

The Fermilab Fixed Target "Quark Flavor" Program B. Cox 2005 FNAL Users Meeting

Results from 2004-05

Number of participants	<u>In analysis</u>	Number of papers* 2004-05
~60	• KTeV	6
~100	• Focus	6
~110	• Selex	4
<u>~ 37</u>	• HyperCP	<u>6</u>
307		22
	<u> Proposed (for CER</u>	<u>2N?)</u>
	Kplus??	* PRL, PRD, Phys. Letters.
Unique, clever	, very different experimer	nts to study s, c quarks

KTeV

6 papers in 2004-05

With NA48 and KTeV an epoch is closing

- Unitarity of the CKM matrix and $V_{\mu s}$ I. a) branching ratios b) form factors
- II. Decays of K_L with real and virtual γ 's a) charge radius of the kaon b) kaon form factors c) CP violation

First observations

III. $K_L \rightarrow ee\gamma$ a) Branching Ratios **b**) Form Factors

6/8/05

Determination of V_{us} by KTeV by measurement of K_{l3}

V_{us} is determined by

KTeV measurements of rates

KTeV measurements of form factors

Components of the V_{us} Calculation

To determine the $BR(K_{13})$ accurately enough, must remeasure six main branching ratios representing 99.93% of the K_L decays by measurement of the ratios

$$\begin{split} & \Gamma_{\mathrm{K}\mu3}/\Gamma_{\mathrm{K}e3} = \Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\pm}\mu^{\mp}\nu)/\Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\pm}e^{\mp}\nu) \\ & \Gamma_{+-0}/\Gamma_{\mathrm{K}e3} = \Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+}\pi^{-}\pi^{0})/\Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\pm}e^{\mp}\nu) \\ & \Gamma_{000}/\Gamma_{\mathrm{K}e3} = \Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0}\pi^{0}\pi^{0})/\Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\pm}e^{\mp}\nu) \\ & \Gamma_{+-}/\Gamma_{\mathrm{K}e3} = \Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+}\pi^{-})/\Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{\pm}e^{\mp}\nu) \\ & \Gamma_{00}/\Gamma_{000} = \Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0}\pi^{0})/\Gamma(\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0}\pi^{0}\pi^{0}) \end{split}$$

Then $\Gamma_{I3} = BR(K_{I3})/\tau_L$ where τ_L is taken from the PDG

Note: made radiative corrections to K_{I3} using KLOR program (developed by T. Andre (U of Chicago)

KTeV Branching Ratio Disagreement with the PDG

KTeV Measurement of Semileptonic Form Factors

V_{us} from KTeV

 $V_{us}|f_{+}(0)| = 0.2165 \pm 0.0012$ In particular, $f_{+}(0)$ $V_{us} = 0.2252 \pm 0.0008 (KTeV exp) \pm 0.0021 (other parameters)$ $1 - |V_{ud}|^2 - |V_{us}|^2 - |V_{ub}|^2 = 0.0018 \pm 0.0019$ **Best Fermilab Measurement of 2004!** η_{+} is changed by the new KTeV branching ratios In addition **2.7/**sigma Geweniger 74 CPLEAR 99 **Still**

Competitive!

2.26

1000 x Iŋ_I

2.24

2.22

2.2

2.28

2.3

2.32

2.34

KTeV Comparison of Real and Virtual Photon Emission in $K_L \rightarrow n\pi\gamma$ and $K_L \rightarrow n\pi\gamma^*$

<u>Real γ</u>	<u>Virtual γ</u>	
$K_L \rightarrow \pi^+ \pi^- \gamma$	$K_L \rightarrow \pi^+ \pi^- e^+ e^-$	First
$K_L \rightarrow \pi^0 \pi^0 \gamma$	$K_{L} \rightarrow \pi^{0} \pi^{0} e^{+}e^{-}$	observations
$K_L \rightarrow \pi^+ \pi^- \pi^0 \gamma$	$K_{I} \rightarrow \pi^{+}\pi^{-}\pi^{0} e^{+}e^{-}$	T T 1
$K_L \rightarrow \pi^0 \pi^0 \pi^0 \gamma$	$K_{I} \rightarrow \pi^{0} \pi^{0} \pi^{0} e^{+}e^{-}$	Upper limits

