APPENDIX A

Description of Test Apparatus and Test Procedures

A-1. Description of oxidation test apparatus

The scheme of oxidation apparatus is presented in Fig. 3.2 (see section 3). The oxidation facility consists of the following basic elements:

- electric furnace;
- device for the movement of E110 sample in the several given positions (cold position, hot position, quench position);
- steam generator;
- system to supply the argon to the oxidation facility;
- measurement apparatus (measurement of temperature inside and outside of E110 sample, temperature of water in the steam generator);
- tank with the water in the low part of facility.

The electric furnace provided the radiant heating and cooling of cladding sample with the different temperature rates (see the more detail information in Appendix A-2). The steam generator provided the generation of water steam with the following parameters:

- temperature: 150 C;
- mass flow rate: 0.01–0.04 g/s (mass flow rate is a function of electric power);
- atmospheric pressure.

The system to supply the argon to the oxidation facility was used at the beginning of each test mode. This system devoted the cleaning of gas atmosphere inside the test facility from air. The temperature limit was used to change the type of coolant. The Ar flow was stopped at the temperature about of 300 C and after that the heating was continued with the water steam.

The important details of temperature measurements are described in Appendix A-4. The tank with water in the low part of facility devoted the opportunity to perform cooling of cladding sample under quench conditions.

A-2. Description of oxidation procedures

The five combinations of heating and cooling rates were used for this experimental program (see Fig. 3.3 in section 3):

- 1. Slow heating and slow cooling (S/S).
- 2. Slow heating and fast cooling (S/F).
- 3. Fast heating and slow cooling (F/S).
- 4. Fast heating and fast cooling (F/F).
- 5. Fast heating and quench cooling (F/Q).

The characterization of major types of test modes is described below.

Slow heating (Fig. A-1):

- the cladding sample was installed in the hot position (see Fig. 3.2 of section 3);
- the air atmosphere in the electric furnace was replaced on the argon atmosphere;
- the electric furnace was switched on and the cladding sample was heated to 150 C with the temperature rate 0.5 C/s;
- the argon atmosphere was replaced on the water steam atmosphere and the heating of cladding sample was continued with the rate 0.5 C/s to the hold temperature.

Fig. A-1. Oxidation mode with the "slow" heating: sequence diagram

Fast heating (Fig. A-2):

- the cladding sample was installed in the cold position (see Fig. 3.2 of section 3);
- the air atmosphere in the electric furnace was replaced on the argon atmosphere;
- the electric furnace was switched on and the gas medium inside the electric furnace (in the hot position) was heated to 150 C after that the argon atmosphere was replaced on the water steam and the heating of the furnace was continued during 600 seconds to the hold temperature (in accordance with the thermocouple #2 data (see Fig. 3.2 of section 3)), the temperature of cladding sample, which was located in the cold position was not above 150 C at the end of this stage;
- the cladding sample was moved in the hot position the such a way to provide the heating rate 25 C/s in the temperature range 150–800 C.

Fig. A-2. Oxidation modes with "slow", "fast", "quench" cooling: sequence diagram

Different types of cooling (Fig. A-3):

- As the slow cooling the cladding sample was cooled in the hot position with the temperature rate 0.5 C/s to 150 C, after that the steam atmosphere was replaced on the argon atmosphere and the cooling of cladding sample was continued with the same cooling rate.
- At the fast cooling the cladding sample was moved from the hot position to the cold position the such a way that the cooling rate at initial phase of this process was 25 C/s. The replacement of steam coolant to the argon coolant was made at the temperature of cladding sample 150 C.
- At the quench cooling the cladding sample was moved from the hot position to the quench position (to the cold water) with cooling rates about of 200 C/s.

Fig. A-3. Oxidation mode with the "fast" heating: sequence diagram

A-3. The characterization of cladding samples

Abbreviation	Alloying composition	Additional comments
E110	Zr-1%Nb	as-received E110 cladding tube manufactured from the iodide Zr, electrolytic Zr, and recycled scrap (the oxygen concentration ~ 0.04 % by weight)
E110A	Zr-1%Nb	as-received E110 cladding after the etching and anodizing of as- received E110 cladding tube
E110K	Zr-1%Nb	as-received E110 cladding tube manufactured from the iodide Zr, electrolytic Zr, and recycled scrap with the high content of oxygen concentration (0.11 % by weight)
$E110_{lowHf}$	Zr-1%Nb	as-received E110 cladding tube manufactured from the iodide Zr, electrolytic Zr, and recycled scrap with the low content of Hf (90 ppm). The standard content of Hf is about of 350 ppm
E635	Zr-1%Nb-1.2%Sn- 0.35%Fe	as-received E635 cladding tube manufactured from the iodide Zr, electrolytic Zr, and recycled scrap
Zry-4	Zr-1.4%Sn	the cladding tube manufactured by Framatom ANP GmbH on January 1989

Table A-1. The list of tested cladding materials

Abbreviation	Alloying composition	Additional comments
E110 _{irr}	Zr-1%Nb	the irradiated E110 cladding refabricated from the commercial VVER-1000 fuel elements irradiated to 50–53 MWd/kg U
E110 _{G(fr)}	Zr-1%Nb	as-received E110 cladding tube manufactured from French sponge Zr by the Russian process
E110 _{G(3fr)}	Zr-1%Nb	as-received E110 cladding tube manufactured from 70% French sponge Zr, 30% iodide Zr and recycled scrap by the Russian process
E110 _{G(3ru)}	Zr-1%Nb	as-received E110 cladding tube manufactured from 70% Russian sponge Zr, 30% iodide Zr and recycled scrap
E635 _{G(fr)}	Zr-1%Nb-1.2%Sn- 0.35%Fe	as-received E635 cladding tube manufactured from French sponge Zr by the Russian process

Table A-2. The geometry of unirradiated cladding materials

Parameter (mm)	Cladding material										
	E110	E110A	E110K	$E110_{\rm lowHf}$	E635	Zry-4	$E110_{G(fr)}$	$E110_{G(3fr)}$	$E110_{G(3ru)}$	$E635_{G(fr)}$	
Outer diameter	9.145 - 9.148	9.130	9.170	9.100	9.142	10.750	9.140	9.141	9.130	9.140	
Inner diameter	7.73	7.73	7.72	7.73	7.78	9.35	7.74	7.74	7.73	7.74	
Cladding thickness	0.708 - 0.709	0.700	0.725	0.685	0.681	0.700	0.700	0.700	0.700	0.700	

Table A-3. Initial characteristics of irradiated cladding material

Characteristic	Unit	Value			
The type of fuel assembly	_	VVER-1000 (the first unit of Zaporozhie Nuclear Power Plant)			
Fuel assembly number	_	E0325			
Fuel elements number	_	#156, #273			
Axial coordinates of fuel element section used		• Fuel element #156: 1640–2890			
for the refabrication of irradiated cladding		• Fuel element #273: 1800–2240			
Fuel burnup as a function of axial coordinate	_	see Fig. A-4			
Outer diameter of fuel element cladding as a function of axial coordinate	_	see Fig. A-5			
Average fuel burnup in the section of fuel	MWd/kg U	• Fuel element #156: 52.0			
element		• Fuel element #273: 49.5			
Average outer cladding diameter in the section		• Fuel element #156: 9.03			
of fuel element		• Fuel element #273: 9.04			
Average cladding thickness in the section of		• Fuel element #156: 0.68			
fuel element		• Fuel element #273: 0.69			
Microstructure of irradiated cladding	_	see Fig. A-6			

Characteristic	Unit	Value
Average ZrO ₂ thickness on the outer surface of irradiated cladding	μm	• Fuel elements ##156, 273: 5
Average ZrO ₂ thickness on the inner surface of irradiated cladding	μm	• Fuel elements ##156, 273: 0
Hydrogen content in the irradiated cladding	% by weight	• Fuel elements ##156, 273: 0.0047

Fig. A-4. Axial burnup distribution for fuel element #156 and #273 (experimental data)

Fig. A-5. Profilometry of cladding outer diameter as a function of axial coordinate

Fig. A-6. The microstructure of irradiated E110 cladding before the oxidation tests

A-4. Scoping tests performed to verify the experimental procedure of cladding temperature measurements

The following scoping tests were developed and performed to validate and verify the procedure of temperature measurements at the oxidation of cladding samples:

- scoping tests to reveal the axial temperature distribution inside the electric furnace;
- scoping tests to reveal the temperature distribution as a function of cladding sample length;
- scoping tests to obtain the comparative data characterizing two different methods of determination of cladding sample temperature:
 - the method on the basis of thermocouple, which was welded on the cladding surface;
 - the method on the basis of thermocouple, which was installed in the gas volume inside the cladding sample.

The major results of these scoping tests are presented below.

