deletions of the
Cdfen2a/Arfand Cdkn2b gene loci associated
with hypermethylation are reported to be com-
mon at the NF2 gene locus (Kane 2006).
Because heterozygous Nf2+/— mice exposed to
crocidolite develop malignant mesothelioma at
a faster rate than wild-type littermates, this
mouse model could be used as an ideal and
relatively rapid animal model to study the
potential of SWCNTs to cause mesothelioma.
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