No result yet

Motivations/observations

- Real photon emission processes do not include the <u>charge radius process</u>
- Both real and virtual <u>direct</u> photon emission processes accompanying neutral pions are greatly suppressed relative to those with charged pions

Comparison* of $K_L \rightarrow \pi^+ \pi^- \gamma$ and $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ **Decay Processes**

Processes contributing to $K_L \rightarrow \pi \pi \gamma$ decay (real photons)

Direct Emission [DE]

Internal Bremsstrahlung [IB] Indirect CPV **CP-even**

M1 — CP Conserving E1 — Indirect CPV CP-odd **CP-even** Even smaller

Processes contributing to $K_L \rightarrow \pi \pi ee$ decay

Two independent variables in $K_I \rightarrow \pi \pi \gamma$

 $(\cos\theta_{\gamma})_{\pi\pi CMS}, (E_{\gamma})_{KCMS}$

 $(\cos\theta_{\rho+})_{\pi\pi CMS}, (\cos\theta_{\pi+})_{ee CMS},$

*Phenomenological model due to L.M Sehgal et al

6/8/05

Kaon charge radius from $K_L \rightarrow \pi^+\pi^-e^+e^-$ Decay

Kaon charge structure can be measured from FF

 $\left\langle r_{K^{0}}^{2}
ight
angle \equivrac{1}{e}\int\limits_{V}r^{2}
ho\left(V
ight)dV$

was measured before in K⁰+e⁻ scattering

FF $g_{CR} \sim \left\langle r_{K^0}^2
ight
angle$

 $e^{-}e^{-} \Rightarrow$ alternative measurement e^{+} can not measure sign

 $\left\langle r_{K^{0}}^{2}
ight
angle$ is related to $m_{s}\!-\!m_{d}$

Amplitudes for Processes Contributing to $K_L \rightarrow \pi^+ \pi^- \gamma (\gamma^*)$

Determination of

 $|g_{MI}|$

 $|g_{E1}/g_{M1}|, a_1/a_2$

from fits of the

 $K_I \rightarrow \pi^+ \pi^- \gamma \ data$

Phenomenological model used for signal MC Only present with Inner Bremsstrahlung: $\mathrm{g}_{\mathrm{BR}} = |\eta_{+-}|\mathrm{e}^{\mathrm{i}(\delta_0(\mathrm{M}_\mathrm{K})+\Phi_+)}$ charged π 's M1 direct emission: $g_{M1} = i|g_{M1}|e^{i\delta_1(M_{\pi\pi})}$ E1 direct emission: $g_{E1} = -i \frac{|g_{E1}|}{|g_{M1}|} g_{M1} e^{i\Phi_{+-}}$ $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ and Only in virtual Charge radius amplitude: $g_{CR} = |g_{CR}|e^{i\delta_0(M_{\pi\pi})}$ y emission

 δ_0 and δ_1 are phases of s- and p-wave $\pi\pi$ scattering. We used recent fits from G.Colangelo et al, Nucl. Phys. B603, 125 (2001)

 $|g_{M1}|$ is energy dependent: $|g_{M1}| = \tilde{g}_{m1} \left| 1 + \frac{a_1/a_2}{(M_0^2 + M_K^2) + 2M_K E_2^*} \right|$

Interference between inner brem and M1 direct photon emission yields a large CPV effect

and, in addition, determination from $K_L \rightarrow \pi^+ \pi^- e^+ e^ |g_{CR}|$ charge radius and a CP violating asymmetry in the ϕ angle

KTeV Comparison of $K_L \rightarrow \pi^+ \pi^- \gamma$ vs. $K_L \rightarrow \pi^+ \pi^- e^+ e^ M_{\pi\pi\gamma\gamma\gamma}$ and $E_{\gamma}(E_{\gamma*})$

 $K_L \rightarrow \pi^+ \pi^- \gamma$

111.4K *candidates* (background 671±41 events)