The data base characterizing the axial temperature distribution inside the electric furnace

The procedure of this test consisted of the following options:

- the electric furnace was heated to 1100 C (at the middle of furnace);
- the thermocouple (which was installed along the axis of electric furnace) was moved the step by step from the position #1 to the #15 (Fig. A-7);
- the processing of measured data allowed to obtain the axial temperature profile inside electric furnace;
- these data were used to determine the "cold" and "hot" positions of cladding sample (see Fig. 3.2, section 3).

The measurement of axial temperature distribution along the cladding sample length

These measurements were performed using the following procedure:

- seven thermocouples were installed sequentially on the length of "hot" position (Fig. A-8);
- the electric furnace was heated to 1100 C (at the "hot" position);
- the processing of temperature measurements allow to reveal that the temperature nonuniformity is not more than 6 C.

Fig. A-8. The axial temperature profile at the "hot" position

The development of comparative data to characterize two possible methods of measurement of cladding sample temperature

The following experimental procedure was used to obtain the appropriate data:

- the one thermocouple was welded on the outer surface of cladding sample;
- the second thermocouple was installed inside cladding sample along the sample axis;
- axial coordinates of both thermocouples were the same;
- the cladding sample with thermocouples was installed in the "cold" position (see Fig. 3.2., section 3);
- the electric furnace was heated to 1100 C;
- the cladding sample was removed from the "cold" position to the "hot" position, after that the cladding sample was oxidized at the hold temperature (1100 C) during approximately 400 seconds and finally the cladding sample was removed from the "hot" position to the cold position. Such a way, the oxidation of cladding sample at the F/F combinations of heating and cooling rates was performed.

The results of these comparative temperature measurements are presented in Fig. A-9.

Fig. A-9. The cladding and steam temperatures under oxidation conditions with F/F combinations of heating and cooling rates

The analysis of obtained data allowed to make the following conclusions:

- the differences in the both temperature measurements at the stationary mode do not exceed the instrumental error of thermocouples;
- the thermocouple measuring the steam temperature under estimates the real cladding temperature at the heating mode, this thermocouple overestimates the cladding temperature at the beginning of cooling mode;
- the appropriate calculations shown that the systematic error of determination of effective time of oxidation (caused by above mentioned transient effects under heating and cooling conditions) is very insignificant;
- taking into account obtained comparative data it was decided to use the thermocouple placed inside the cladding sample for the temperature measurement at the oxidation tests.

A-5. The ECR measurement

By definition, the equivalent cladding reacted (ECR) is a total thickness of zirconium layer that reacts with steam assuming that all absorbed oxygen were converted to a stoichiometric zirconia layer, divided by the initial thickness of the cladding. Besides it can be shown that the ECR is the ratio between the oxygen weight, which was absorbed by the cladding during the oxidation test to the oxygen weight, which could be absorbed by the cladding at the full (100 %) oxidation.

To determine the experimental ECR, two alternative methods are used as a rule:

- the measurement of oxygen weight gain using the determination of the cladding sample weight before and after the oxidation test;
- the metallographic method which is based on the thickness measurement of the ZrO_2 and α -Zr(O) layers.

However, the following specific features of the Zr-1%Nb (E110) cladding material hamper the use of these methods:

- the spallation and falling of oxide caused by the breakaway oxidation;
- the nonuniform boundary between the α -Zr(O) layer and prior- β phase (that does not allow to measure the macroscopic value of the α -Zr(O) layer using limited numbers of metallographic samples);
- the inexact knowledge of the radial distribution of oxygen concentration in the α -Zr(O) and prior- β phase layers.

Taking into account the above stated issues a special method of the ECR measurement was developed for this work. The general idea of this method is based on the following consideration:

• the weight gain of the E110 sample obtained during the oxidation test is determined as the difference between the weight gain of this sample oxidized up to 100% zirconium/niobium oxide (this value can be calculated with a high accuracy) and the weight gain of this sample at the additional full oxidation of the E110 sample metallic part (remained after the test oxidation).

In accordance with this approach, the following additional procedures were performed for the tested ring oxidized E110 sample:

- the weight of the oxidized sample (as a rule, the weight of the ring oxidized sample fragments after the ring compression tests) was measured;
- the oxidized sample (or the sample fragments) was additionally oxidized at 1100 C in air atmosphere during 4 hours;
- the weight of the completely oxidized (100 % oxide) sample was measured.

This procedure (the extra oxidation of the E110 ring samples) is explained in detail in Table A-4.

	Stage of procedure	Comments
1. The weight gain tion test (Δm_o) :	n of the E110 cladding sample after the oxida-	
$\Delta m_{\rm o} = \Delta M_{100} - \Delta n$	1 _c	
where ΔM_{100} –	the weight gain of the cladding sample at the complete 100 % oxidation (g);	
$\Delta m_c -$	the weight gain of the cladding sample, ob- tained during the extra oxidation procedure (g)	
2. The weight gain	of the E110 cladding sample at the complete	The following assumptions were used:
oxidation in air atr equation:	nosphere can be determined using the following	• Zr concentration in the E110 alloy is 0.99 (by weight);
$\Delta M_{100} = M \bigg(0.9$	$99\frac{2A_O}{A_{Zr}} + 0.01\frac{5A_O}{2A_{Nb}} = 0.3516M$	• the stoichiometric ZrO ₂ and Nb ₂ O ₅ are formed at the complete oxidation of the E110 alloy in the air
where $A_0 = 16$	(oxygen atomic mass);	

Table A-4. The major provisions of the ECR determination procedure

Stage of procedure	Comments
$A_{Zr} = 91.22$ (zirconium atomic mass);	
$A_{Nb} = 92.91$ (niobium atomic mass);	
M = the weight of the unoxidized ring sample (g)	
3. Thus, the ECR (%) can be calculated using the following equa- tion: $ECR = \frac{\Delta m_o}{\Delta M_{100}} \cdot 100 \% = 1 - \frac{\Delta m_c}{0.3516 M}$ Special scoping tests have been performed to estimate the calcula- tion accuracy on determining the ΔM_{100} parameter. Results of these tests have shown that the range of relative differences be- tween the calculated and measured ΔM_{100} is 0.01–0.12 %	It should be noted that the weight gain of the E110 cladding sample after the oxidation test (Δm_0) is not contained in the ECR equation. Therefore, the ECR measurement error is not the function of ox- ide weight and, consequently, the spallation and falling of the ZrO ₂ oxide during the oxidation and handling (procedures after the test) are not impor- tant for the accuracy of the ECR measurement. This accuracy is determined by the accuracy of the sample weight measurements (the unoxidized sam- ple and the sample before and after the extra oxida- tion) and by the accuracy of several other meas- urements described below
4. The unoxidized ring sample weight (M) can be determined us- ing the following considerations: $M = m_l \cdot L$ where m_l - the weight of the unoxidized cladding sample 1 cm long (g/cm); L - the unoxidized ring sample length (cm)	Special scoping tests performed with nine cladding samples have shown that the m_l average value is 0.01218 g/cm. The mean square error of this parameter is very small (0.0001)
5. The unoxidized ring sample length (L) is determined by $L = L_o \frac{l}{l_o}$	The set of measurements allowed to reveal that the length (100 mm) of the E110 sample is extended by $0.5-1$ % during the oxidation
where L_o – the measured length of the oxidized ring sam- ple (cm); l – the measured length of the unoxidized (100 mm) sample; l_o – the measured length of the oxidized (100 mm) sample	
6. The weight gain of the cladding sample obtained during the extra oxidation (Δm_c) can be expressed by $\Delta m_c = m_c - m_s$ where $m_s -$ the sample mass before the extra oxidation (g); $m_c -$ the sample mass after the extra oxidation (g)	
7. The sample mass before the extra oxidation (m_s) will be $m_s = m_{O+Me} + m_H$ where $m_{O+Me} -$ the mass of the sample metallic part and that of absorbed oxygen (g); $m_H -$ the mass of absorbed hydrogen (g) 8. Thus, the ECR expression is	It should be taken into account that the increase in the E110 sample mass is the result of two proc- esses: • oxygen absorption; • hydrogen absorption
$ECR = \left(1 - \frac{\Delta m_C}{0.3516 M} - \frac{m_H}{0.3516 M}\right) \cdot 100 \%$ 9. The absorbed hydrogen mass (m _H) can be determined by $m_H = C_H \cdot 10^{-6} m_s$	

Stage of procedure	Comments			
where C_H – the measured hydrogen concentration in the ring sample (per-unit: ppm)				
10. Taking into account that the ratio of m_s to M is close to 1, the hydrogen correction factor ($\Delta ECR_H = (m_H/0.3516)100$ %) can be presented with the reasonable accuracy by	$C_{\rm H}$ (ppm) $10^{-4} = C_{\rm H}$ (% by weight)			
$\Delta ECR_H = \frac{C_H \cdot 10^{-4}}{0.3516}$				
11. Finally, the equation for the ECR determination has the fol- lowing form:				
$ECR = 100\% \left(1 - \frac{\Delta m_C \ l_O}{0.3516 \ m_l \ L_O \ l} \right) - \frac{C_H \cdot 10^{-4}}{0.3516}$				
12. The ECR measurement error was estimated using the follow- ing experimental data characterizing the errors of individual measurements:				
• the absolute error of m_c measurement: 0.0002 g				
• the absolute error of <i>l</i> measurement: 0.01 cm				
• the absolute error of l_o measurement: 0.01 cm				
• the relative error of m_l measurement: 1.6 %				
• the maximum relative error of Δm_C determination:				
- 2.3 % at the 5 % ECR				
- 1.2 % at the 10 % ECR				
• The relative error of <i>L</i> ₀ measurement (using five azimutally distributed measurements): 0.8 %				
• The relative error of l/l_o determination: 1 %				
The relative error of ECR measurement is				
• 3.1 % at the ECR=5				
• 2.4 % at the ECR=10 %				
13. The expression to determine the specific weight gain $\Delta m_{O(SP)}$ was formulated on the basis of the ECR data:	The following equation was used to determine the specific weight gain:			
$\Delta m_{O(SP)} = \frac{0.3516 m_l l 10^3}{\pi (d_O + d_l) l_O 100\%} ECR \qquad \text{at the double-sided} \\ \text{oxidation}$	$\Delta m_{O(SP)} = \frac{\Delta m_O}{S}$			
$\Delta m_{O(SP)} = \frac{0.3516 \ m_l \ l \ 10^3}{\pi \ d_o \ l_o \ 100\%} ECR \qquad \text{at the single-sided} $ oxidation	where: S – the sample surface area			
where $\Delta m_{O(SP)}$ – the specific weight gain (mg/cm ²);				
d_0 – the outer cladding diameter (cm);				
d _i – the inner cladding diameter (cm)				
14. Several modifications were developed to determine the ECR in the irradiated claddings:	a) Several scoping tests were performed with the irradiated cladding samples to measure the parame-			
• the weight of the irradiated cladding 1 cm long before the oxidation (m_l) was determined	ter m_l in accordance with the approach presented in the item 4.			
• the initial ECR of irradiated claddings (the ECR developed during the irradiation) was determined (ECR _i = 0.5 %)	b) The following expression was used to determine the ECR _i :			

Stage of procedure	Comments				
	$ECR_i = \frac{\delta_{ZrO_2}}{1.56 \ \delta_{ci}} 100\%$				
	where δ_{ZrO2} – ZrO_2 layer thickness on the outer and inner cladding surfaces be- fore the oxidation (5 µm)				
	δ_{cl} – the irradiated cladding thickness (685 μ m)				
	1.56 – Pilling-Bedworth coefficient				
15. The final equation for the ECR in the irradiated cladding is					
$ECR = 100\% \left(1 - \frac{\Delta m_C l_O}{0.3516 m_l L_O l} \right) - \frac{C_H 10^{-4}}{0.3516} + 0.5\%$					

A-6. Determination of the oxidation equivalent time

It is known that to estimate the oxidation kinetics of the cladding, the experimental data characterizing the specific weight gain dependence on the oxidation time at the given temperature are required. But the real experimental oxidation history of the tested cladding sample consists of three test modes (Fig. A-10):

- 1. The transient mode (the oxidation temperature transient) on the sample heating.
- 2. The steady state mode (the oxidation temperature is approximately constant).
- 3. The transient mode on the sample cooling.

Fig. A-10. The oxidation history of the E110 as-received tube at 1100 C and F/F combination of heating and cooling rates

To transform the transient oxidation conditions into the oxidation kinetics (T=const), the equivalent time (t_{eq}) is used:

$$t_{eq} = \frac{\int_{0}^{t_{ex}} \exp\left(-\frac{Q}{R T(t)}\right) dt}{\exp\left(-\frac{Q}{R T_{eq}}\right)},$$

where: t_{ox} – time for the complete oxidation (s);

- Q the activation energy (cal/mole);
- R the gas constant (1.987 cal/mole K);
- T(t) the oxidation temperature as a function of time (K);
- T_{eq} the assigned steady temperature (K).

In accordance with the published data [1, 2, 3], the following value for the activation energy was used:

Q=39940 cal/mole.

The appropriate estimates have shown that the relative error of the equivalent time on using other values for the activation energy do not exceed 0.3 %.

References

- Cathcart J.V., Pawel R.E. at. al. "Zirconium Metal-Water Oxidation Kinetics: IV. Reaction Rate Studies". ORNL/NUREG-17, 1977.
- [2] Bibilashvili Yu.K., Sokolov N.B., Salatov A.V., Andreyeva-Andriyevskaya L.N., Nechayeva O.A., Vlasov F.Yu. "RAPTA-5 Code: Modelling of Behaviour of Fuel Elements of VVER Type in Design Accidents. Verification Calculations", Proc. of IAEA Technical Committee Meeting on "Behaviour of LWR Core Materials under Accident Conditions", Dimitrovgrad, Russia, on 9-13 October 1995. IAEA-TECDOC-921, Vienna, 1996.
- [3] Bohmert J., Dietrich M., Linek J. "Comparative Studies on High-Temperature Corrosion of Zr-1%Nb and Zircaloy-4", Nuclear Engineering and Design, 147 No1, 1993.

APPENDIX B

Tables with Results of Oxidation and Mechanical Tests: E110, E110A, E110K, E110pol, E635, E110_{G(fr)}, E110_{G(3ru)}, E110_{G(3fr)}, E110_{low Hf}, E635_{G(fr)}, Zry-4 as-Received Tubes and E110 Commercial Irradiated Claddings

	Oxidation	Heating/	Steady	Sample	Equiv.	Measured	Weight gain	Residual	Relative	H cont.
Material	type	Cooling	temp.	number	Time	ECR	(mg/cm^2)	ductility	displacement	(ppm)
	51	comb.	(C)		(s)	(%)	(8,)	(%)	(%)	41 >
			800	123	7205	3.4	2.7	59.8	65.3	80
E110	41-1-	E/E		132	28814	10.7	8.5	8.0	15.6	466
EIIO	double-	F/F		144	21850	8.6	6./	16.0	23.0	150
	sided		900	130	2407 4804	5.9 6.7	5.1	31.8	32.1	106
			900	142	8120	12.3	9.6	0.0	2.1	3010
			950	140	5012	13.4	10.5	0.0	3.2	2780
				141	2490	11.2	8.8	0.0	2.9	920
				44	865	7.7	6.2	8.4	13.0	
			1000	45	798	7.6	6.1	20.7	24.4	
			1000	119	871	5.7	4.5	19.4	26.4	173
				28	520	10.5	9.4	0.6	6.9	175
			1100	20	129	8.0	7.1	0.0	5.1	1110
			1100	30	420	0.9	/.1	0.2	3.1	1110
				41	284	8.2	0.0	0.0	4.5	1130
				46	194	6.5	5.2	57.2	5/./	15
				47	209	7.0	5.6	57.7	58.3	30
				62	445	8.0	6.4	4.9	11.9	660
				65	488	7.5	6.0	42.1	44.3	40
				68	605	10.0	7.9	3.3	10.0	
				81	496	8.1	6.5	1.5	8.5	280
				82	499	7.9	6.3	1.9	6.9	390
				83	341	10.0	8.0	0.5	5.5	
				85	307	6.0	4.8	- *	_ *	
				86	336	6.9	5.5	- *	- *	
				92	555	8.5	6.8	1.4	7.2	690
				96	762	9.8	7.8	- *	_ *	
				104	1814	16.1	12.8	0.0	4 8	
				105	818	11.8	9.4	_ *	_ *	
				110	1714	13.7	10.7	0.0	4.4	
				111	770	8.5	67	0.0 8.4	14.2	
			1120	25	402	0.0	7.0	0.4	14.2	1010
			1120	23	403	9.9	7.9	0.1	4.7	1010
			1200	102	304	13.3	10.6	0.0	4.5	926
				106	308	11.5	9.1	0.0	4.4	430
				63	250	6.1	4.9	57.7	58.2	30
		F/Q	1100	66	375	7.1	5.7	47.3	49.3	90
				71	445	9.7	7.7	2.7	9.4	580
				17	- **	10.0	8.0	0.0	4.2	730
		F/S	1100	19	-	14.2	11.3	0.0	4.5	
				35	-	11.0	8.8	0.0	3.1	1150
				37	-	9.4	7.6	14.1	19.2	
				40	-	8.7	7.0	6.1	10.8	
				48	-	8.7	7.0	56.2	56.4	
				52	-	6.2	5.0	57.0	54.8	180
				27	-	4.6	3.6	40.3	42.3	150
		S/F	1100	32	-	7.1	5.7	24.4	28.0	
				34	-	7.2	5.8	2.1	8.5	
				49	-	7.6	6.1	4.1	11.2	
				51	-	7.7	6.2	0.5	5.6	