Results from the KTeV Measurements of $K_L \rightarrow \pi^+\pi^-\gamma \ vs. \ K_L \rightarrow \pi^+\pi^-e^+e^-$

Results from
$$K_L \rightarrow \pi^+\pi^-\gamma$$
Results from $K_L \rightarrow \pi^+\pi^-e^ g_{MI} =$
 $a_1/a_2 =$
 $g_{CR} =$ Not quite ready for prime time
 $a_1/a_2 =$ $g_{MI} = 1.11 \pm 0.12(stat) \pm 0.08(syst)$
 $a_1/a_2 = -0.744 \pm 0.027(stat) \pm 0.032(syst) GeV^2$
 $g_{CR} = 0.163 \pm 0.14(stat) \pm 0.023(syst)$
 $|g_{EI}|/|g_{MI}| < 0.04 (90\% CL)$
 $<|g_{EI}| > <0.03 (90\% CL)$
 $$\langle g_{EI}| > <0.03 (90\% CL)$
 $$\langle g_{MI}| >$ Not quite ready for prime time
 $\langle g_{MI}| > 0.014(stat) \pm 0.011(syst) fm^2$
 $< g_{MI}| > = 0.74 \pm 0.04$ $Radius of the kaon$ 6/8/05B. Cox 2005 Fermilab Users Meeting14$$

KTEV ^{*} ₂ ₂ Charge Radius of the Neutral Kaon from $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ Charge radius FF and $\left\langle r_{K^{0}}^{2} ight angle \,\,\,$ calculation

 $|\mathbf{g}_{CR}| = 0.163 \pm 0.017 (\text{stat}) \pm 0.023 (\text{syst})$

Kaons at the Tevatron

 $K_L \rightarrow \pi^+ \pi^- \gamma(\gamma^*)$ Measurements of a1/a2 and g_{M1} M1 Form Factors

CP Violating Asymmetry in the \$\phi Angle\$

symmetric background n

Second Most Cited Work from KTeV

 $\begin{array}{c} KTeV\ Comparison\\ K_L \rightarrow \pi^+\pi^-\pi^0\gamma \ vs. \ K_L \rightarrow \pi^+\pi^-\pi^0e^+e^-\\ M_{\pi\pi\ \gamma(\gamma^*)}\ and\ E_{\gamma}(E_{\gamma^*}) \end{array}$

For photon emission in states which containing two charged pions plus a neutral pion there is little theory

P. Heilinger and L.M Sehgal have investigated this modes theoretically

They find that the decay $K_L \rightarrow \pi^0 \pi^0 \gamma$ that, due to gauge invariance and bose statistics, that the pion pair must have at least two units of angular momentum, thereby requiring the lowest multipole for direct photon emission (assuming CP invariance) to be E2

 $K_L \rightarrow \pi^0 \pi^0 \gamma$

 $BR(K_L \rightarrow \pi^0 \pi^0 \gamma) < 4.7 \times 10^{-7} (90\% CL)$ (preliminary; statistics only)

 $K_L \rightarrow \pi^0 \pi^0 e^+ e^-$

 $BR(K_I \rightarrow \pi^0 \pi^0 e^+ e^-) < 5.4 \times 10^{-9} (90\% CL)$

19

Photon emission in K_L decays accompanying two neutral pionsis dramatically suppressed relative to that in events with $\pi^+\pi^-$ evenif a charge radius amplitude contributes to the virtual photon decay/05B. Cox 2005 Fermilab Users Meeting

For photon emission in states which containing three neutral pions there is no theory

(no result yet)

Summary of KTeV $K_L \rightarrow n\pi + \gamma(\gamma^*)$

Motivation for the Measurement of the $K_L \rightarrow e^+e^-\gamma$ Branching Ratios and Form Factors