 Table B-1. A summary list of tested unirradiated tube samples. Characterization of test conditions and major test results

	Oxidation	Heating/	Steady	Sample	Equiv.	Measured	Weight gain	Residual	Relative	H cont.
Material	type	Cooling	temp.	number	Time	ECR	(mg/cm^2)	ductility	displacement	(ppm)
		comb.	(C)	•	(s)	(%)		(%)	(%)	220
	double-	G / G	1100	29	-	5.8	4.6	45.2	39.7	320
	sided	8/8	1100	31	-	8.0	6.4	21.3	23.3	520
				33	-	7.5	6.0	3.8	10.0	530
F110				36	-	11.7	9.4	0.2	3.8	1460
E110				38	-	7.6	6.1	4.6	9.5	360
				42	1374	8.9	13.1	24.4	32.9	540
	single-	F/F	1100	54	936	6.6	9.8	62.6	70.4	650
	sided			55	1457	9.5	14.4	21.3	28.3	300
				56	1245	8.6	12.7	11.7	19.2	360
	1 11			76	1821	11.2	16.5	0.0	3.3	
E110A	double- sided	F/F	1100	117	675	9.0	7.1	0.0	5.1	554
	double-			58	488	14.0	11.4	0.0	3.1	
E110K	sided	F/F	1100	67	480	9.7	7.9	0.0	3.1	1630
				88	559	7.0	5.7	0.0	2.7	
$E110_{lowHf}$	double-	F/F	1100	94	672	9.2	7.1	38.0	41.6	17
	sided			121	1289	11.4	8.8	2.6	9.0	426
E110pol	double-	F/F	1000	119	871	4.3	3.4	59.6	60.0	44
	sided		1100	92	555	8.0	6.4	46.3	52.0	28
E635	double-	F/F	1000	127	670	5.3	4.2	57.4	57.6	98
	sided			138	1493	9.4	7.5	0.0	5.5	400
				60	-	8.8	7.0	0.4	6.3	
				61	-	9.6	7.6	0.0	4.8	
			1100	126	289	7.8	6.2	30.4	32.6	138
				134	300	6.9	5.5	12.4	18.7	107
				135	460	9.3	7.4	7.2	13.8	35
$E110_{G(3\mathrm{fr})}$	double- sided	F/F	1100	99	755	11.5	9.1	15.0	23.6	13
			900	137	14400	7.5	5.9	35.5	38.3	66
			1000	98	2519	6.9	5.4	42.4	46.0	16
E110 _{G(3ru)}	double-	F/F		101	5028	8.9	7.0	28.3	31.1	11
	sided			95	739	11.6	9.1	15.0	22.5	4
			1100	97	1548	16.7	13.1	11.4	17.3	17
				109	1743	18.0	14.2	3.6	9.2	101
			1200	112	932	23.5	18.5	0.0	4.9	2200
				120	168	7.8	6.1	3.2	8.0	824
			1100	89	558	10.5	8.3	11.7	18.7	15
E110 _{G(fr)}	double-	F/F		90	933	13.0	10.3	17.1	22.8	48
	sided		1000	91	2016	6.5	5.1	51.9	54.3	17
				93	5013	8.5	6.7	0.9	6.6	12
E635 _{G(fr)}	double-	F/F	1100	100	749	12.5	9.8	4.3	11.0	18
	sided			108	572	11.0	8.6	0.0	2.5	
Zry-4	double-	F/F	1100	64	495	11.5	9.5	14.3	22.4	34
	sided	S/S	1100	43	-	11.3	9.3	4.8	12.7	37
E110 _m	double- sided	F/F	1100	136	604	7.7	6.1	1.1	8.9	90

* - Tube sample was used for the three-point bending test

** - Equivalent time calculation procedure was not developed for slow heating and slow cooling test modes

F/F, F/Q, F/S, S/F, S/S characterize the heating/cooling combinations of the oxidation mode

(F - fast, Q - quench, S - slow)

ECR, weight gain, residual ductility, relative displacement are average values obtained due to the procedure of processing of individual measurements these parameters on several rings cutted from the tube sample (see Table B-2)

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
17	E110	1100	10.0	2 ₁₅ *	10.3		20	4.1	0.0	
	double-sided	F/S		4			20	4.3	0.0	
				5						MG
				6 ₂₅ *	9.7		20	4.3	0.0	
				8		730				H2
19	E110	1100	14.2	215	13.9		20	3.9	0.0	
	double-sided	F/S		4			20	5.6	0.0	
				6 ₂₀ *			20	3.7	0.0	
				7						MG, HV
				8 ₂₅ *	14.4		20	4.8	0.0	
25	E110	1120	9.9	2						MG, HV
	double-sided	F/F		3						MG
				4	9.4		20	4.5	0.0	
				5			20	4.4	0.0	
				6	10.0		20	6.0	0.2	
				7	10.2		20	3.9	0.0	
				8			20	4.7	0.2	
				9		1010				H2
				10			135,200,300			MTt
27	E110	1100	4.6	1		199				H2
	double-sided	S/F		2			20	48.1	45.6	
				3			135	63.0	54.1	
				4	4.5		20	47.4	46.9	
				5						MG
				6	4.6		20	21.7	16.5	
				8		90				H2
				9			20		53 0	MG
				10		1.(2	20	52.1	52.0	110
20	E110	1100	10.5		10.5	162	20	(5	0.4	H2
28	EIIU	1100 E/E	10.5	5	10.5		20	0.5 15.0	0.4	
	double-sided	F/F		0			135	15.0	0.2	
20	E110	1100	5 0	2	5.4		20	28.2	28.1	
29	double sided	\$/\$	5.8	3	5.4		20	38.3	36.1	MG
	aouoie-sided	6/6		4		310				Н2
				5	5.5	517	20	37.6	37.5	112
				6	5.5		135	63.5	60.4	
				7			135	64.5	60.5	
				8	6.4		20	35.3	34.9	
				9			20	47.4	47.2	
30	E110	1100	8.9	2	9.2		20	4.0	0.0	
	double-sided	F/F		3		1113				H2
				4			135	9.4	1.8	
				5						MG
				6			135	9.0	1.7	
				7	9.2					
				8	8.3		20	6.7	0.5	
				9	8.4					
				10	9.3		20	4.5	0.0	

 Table B-2. A summary data base on results of oxidation and mechanical tests with unirradiated cladding samples¹