- The decay $K_L \rightarrow \mu^+ \mu^-$ has both short and long range contributions
- The short range contributions can be used to extract $|V_{td}|$
- However, the long range contributions from the $K_L \rightarrow \gamma^* \gamma^*$ vertex must be subtracted. A precise understanding of this vertex is necessary
- The $K_L \rightarrow \gamma^* \gamma^*$ vertex can be studied via measurements of $K_L \rightarrow e^+e^-\gamma$ and $K_L \rightarrow e^+e^-e^+e^-$

No Transition Radiator cut

KTeV

 $K_L \rightarrow e^+ e^- \gamma$

Branching Ratio

Previous $BR(K_L \rightarrow e^+e^-\gamma)$ Results

KTeV

 $K_L \rightarrow e^+e^-\gamma$ Form Factors Very sensitive to shape of $q^2 = M_{ee}$

Form Factor Results

 $\begin{array}{l} \alpha_{K^{*}} &= -0.186 \pm 0.011(stat) \pm 0.009(syst) \\ \alpha_{DIP} &= -1.630 \pm 0.04(stat) \pm 0.03(syst) \end{array}$

 $\alpha_{\kappa_{\star}}$ Measurements to date

6/8/05

Focus

Semileptonic Form Factors

The matrix element including the f_+ and f_- form factors

$$M = G_F V_{cs} \Big[f_+(q^2) (P_D + P_K)_{\sigma} + f_-(q^2) (P_D - P_K) \Big] \overline{u}_{\mu} \gamma^{\sigma} (1 - \gamma_5) u_{\nu}$$

resulting in a differential cross section for the decays

where $W_0(m_D^2 + m_K^2 - m_\mu^2)/(2m_D)$ $F_0 = W_0 - E_K + m_\mu^2/(2m_D)$

The form factors are taken to have the following forms

Pole form: $f_{+}(q^2) = \frac{f_{+}(0)}{1 - q^2/m_{pole}^2}$ **Modified pole form:** $f_{+}(q^2) = \frac{f_{+}}{(1 - q^2/m_{D^*}^2)(1 - \alpha q^2/m_{D^*}^2)}$

Focus

Semileptonic Form Factors

Focus data

Semileptonic Form Factors

Focus

Comparison of $f_+(q^2)$ behavior with Lattice gauge prediction

Comparison of pole mass For $D^0 \rightarrow K^- \mu^+ \upsilon$ with previous exp.

6/8/05

1.4

Q

B. Cox 2005 Fermilab Users Meeting

I.

E831

Focus D⁺_s Lifetime

Focus

Search for Mixing in Charm in $D^0 \rightarrow K^+\pi^- Decay$

- Use the $D^{*+} \rightarrow D^0 \pi^+_s$ decays to tag the produced D^0
- Determine the D^0 flavor by using the Cabibbo favored decay $D^0 \rightarrow K^-\pi^+$
- RS = right sign decay is when the K has the opposite charge from the slow π
 WS = wrong sign decay is when the K has the same charge as the slow π (the D⁰ can also decay into a WS K⁺π⁻ state in a doubly Cabibbo suppressed DSCD)
- 3D fit of R_{WS} = wrong sign decay rate $[(M(D^0), Q(D^*)=M(D^*)-M(D^0)-m_{\pi}]$

$$CP \ conserving \rightarrow R_{WS}(t) = e^{-\Gamma t} (R_D + \sqrt{R_p} y' \Gamma t + \frac{1}{4} (x'^2 + y'^2) \Gamma^2 t^2$$

$$DCSD \qquad Interference \ between \\ DCSD \ and \ mixing$$

$$R_D = ratio \ of \ DCSD \ rate \\ to \ Cabibbo \ favored \ mode$$

$$x' = \frac{\Delta M}{\Gamma} \cos \delta_{\kappa\pi} + \frac{\Delta \Gamma}{2\Gamma} \sin \delta_{\kappa\pi} \\ y' = \frac{\Delta \Gamma}{2\Gamma} \cos \delta_{\kappa\pi} - \frac{\Delta M}{\Gamma} \sin \delta_{\kappa\pi}$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

$$\delta_{K\pi} = \ strong \ phase \\ between \ DSCD \ and \ CF$$

Focus

T-violation in Charm Decays

In the $D^0 \rightarrow K^-K^+\pi\pi^+$ decays a T-odd triple produce of momenta can be formed

 $C_{T} = \left\langle \vec{p}_{K^{+}} \bullet (\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}}) \right\rangle$

Under time reversal T one has $C_T \rightarrow -C_T$

But $C_T \neq -C_T$ does not necessarily establishes T violation.