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
31	E110	1100	8.0	2	9.3		20	5.8	0.4	
	double-sided	S/S		6						MG
				8	7.6		20	34.2	33.9	
				9	7.2		20	30.0	29.7	
32	E110	1100	7.1	2	6.6		20	7.6	0.6	
	double-sided	S/F		5			20	18.7	11.7	
				6						MG
				8	7.6		20	43.7	43.6	
				9	7.2		20	41.8	41.6	
33	E110	1100	7.5	2	7.2	-	20	14.5	8.6	
	double-sided	S/S		4		070	135	63.2	60.7	
				5		870				H2
				0		212				MG
				/	7.4	215	20	6.8	1.0	H2
				0	7.4		20	8.5	1.0	
34	E110	1100	7.2	2	7.8		20	8.7	1.7	
51	double-sided	S/F	7.2	4	7.2		20	12.7	4.1	
		~~~~		5	,					MG
				8	7.1		20	9.8	2.5	
				9	7.3		20	6.9	0.1	
35	E110	1100	11.0	2	10.9		20	3.7	0.0	
	double-sided	F/S		3			135	4.7	0.0	
				4		1150				H2
				5						MG
				8	11.0		20	3.1	0.0	
				10			20	2.6	0.0	
36	E110	1100	11.7	2	12.8		20	3.2	0.2	
	double-sided	S/S		4		1457				H2
				5						MG
				6	11.8		20	3.9	0.2	
				7			135	6.6	0.7	
				8			200	57.4	57.0	
				9	10.0		300	62.3	62.0	
27	E110	1100	0.4	10	10.6		20	4.3	0.3	MG
57	double-sided	F/S	7.4	2	80		20	<u>4</u> 4 7	<u>4</u> 4 4	UIVI
	aouore-sideu	1/5		4	9.1		20	20.2	14.3	
				5	7.1		135	64.3	60.3	
				7	9.7		20	17.1	10.9	
				9	9.7		20	7.2	0.6	
				10	9.8		20	6.6	0.4	
				11						MG
38	E110	1100	7.6	2			20	7.9	1.5	
	double-sided	S/S		3			135	60.9	60.3	
				4		315				H2
				5						MG
				7	7.6		20	10.8	3.6	
				8			135	59.5	58.4	
				9		400	20			H2, Fr
				10			20	9.8	3.1	

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
40	E110	1100	8.7	2	7.9		20	17.5	11.8	
	double-sided	F/S		5						MG
				6	9.4		20	8.5	1.9	
				8			135	17.7	10.5	
				10	8.9		20	6.4	0.3	
41	E110	1100	8.2	3			135	67.5	60.1	
	double-sided	F/F		4			20	6.5	0.0	Fr,HV,SEM
				5						MG
				6	8.1	1120	20	4.0	0.0	
				8	0.2	1130	20	1.0		H2
42	E110	1100	8.0	10	8.3	510	20	4.9	0.0	112
42	EIIU single sided	1100 E/E	8.9	2		519	20	14.6	2.0	H2
	single-sided	Г/Г		3	83		20	28.8	3.9	
				4	9.1		20	61.8	55.3	
				5	7.1		20	01.0	55.5	MG
				6	9.2		20	26.2	21.3	
				7		555				H2
43	Zry-4	1100	11.3	1		37				H2
	double-sided	S/S		2	9.9		20	16.5	8.6	
				3						MG
				4						MG
				5						MG
				6	11.4		20	12.4	4.6	
				7						MG
				8			135	18.7	11.4	
				10	12.7		20	7.9	1.1	
	5110	1000		11		271	20	2.0		H2
44	E110	1000	7.7	2	9.9		20	3.8	0.0	MC
	double-sided	F/F		5	6.0		20	10.6	14.1	MG
				10	6.9		20	19.0	14.1	
45	F110	1000	7.6	2	7.5		20	3.8	0.0	
-15	double-sided	F/F	7.0	5	7.5		20	5.0	0.0	MG
	double slaca	1/1		6	7.8		20	58.9	58.3	mo
				10	7.4		20	10.4	3.8	
46	E110	1100	6.5	2	6.0		20	58.9	57.9	
	double-sided	F/F		3		129				H2
				4		20				H2
				5						MG
				6	6.8		20	57.2	56.8	
				7	6.5		135	71.6	61.2	
		ļ		10	6.7		20	57.1	56.9	
47	E110	1100	7.0	2	7.1		20	58.9	58.6	l
	double-sided	F/F		4			135	72.4	64.2	
				5						MG
				6	7.3	20	20	60.2	59.8	
				0		30	20 125			H2 MT
				ð 0	6.2		20, 135			IVIII
				10	7.2		20	55.9	54.6	
	1			10	/				51.0	

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
48	E110	1100	8.7	2	8.6		20	51.4	51.2	
	double-sided	F/S		5						MG
				6	8.8		20	58.4	58.1	
				7	9.1		135	69.7	62.6	
				10	8.3		20	59.8	59.4	
49	E110	1100	7.6	2	7.5		20	10.3	3.6	
	double-sided	S/F		5						MG
				6	7.8		20	14.3	7.4	
				7			20, 135			MTt
				8			200, 300			MTt
				10	7.4		20	8.9	1.3	
51	E110	1100	7.7	2			20	8.8	1.5	
	double-sided	S/F		5						MG
				6	7.8		20	5.2	0.0	
				7	7.6		135	10.9	2.5	
				10			20	2.7	0.0	
52	E110	1100	6.2	2			20	46.3	45.4	
	double-sided	F/S		4		180				H2
				5						MG
				6	6.6		20	58.6	58.2	
				7	6.5		135	72.5	63.9	
				10	5.5		20	59.4	59.1	
54	E110	1100	6.6	2	6.6		20	72.1	63.7	
	single-sided	F/F		3	6.0		135	73.7	63.2	
				4		650				H2
				5						MG
				6	7.0		20	67.5	60.5	
				7	6.8		135	64.9	53.9	
				10	6.8		20	71.8	63.6	
55	E110	1100	9.5	2	8.7		20	57.6	51.8	
	single-sided	F/F		3	9.6		135	67.5	55.0	
				4		300				H2
				6	10.0		20	15.0	7.3	
				7	10.0		135	72.5	61.9	
				9	9.4		20	12.3	4.8	
56	E110	1100	8.6	2	8.8		20	28.5	21.8	
	single-sided	F/F		3	8.3		135	63.1	52.4	
				4		360				H2
				6	9.0		20	15.1	6.9	
				7	8.5		135	73.8	61.3	
				9	8.3		20	13.9	6.4	
58	E110K	1100	14.0	2	14.8	ļ	20	3.4	0.0	
	double-sided	F/F		6			20	3.2	0.0	
	F (2-			9	13.2		20	2.8	0.0	
60	E635	1100	8.8	2	8.9		20	6.2	0.3	
	double-sided	F/F		5	0.7		20		0.0	MG
				6	8.6		20	/.4	0.9	
61	E635	1100	96	2	8.9 9.6		20	5.2 4.8	0.0	
	double-sided	F/F		_						

62         E110         1100         8.0         2         7.6         20         13.7         6.0           3         8.1         135         62.8         61.8           4         660         -         -         112           6.7         8         8.3         135         31.9         24.9           6.0         6.1         20         8.0         1.5         -           6.1         5.5         -         20         6.6         59.7         -           6.0         6.1         5.5         -         20         6.6         59.7         -           6.0         6.1         20         5.8         6.7         -         1.10         6.8         6.7         -         1.12         -         1.13         6.28         6.7         -         1.12         -         1.13         6.28         6.5         6.5         -         1.12         1.13         6.6         6.7         1.15         6.5         6.5         6.5         -         1.12         1.13         6.1         1.12         1.13         6.6         1.12         1.13         6.1         1.12         1.12         1.12         1.12	Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
double-sided         F/F         4         60         135         6.2.8         6.1.8         112           60         7.8         600         7.8         1.3.9         7.1         112           60         7.8         8.3         1.155         31.9         2.4.9         1.5.5           63         E110         1100         6.1         2.0         5.5         2.0         6.6.6         59.7           64         0.0         5.8         1.135         75.5         6.4         1.12           65         F/Q         3         5.8         1.135         75.5         6.4         1.12           64         C.9.4         1.0         1.5         7.5         6.5.4         1.12           64         Zry4         1100         11.5         2         11.3         2.0         2.1.7         12.5           64         double-sided         F/F         110         2.0         13.5         2.6.2         17.0         1.2.5           65         E110         1100         7.5         2         7.1         2.0         2.1.5         1.2.4           66         F/F         3         7.7         1.0         2	62	E110	1100	8.0	2	7.6		20	13.7	6.0	
64         60         6         13.9         12           63         E110         1100         6.1         2         5.5         120         60.6         59.7           63         E110         1100         F/Q         6.1         2         5.5         120         60.6         59.7           64         6.1         2         5.5         120         60.6         59.7           64         7.9.4         1100         6.1         2         5.5         65.4         112           64         7.9.4         1100         F/F         2         11.3         200         17.4         12           64         27.9.4         1100         F/F         11.5         2         11.3         20.0         17.1         12.4           64         27.9.4         1100         7.5         2         11.3         20.0         12.4         142           5         -         -         11.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5         12.4         142           6         11.7         20         21.6         12.8         14         110.1         12.4		double-sided	F/F		3	8.1		135	62.8	61.8	
6         7.8         20         13.9         7.1           63         E110         1100         6.1         2         5.5         20         60.6         59.7           63         E110         FQ         5.8         135         75.5         6.4         112           64         Gouble-sided         FQ         5.8         135         75.5         6.4         112           64         Zry-4         1100         6.1         2         0         58.9         58.3           64         double-sided         F/F         11.5         2         11.3         2.0         21.7         12.5           64         double-sided         F/F         11.5         2         11.3         2.0         21.7         12.5           65         E110         1100         T.5         2         7.1         2.0         21.9         12.4           64         11.4         134         2.0         23.6         12.8         12.8           65         E110         1100         7.5         2         7.1         2.0         2.18         12.8           66         E110         I100         7.7         2         <					4		660				H2
8         8.3         1135         31.9         24.9           63         E110         1100         6.1         2         5.5         20         60.6         59.7           63         E110         1100         6.1         2         5.5         20         60.6         59.7           64         Gauble-sided         F/Q $$ H2         3         5.8         1135         75.5         65.4           64         Zry-4         1100         6         6.7         135         74.3         62.8            64         Zry-4         1100         11.5         2         11.3         20         21.7         12.5           64         Zry-4         1100         7.5         65          MG           65         E110         1100         7.5         2         7.1         200         21.9         12.4           64         Uable-sided         F/F         7.5         2         7.1         120         55.2         59.2           65         E110         1100         7.5         2         7.1         120         58.5         12.9           66         <					6	7.8		20	13.9	7.1	
Image: state in the s					8	8.3		135	31.9	24.9	
63         E110         1100         6.1         2         5.5         20         60.6         59.7           64         3         5.8         1135         75.5         65.4         112           6         6.1         20         58.9         58.3         112           6         6.1         20         58.9         58.3         112           6         6.1         20         58.9         58.3         112           6         6.6         20         55.2         55.0         110           6         6.6         20         55.2         55.0         110           6         11.0         110         11.5         2         11.3         20         21.7         12.5           6         11.7         20         21.7         12.5         110         112         12.4           6         11.5         135         28.2         18.8         112         12.8         110           6         11.5         135         28.5         12.8         12.8         112           6         11.0         7.7         2         7.1         20         5.1         54.9					9	8.1		20	8.0	1.5	
	63	E110	1100	6.1	2	5.5		20	60.6	59.7	
$ \left  \begin{array}{c c c c c c c c c c c c c c c c c c c $		double-sided	F/Q		3	5.8		135	75.5	65.4	
6         6.1         20         58.3					4		30				H2
$ \left  \begin{array}{c c c c c c c c c c c c c c c c c c c $					6	6.1		20	58.9	58.3	
64         Zry-4 double-sided         1100 F/F         11.5         2         11.3         20         20.7         12.5           3         11.4         135         26.5         17.0         H2           4         34         -         -         H2           5         -         -         H2           66         11.7         20         21.9         12.4           6         11.7         20         21.9         12.4           6         11.7         20         21.9         12.4           6         11.7         20         21.9         12.4           6         11.7         20         25.1         54.9           6         1100         7.5         2         7.1         20         25.1         54.9           6         1100         F/F         3         7.7         1135         62.5         59.2           6         E110         100         F/Q         7.1         2         64         2.0         49.8         49.5           6         7.1         2         7.0         2.0         2.2         3.9         -           6         7.1					8	6.7		135	74.3	62.8	
64         Zy4         1100         11.3         2         11.3         20         21.7         12.3           64         double-sided         F/F         3         11.4         135         26.5         17.0           64         0         34         1         135         28.9         12.8           65         E110         1100         7.5         2         7.1         20         23.6         12.8           65         E110         1100         7.5         2         7.1         20         55.1         54.9           64         40         40         -         -         H2           65         E110         1100         7.5         2         7.1         20         55.1         59.2           66         F/F         9         7.7         135         62.5         59.2         -           66         7.8         2.0         4.9         4.0         -         H2         -           66         F10         1100         7.1         2         6.9         2.0         4.12         35.9           66         7.1         2.0         2.0         4.12         35.9	()	7 4	1100	11.5	9	6.6		20	55.2 21.7	55.0	
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $	64	Zry-4	1100 E/E	11.5	2	11.3		20	21.7	12.5	
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $		double-sided	F/F		3	11.4	24	135	26.5	17.0	112
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $					4		34				H2 MG
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $					5	11.7		20	21.0	12.4	IVIO
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					8	11.7		135	21.9	12.4	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					9	11.5		20	23.6	12.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	65	E110	1100	7.5	2	7.1		20	55.1	54.9	
$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	00	double-sided	F/F	,10	3	7.7		135	62.5	59.2	
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $			- / -		4	,	40				H2
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $					5						MG
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					6	7.8		20	49.8	49.5	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					8	7.4		135	72.0	64.5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					9	7.7		20	28.0	21.9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	66	E110	1100	7.1	2	6.9		20	41.2	35.9	
$ \left[ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		double-sided	F/Q		3	7.0		135	67.7	63.0	
$ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $					4		90				H2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					5						MG
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					6	7.1		20	57.2	56.8	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					8	7.4		135	71.1	62.4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					9	7.1		20	49.4	49.2	
double-sided $F/F$ 3       9.3       135       3.8       0.0         4       1630       H2         5       MG       MG         6       8.7       20       3.1       0.0         6       8.7       20       3.1       0.0         6       8.7       20       3.1       0.0         6       8.7       20       2.9       0.0         6       8.7       20       2.9       0.0         6       8.7       20       2.9       0.0         6       8       10.5       135       3.9       0.0         6       8       10.4       20       2.9       0.0         6       1100       1       10.0       2       9.5       20       12.4       4.7         6       10.2       200       76.3       65.0       65.0         5         MG       6       10.2       20       10.7       4.1         7       300       76.5       65.5       65.5       1.0       1.0         9       10.5       20       6.9       1.0       1.0	67	E110K	1100	9.7	2	9.8		20	3.3	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		double-sided	F/F		3	9.3		135	3.8	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					4		1630				H2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					5	0.5		20			MG
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					6	8.7		20	3.1	0.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					8	10.5		135	3.9	0.0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(9	E110	1100	10.0	9	10.4		20	2.9	0.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	08	EIIU double side	1100 E/E	10.0	2	9.5		125	20.4	4./	
4     200     70.5     63.0       5       MG       6     10.2     20     10.7     4.1       7      300     76.5     65.5       8     10.0     135     29.1     21.7       9     10.5     20     6.9     1.0		double-sided	Г/Г		S	9.0		200	76.2	65.0	