Time reversal (T) is an antiunitary operator (no eigenstates of T) so the D^0 is not an eigenstate of T and $C_T \neq -C_T$ can be caused by FSI. In contrast to partial width differences, FSI can produce a T-odd correlation with T-invariant dynamics.

This ambiguity can unequivocally be resolved by measuring in $D^0 \rightarrow K^+ K^+ \pi \pi^+$.

$$\overline{C}_{T} = \left\langle \vec{p}_{K^{-}} \bullet (\vec{p}_{\pi^{-}} \times \vec{p}_{\pi^{+}}) \right\rangle$$

Finding $C_T \neq \overline{C}_T$ establishes CP violation

Focus

Preliminary results on T Violation In three charm decay modes

Use $D^{*+} \rightarrow D^0 \pi^+$ to distinguish D^0 from D^0

 $D^{\theta} \rightarrow K^{-}K^{+}\pi^{+}\pi^{-},$ $D^{+}(D_{s}) \rightarrow K^{\theta}K^{+}\pi^{+}\pi^{-}$

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)}$$
$$\bar{A}_T = \frac{\Gamma(-\bar{C}_T > 0) - \Gamma(-\bar{C}_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$$

$$A_{Tviol} = 1/2(A_T - \bar{A}_T)$$

 $\begin{pmatrix} A_{Tviol}(D^{0}) = 0.010 \pm 0.057(stat) \pm 0.037(syst) \\ A_{Tviol}(D^{+}) = 0.023 \pm 0.062(stat) \pm 0.022(syst) \\ A_{Tviol}(D_{s}) = -0.036 \pm 0.067(stat) \pm 0.023(syst) \end{pmatrix}$

No evidence of T violation

Focus

Observation of $D_0 \rightarrow K_S K_S X$ decay channels

<u>First Observation</u> of $D^0 \rightarrow K_S K_S K^{\pm} \pi^{\mp}$

Separation of $D^0 \rightarrow K^0{}_S K^0{}_S K^+\pi^-$ and $D^0 \rightarrow K^0{}_S K^0{}_S K^-\pi^+$ By use of the charge of the soft pion from $D^+ \rightarrow D^0\pi$ decay

Focus Other $D^0 \rightarrow K_s K_s X$ modes

B. Cox 2005 Fermilab Users Meeting

E831

Focus

Search for the Pentaquark

Evidence for Penta-Quark States

Focus

Selex <u>4 papers in 2004-05</u>

I. Observation of the Ξ^+_{cc} Double Charm Baryon

II. Observation of $D_s(2632)$

III. Ω_c lifetime

An original experiment using an original Σ and π and proton beam

Selex

Observation of the Doubly Charm Ξ^+_{cc} *baryon*

Selex

Observation of the Narrow Charm-Strange Meson $D_{sJ}^{+}(2632)$

B. Cox 2005 Fermilab Users Meeting

Selex

Using 83±19 events from

 $\begin{aligned} \Omega^{0}{}_{c} &\to \Omega^{c} \, \pi^{+} \pi^{+} \\ \Omega^{0}{}_{c} &\to \Omega^{c} \, \pi^{+} \end{aligned}$

 $\tau(\Omega^{0}_{c}) = 69.3 \pm 14.4(stat) \pm 8.69 syst.) fs$

6 papers in 2004-05

I. Search for novel CP violation in Ξ and Λ decay
II. Evidence for the decay Σ⁻→pµ⁺µ⁻
III. Search for the pentaquark
IV. First Observation of parity violation in Ω →ΛK⁻ decays
V. Measurement of the parameter α for the Ω →ΛK⁻ decay