6         10.2         20         10.7         4.1           7         300         76.5         65.5           8         10.0         135         29.1         21.7           9         10.5         20         6.9         1.0					-+			200	/0.3	05.0	MG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					6	10.2		20	10.7	<u>4</u> 1	UIU
8         10.0         135         29.1         21.7           9         10.5         20         6.9         1.0					7	10.2	L	300	76.5	65.5	
9 10.5 20 6.9 1.0					8	10.0		135	29.1	21.7	
					9	10.5		20	6.9	1.0	

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
71	E110	1100	9.7	2	9.1		20	17.4	8.1	
	double-sided	F/Q		3	9.9		135	55.7	53.0	
				6	9.0		20	4.1	0.0	
				7		581				H2
				8	10.1		135	52.1	49.6	
				9	10.2		20	6.7	0.0	
76	E110	1100	11.2	2	11.9		20	3.2	0.0	
	single-sided	F/F		3	11.8		135	5.6	0.7	
				6	11.1		20	3.4	0.0	
				8	10.0		135	12.2	2.1	
				9			20	3.3	0.0	
81	E110	1100	8.1	1						
	double-sided	F/F		2	7.9		20	9.4	2.3	
				3	8.3		135	25.1	19.1	
				4		140				H2
				5		-				MG
				6			20	7.5	0.8	
				9		100	20	8.5	1.4	
	E110	1100	7.0	10		422	20	. 1		H2
82	EIIO	1100	7.9	2			20	7.1	2.2	
	double-sided	F/F		3	7.7	170	135	65.0	64.2	112
				4		170				H2 MC
				5			20	7.2	2.2	MG
				0	8.0		125	/.5	2.2	
				8	8.0		135	6.2	05.8	
				9		607	20	0.2	1.4	Ц2
83	E110	1100	10.0	10	10.0	007	20	7.0	0.9	112
05	double-sided	F/F	10.0	3	10.0		20	4.0	0.9	
85	E110	1100	6.0	5			20	-1.0	0.0	3B
05	double-sided	F/F	0.0				20			515
86	E110	1100	6.9				20			3B
	double-sided	F/F								-
88	Е110К	1100		3	7.0		20	2.7	0.0	
	double-sided	F/F		4			20	2.6	0.0	
89	E110 _{G(fr)}	1100	10.5	3			135	59.8	56.5	
	double-sided	F/F		4						MG
				5			20	21.2	12.4	
				6	10.5		20	16.2	10.9	
				7		7				H2
				8		22				H2
90	E110 _{G(fr)}	1100	13.0	3			135	60.1	59.6	
	double-sided	F/F		4						MG
				5			20	24.3	18.2	
				6	13.0		20	21.4	16.0	
				7		30				H2
				8		107				H2
				10		6				H2

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
91	E110 _{G(fr)}	1000	6.5	3			135	60.8	59.7	
	double-sided	F/F		4						MG
				5	6.5		20	49.2	48.8	
				6			20	59.4	55.0	
				7		5				H2
				8		28				H2
92	E110pol	1100	8.0	2						MG
	double-sided	F/F		3		28				H2
				4			20	52.0	46.3	
	E110	1100	8.5	7			20	7.2	1.4	
	double-sided	F/F		8		694				H2
				9	8.5					MG
93	$E110_{G(fr)}$	1000	8.5	3			135	58.4	53.8	
	double-sided	F/F		4						MG
				5	8.5		20	6.3	0.9	
				6			20	6.8	1.0	
				7		12				H2
94	$E110_{lowHf}$	1100	9.2	3			135	60.2	58.5	
	double-sided	F/F		4						MG
				5	9.2		20	45.2	39.3	
				6			20	37.9	37.7	
				7		17				H2
95	E110 _{G(3ru)}	1100	11.6	1	11.2					
	double-sided	F/F		3			135	59.1	57.4	
				4						MG
				5			20	22.6	15.5	
				6	11.9		20	22.3	14.4	
				7						MG
				8		4				H2
96	E110	1100	9.8				20			3B
07	double-sided	F/F	167		15.0		20			
97	EII0 _{G(3ru)}	1100	16.7	1	15.8		20	52.0	50.4	
	double-sided	F/F		3			135	53.8	50.4	
				4			20	16.0	0.6	MG
				5	17.0		20	16.9	9.6	
				0	17.0		20	25.9	20.7	
				/	17.5	17	20	9.2	4.0	SEM 112
				0		17				SEM, H2
98	F110aa x	1000	69	3			135	60.1	59.0	IVIO
70	double sided	F/E	0.7	3			155	00.1	37.0	MG
	aouoie-sided	<b>L</b> /L		- 4			20	44.0	127	IVIO
				6	6.0		20	47.0	41.0	
				7	0.9	16	20	т/.U	1.0	Н2
99	E110crash	1100	11.5	3		10	135		57.1	112
	double-sided	F/F		4					2,	MG
	acable should	1/1		5			20	23.8	16.0	
				6	11.5		20	23.4	13.9	
				7		13				H2
						-				

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
100	E635 _{G(fr)}	1100	12.5	3			135	60.7	59.5	
	double-sided	F/F		4						MG
				5			20	12.1	4.1	
				6	12.5		20	9.9	4.5	
				7		18				H2
101	E110 _{G(3ru)}	1000	8.9	3			135	55.0	50.4	
	double-sided	F/F		4						MG
				5			20	28.3	28.3	
				6	8.9		20	33.8	28.3	
				7		11				H2
102	E110	1200	13.3	2	13.0		20	4.6	0.0	
	double-sided	F/F		3	13.5		135			
				4						MG
				6	13.3		20	4.5	0.0	
				7		926	105			H2
				8			135	4.5	0.0	
104	E110	1100	16.1	9			20	4.5	0.0	MC
104	EII0 daubla sidad	1100 E/E	16.1	5	16.0		20	1.0	0.0	MG
	double-sided	F/F		0	16.0		20	4.8	0.0	
				/	16.0		135	12	0.0	
105	E110	1100	11.8	0	10.2		20	4.2	0.0	38
105	double-sided	F/F	11.0				20			50
106	E110	1200	11.5	2			20	44	0.0	
100	double-sided	F/F	1110	3	11.4		135	7.7	0.9	
		- / -		4				,		MG
				6	11.5		20	4.4	0.0	
				7		430				H2
				8			135	8.9	1.2	
				9			20	4.3	0.0	
108	E635 _{G(fr)}	1100	11.0	3			135	25.1	19.6	
	double-sided	F/F		4						MG
				6			20	2.5	0.0	
				8			135	5.4	0.0	
109	E110 _{G(3ru)}	1100	18.0	2	16.6		20	10.6	5.4	
	double-sided	F/F		3	17.2		135	44.7	44.3	
				5						MG
				6	18.4		20	8.0	1.9	
				8	19.0		135	29.3	29.0	
				9	19.0		20	9.0	3.6	
				10		101				H2
110	E110	1100	13.7	2	13.5		20	3.8	0.0	
	double-sided	F/F		3	13.5		135	19.2	12.4	
				5			•			MG
				6	14.0		20	3.9	0.0	
				8	13.8		135	8.9	2.5	<u> </u>
				9	13.8	500	20	5.0	0.0	112
				10		509	20	5.6	0.0	H2

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
111	E110	1100	8.5	2	7.9		20	4.4	0.0	
	double-sided	F/F		3			135	59.3	58.5	
				5						MG
				6	8.3		20	19.1	12.3	
				8	8.8		135	59.5	57.8	
				9	9.0		20	19.2	13.0	
112	E110 _{G(3ru)}	1200	23.5	2						MG
	double-sided	F/F		3	22.3		20	4.9	0.0	
				5	24.7		135	3.2	0.0	
				6		2200				H2
117	E110A	1100	9.0	3	9.3		135	11.8	4.7	
	double-sided	F/F		5						MG
				6	8.1		20	5.1	0.0	
				8	9.5		135	11.3	4.2	110
110	E110 1	1000	1.2	10		554				H2
119	ETTUPOI	1000 E/E	4.3	2	4.2		20	(0.0	50 (	MG
	double-sided	F/F		5	4.3	4.4	20	60.0	59.6	112
	E110	1000	57	3 0	57	44	20	26.4	10.4	H2
	double sided	1000 E/E	5.7	0	5.7	172	20	20.4	19.4	ЦЭ
	double-sided	Г/Г		9		1/5				H2 MG
120	E110cra	1200	7.8	2	81		20	18.3	9.5	IVIO
120	double sided	F/F	7.0	3	0.1		135	2.2	0.0	
	uouoie-sideu	171		4		824	155	2.2	0.0	Н2
				5		024				MG
				6	7.5		20	2.3	0.0	mo
				8	,		135	27.3	20.5	
				9			20	3.5	0.0	
121	E110 _{lowHf}	1100	11.4	2	12.1		20	4.5	0.0	
	double-sided	F/F		4						MG
				6	10.8		20	12.0	5.0	
				9	11.3		20	10.4	2.7	
				10		426				H2
123	E110	800	3.4	2	3.0		20	67.7	61.2	
	double-sided	F/F		3	3.0		135	67.4	61.3	
				5						MG
				6	3.5		20	63.8	58.0	
				7		80				H2
				8	3.8		135	63.9	56.9	
				9	3.5		20	64.5	60.1	
126	E635	1100	7.8	2	7.6		20	42.1	41.9	
	double-sided	F/F		3	7.6		135	62.4	62.0	
				5					<u> </u>	MG
				6	8.1		20	38.3	37.9	
				7		138	167			H2
				8	7.9	ļ	135	56.9	56.3	
				9			20	17.5	11.5	

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
127	E635	1000	5.3	2	4.8		20	60.1	59.9	
	double-sided	F/F		3	4.8		135	70.0	65.5	
				5						MG
				6	5.7		20	54.7	54.5	
				7		98				H2
				8	5.9		135	63.5	61.2	
				9			20	58.0	57.7	
130	E110	900	3.8	2			20	57.3	56.0	
	double-sided	F/F		3	3.7		135	64.0	56.8	
				5			20	<i>co. t</i>	50.0	MG
				6	3.8	107	20	60.4	59.3	110
				7		106	125	(1.0	(0.1	H2
				8			135	64.9	60.1 5(.2	
121	E110	000	7.4	9			20	20.6	30.2	
151	double sided	900 F/F	/.4	2			135	50.0 63.4	61.2	
	uouoie-sideu	1/1		5			155	03.4	01.2	MG
				6	74		20	28.4	28.1	MO
				7	,	194	20	20.1	20.1	H2
				8		17.	135	59.0	56.8	
				9			20	37.2	37.0	
132	E110	800	11.0	2	9.4		20	23.6	16.4	
	double-sided	F/F		3	9.7		135	70.4	64.4	
				5						MG
				6	11.7		20	12.3	5.5	
				7		466				H2
				8	12.2		135	67.7	59.0	
				9	11.9		20	10.9	2.2	
134	E635	1100	6.9	2	6.8		20	14.5	8.7	
	double-sided	F/F		4						MG
				6	7.0		20	15.5	6.6	
				7		107				H2
				9	6.7		20	26.2	21.9	
135	E635	1100	9.3	2	8.7		20	16.3	10.9	
	double-sided	F/F		3			135	53.6	52.5	
				5	0.4		20	12.1	5.4	MG
				6	9.4	25	20	13.1	5.4	112
				2			125	53.5	52.1	п2
				0	0.8		20	12.0	52.1	
136	E110m	1100	77	2	6.8	ļ	20	10.9	33	
150	double-sided	F/F	/./	3	0.0		135	61.9	58.4	
	acuste stude	1/1		5			155	01.9	50.7	MG
				6	8.0		20	7.7	0.0	
				7		90				H2
				8			135	59.0	56.8	
				9	8.3		20	8.1	0.0	

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Average ECR (%)	Ring sample number	As- measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ² (%)	Resid. Duct. ³ (%)	Other investigations ⁴
137	E110 _{G(3ru)}	900	7.5	2			20	63.0	61.3	
	double-sided	F/F		3	6.6		135	61.2	59.8	
				5						MG
				6	7.4		20	42.6	41.9	
				7		66				H2
				8	7.9		135	60.1	59.0	
				9	8.0		20	9.3	3.3	
138	E635	1000	9.4	2	8.8		20	6.9	0.0	
	double-sided	F/F		3	8.7		135	12.0	3.2	
				5						MG
				6	9.9		20	3.7	0.0	
				7		400				H2
				8	10.5		135	20.8	13.1	
				9	9.0		20	6.0	0.0	
140	E110	950	13.4	2	13.7		20	2.9	0.0	
	double-sided	F/F		3			135	5.9	0.0	
				5						MG
				6	12.1		20	3.5	0.0	
				7		2780				H2