An original, unique and very high rate hyperon experiment

A very high rate experiment

CP violation Search in charged Ξ Decay

Most sensitive search for CP violation in hyperon decays by a factor of 20

Evidence for the Decay $\Sigma^+ \rightarrow p\mu^+\mu^-$

• Three events represent the rarest decay of a baryon ever observed:

$$\frac{B(\Sigma^+ \to p \mu^+ \mu^-)}{B(\Sigma^+ \to \text{all})} = [8.6^{+6.6}_{-5.4}(\text{stat}) \pm 5.5(\text{syst})] \times 10^{-8}$$

 Narrow dimuon mass, m = 214.3±0.5 MeV, suggests decay procedes via hitherto unknown particle: could it be the pseudoscalar sgoldstino of Gorbunov and Rubakov?

$$\Sigma^+
ightarrow p P^0
ightarrow p \mu^+ \mu^-$$

• PRL 94, 021801 (2005)

This needs to be confirmed!

Observation of rarest baryon decay to date

Search for the $\theta^+(1.54)$ pentaquark

Very high statistics pentaquark search and one of the early null results

B. Cox 2005 Fermilab Users Meeting

Kplus

The future???

Will **NOT** be done at Fermilab

Outsourced to Europe?? CERN (NA48)

Will the US be allowed to participate??

 $BR(K^+ \rightarrow \pi^+ \nu \nu) \sim 10^{-10}$

Unseparated beam

"The Physics is Compelling..." Fermilab PAC April 2005

- B physics has been probed at the scale of λ^2 and λ^3 and there is no clear evidence today for new physics.
- $K \rightarrow \pi v v$ decays are highly suppressed (λ^5) and represent an unexplored window for new physics that could be relatively large in s \rightarrow d transitions.
- New physics at the LHC will unfold like the top-quark discovery...evidence for new states but little information about the new flavor structure.

Kplus

Pro's/Con's for FNAL

Pro: # of weeks per yr of neutrino Running allows longer running time for parallel fixed target running

Con: neutrino running permits no time for parallel fixed target running

Pro: 230 Mhz unseparated beam rate And longer running time allows much lower rate on beam ID/tracking

Con: 35-50 GeV/c beam has 4% *K*⁺

Pro's/Con's for CERN

Con: fewer # of weeks per yr of running

Pro: support of CERN and the European community

Con: 800 Mhz unseparated beam rate and shorter running time results in much higher rate on beam ID/tracking

Pro: 75 GeV/c beam has 6% K⁺

KTeV

Focus

Selex

E791

CPT

KAMI

CKM

BTeV

Kplus

Kopio

CDF/D0/Babar

HyperCP

1996

Overview of the evolution (intelligent design?) of the "domestic" flavor program

2005

In preparation – Running – In analysis –

>2010

No domestic (US) heavy flavor activity except for continuing analysis of CDF, D0, and Babar

The LHC collider program except for LHCb are not well suited to study s, c, or b decays

Only LHCb, BES-III, JPARC $K_L \rightarrow \pi^0 \nu \nu$ (and perhaps NA48 $K^+ \rightarrow \pi^+ \nu \nu$??) left standing

▶???

Summary

- The Fermilab (and US) fixed target flavor program has had a long and fruitful history with many outstanding discoveries such as the b quark.
- The latest iteration of that program has <u>continued that tradition</u> with the CPV and other kaon decay measurements of KTeV, the charm discoveries and measurements of Focus and E791, the intriguing states observed for the first time by HyperCP and Selex, work that will not be confirmed.
- An important observation is that all of these experiments are <u>still vigorously</u> <u>analyzing data</u> and will be for some number of years as evidenced by the 22 PRL's, PRD's and Phys Letters produced this year alone
- The future participation of US physicists in strange, charm and beauty flavor physics seems <u>problematic</u> with the demise of Kami, CKM, and BTeV and the outsourcing of Kplus to CERN, the truncated running of Babar, uncertainty of KOPIO's future and the limits on US participation in LHCb

If full participation in off shore experiments. is supported, then there can be a future for US physicists in strange, charm and beauty physics!