				8			135	6.4	0.0	
				9	14.4		20	3.2	0.0	
141	E110	950	11.2	2	11.2		20	3.5	0.0	
	double-sided	F/F		3			135	7.7	0.0	
				5						MG
				6			20	3.1	0.0	
				7		920				H2
				8			135	5.3	0.0	
				9			20	2.2	0.0	
142	E110	900	12.3	2	10.0		20	3.3	0.0	
	double-sided	F/F		3			135	4.2	0.0	
				5						MG
				6	13.3		20	2.5	0.0	
				7		3100				H2
				8			135	4.0	0.0	
				9	13.7		20	2.2	0.0	
144	E110	800	8.6	5						MG
	double-sided	F/F		6	8.4		20	21.0	15.0	
				7		150				H2
				8	8.8		20	25.0	17.0	

¹⁾ Ring tensile tests and three point bending tests are indicated in "Other investigations" column, all other mechanical tests are ring compression tests

²⁾ Relative displacement at failure

³⁾ Residual ductility at failure

⁴⁾ Abbreviations:

MG metallographic cross-section

HV microhardness measurements

MTt ring tensile mechanical tests

3B three point bending tests

Fr fractography investigation

SEM scanning electron microscope examinations

Material	Oxidation type	Heating/ Cooling comb.	Steady temp. (C)	Sample number	Equiv. Time (s)	Measured ECR ¹ (%)	Weight gain ² (mg/cm ² )	Residual ductility (%)	Relative displacement (%)	H cont. ³ (ppm)
			1000	16	544	6.3	4.7	18.7	26.7	470
E110	double-	F/F		17	664	8.6	6.5	37.0	39.6	250
	sided			10	232	7.7	5.8	0.0	8.4	1690
			1100	14	312	8.3	6.2	0.0	8.3	1410
				15	327	8.1	6.1	0.0	6.6	-
				20	137	6.3	4.7	26.1	30.4	30
				21	223	7.0	5.2	0.0	6.3	-
			1200	18	218	16.0	12.5	0.0	3.4	-
		S/F	1100	3	_*	5.8	4.3	11.2	20.4	170
		S/S	1100	1	_*	8.5	6.4	3.2	11.3	280
				2	_*	10.5	8.0	1.9	8.9	270

 Table B-3. A summary list of tested irradiated commercial claddings.

 Characterization of test conditions and major test results

* - Equivalent time calculation procedure was not developed for slow heating and slow cooling test modes

F/F, F/Q, F/S, S/F, S/S characterize the heating/cooling combinations of the oxidation mode

(F - fast, Q - quench, S - slow)

 1  A sum of the ECR before the oxidation (0.5 %) and the ECR during the oxidation

 2  A sum of the weight gain before the oxidation (0.4 mg/cm²) and the weight gain during the oxidation

³ A sum of the H content before the oxidation (47 ppm) and the H content during the oxidation

 Table B-4. A summary data base on results of oxidation and mechanical tests (ring compression tests)

 with irradiated commercial cladding samples

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Ring sample number	As-measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ¹ (%)	Resid. Duct. ² (%)	Other investigations ³
1	E110	1100	1			20	11.3	3.2	
	double-	S/S	2			135	30.5	25.1	
	sided		3		280				H2
			4						MG
			5	8.5					
2	E110	1100	1			20	8.9	1.9	
	double-	S/S	2			135	17.5	10.9	
	sided		3		270				H2
			4						MG
			5	10.5					
3	E110	1100	1			20	20.4	11.2	
	double-	S/F	2			135	67.6	58.6	
	sided		3		170				H2
			4						MG
			5	5.8					
10	E110	1100	1			20	8.4	0.0	
	double-	F/F	2			135	14.0	2.0	
	sided		3		1690				H2
			4						MG, HV
			5	7.7					

Tube sample number	Material, Oxid. Type	Steady temp. (C) Heat/Cool. Comb.	Ring sample number	As-measu- red ECR (%)	H cont. (ppm)	Temp. of mech. Tests (C)	Relative disp. ¹ (%)	Resid. Duct. ² (%)	Other investigations ³
14	E110	1100	1			20	8.3	0.0	
	double-	F/F	2			135	75.8	68.7	
	sided		3		1410				H2
			4						MG, HV
			5	8.3					
15	E110	1100	1			20	6.6	0.0	
	double-	F/F	2			135	72.5	63.0	
	sided		3						
			4						MG, HV
			5	8.1					
16	E110	1000	1			20	26.7	18.7	
	double-	F/F	2			135	48.0	36.0	
	sided		3		470				H2
			4						MG, HV
			5	6.3					
17	E110	1000	1			20	39.6	37.0	
	double-	F/F	3		250				H2
	sided		4						MG, HV
			5	8.6					
18	E110	1200	1			20	3.4	0.0	
	double-	F/F	2			135	11.3	1.2	
	sided		3						
			4						MG, HV
			5	16.0					
20	E110	1100	1			20	30.4	26.1	
	double-	F/F	3		30				H2
	sided		4						MG
			5	6.3					
21	E110	1100	1			20	6.3	0.0	
	double-	F/F	4						MG
	sided		5	7.0					

¹⁾ Relative displacement at failure

²⁾ Residual ductility at failure

³⁾ Abbreviations:

MG - metallographic cross-section

H2 - hydrogen content measurements

HV - microhardness measurements

Notice. The numeration of the rings begins from the bottom of the tube based on its location in the furnace. As a rule, parts of approximately 7 mm long were cut from top and bottom of oxidized tube and rejected to avoid end effects. After that the 8 mm rings were cut and numbered from bottom. The photos of tubes in the report and in the appendices (the photos represent entire uncut tubes) are shown such that the numeration increases from the right to the left.

## **APPENDIX C**

Temperature Histories, Appearances and Microstructures of E110 Standard As-received Tubes after a Double-sided Oxidation at 1100 C and S/S, S/F, F/S Combinations of Heating and Cooling Rates



Fig. C-1. Typical temperature histories for cladding samples oxidized at S/S combination of heating and cooling rate



Fig. C-2. Typical temperature histories for cladding samples oxidized at S/F combination of heating and cooling rate



Fig. C-3. Typical temperature histories for cladding samples oxidized at F/S combination of heating and cooling rate



Fig. C-4. Appearance of E110 standard as-received samples as a function of the ECR after a double-sided oxidation at 1100 C and S/S combination of heating and cooling rates



Fig. C-5. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 1100 C and S/F combination of heating and cooling rates



Fig. C-6. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 1100 C and F/S combination of heating and cooling rates



Fig. C-7. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 1100°C and S/S combination of heating and cooling rates



Fig. C-8. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 1100°C and S/F combination of heating and cooling rates



Fig. C-9. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 1100°C and F/S combination of heating and cooling rates

## **APPENDIX D**

Temperature Histories, Appearances and Microstructures of E110 Standard As-received Tubes after a Double-sided Oxidation at 800, 900, 950, 1000, 1100, 1200 C and F/F (F/Q) Combinations of Heating and Cooling Rates



Fig. D-1. Typical temperature histories for cladding samples oxidized at F/F combination of heating and cooling rate



Fig. D-2. Typical temperature histories for cladding samples oxidized at F/Q combination of heating and cooling rate



Fig. D-3. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 800 C and F/F combination of heating and cooling rates



Fig. D-4. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 800°C and F/F combination of heating and cooling rates



Fig. D-5. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 900 C and F/F combination of heating and cooling rates



Fig. D-6. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 900°C and F/F combination of heating and cooling rates



Fig. D-7. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 950 C and F/F combination of heating and cooling rates



Fig. D-8. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 950°C and F/F combination of heating and cooling rates



Fig. D-9. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 1000 C and F/F combination of heating and cooling rates



Fig. D-10. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 1000°C and F/F combination of heating and cooling rates



Fig. D-11. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 1100 C and F/F combination of heating and cooling rates



Fig. D-12. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 1100 C and F/F combination of heating and cooling rates (ECR=6.5–14 %)

Sample	External surface (Etched)	Internal surface
#46-5 ECR=6.5 %	<u>50µm</u>	
#65-5 ECR=7.6 %	<u>50μm</u>	
#81-5 ECR=8.1 %	50µm,	
#30-5 ECR=8.9 %	<u>_50μm</u>	
#68-5 ECR=10 %	<u>50μm</u>	
#110-5 ECR=14 %	50µm	
#104-5 ECR=16 %	<u>50 µт</u>	

Fig. D-13. Microstructure of  $ZrO_2$  and  $\alpha$ -Zr(O) layers in E110 standard as-received tubes after a double-sided oxidation at 1100 C and F/F combination of heating and cooling rates



Fig. D-14. Appearance of E110 standard as-received tubes as a function of the ECR after a double-sided oxidation at 1200 C and F/F combination of heating and cooling rates



Fig. D-15. Microstructure of E110 standard as-received tubes after a double-sided oxidation at 1200°C and F/F combination of heating and cooling rates