Highlights From Flavor Physics at

Alessandro Cerri

Contents

- Introduction
- Samples and modes
- Lifetimes & BR
- CP violation & Mixing
- Conclusions

Caveat Emptor

- The B group at CDF is very active!
- At the moment we have:
 - 48 "public" B physics results
 - 18 since I CHEP '04
 - 8 published (lots of publications in the pipeline!)
- Too vast to be covered in 30 minutes!
- I made my choices, we can chat offline about your favorite analysis!

Other little caveat:

- HEP is a 'large' community but CDF has been around for years... I will not cover explicitly detector performances and features!
- Minimal description of reference information

The basics!

•CDF II has collected so far ~0.8 fb⁻¹ out of the delivered Tevatron luminosity

- •Out of these there are 600 pb⁻¹ available for B physics (tracking detectors restrictions)
- •Most analyses shown today use between 250 pb⁻¹ and 350 pb⁻¹ of luminosity!

The Tevatron is competitive in HF

- B factories program extensive and very successful BUT limited to B_u,B_d
- Tevatron experiments can produce all b species: $B_u, B_d, B_s, B_c, B^{**}, \Lambda_b, \Xi_b$

•b production in pp collisions is so large (\sim 300 Hz @ 10³² cm⁻² Hz) that we could not even cope with writing it to tape!

Samples

•Good lifetime (~100fs) and mass resolutions (~15 MeV)

- •Mostly HF-dominated background \rightarrow well modeled
- •LARGE:
 - •J/ ψ (dimuon trigger):
 - •IDX (4 GeV lepton+displaced track)
 - •Fully hadronic (two displaced tracks)
- ~ 1,000,000 J/ψ
- ~ 100,000 ID
 - ~ 10,000 B

Organizaton of this talk

• Time frame:

- New results since last users meeting (few exceptions...)
- Focus on results which are complementary to/competitive with B factories
- Emphasize the development of tools and techniques at each step

Complementarity to B factories

B[±] MASS

Branching Rations, continued: Baryons

The field to explore is so extensive that we have been 'stumbling' upon unobserved signals all over the place, in the 'easiest' cases:

$$\frac{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \mu^- \overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \pi^-)} = 20.0 \pm 3.0 \; (stat) \pm 1.2 \; (syst) {+0.7 \atop -2.1} (BR) \pm 0.5 \; (UBR)$$

http://www-cdf.fnal.gov/physics/new/bottom/050407.blessed-lbbr/

First observation of several Λ_b semileptonic decays that can 'mimic' the signal $\Lambda_b \to \Lambda_c^+ mn$

Estimate the BR based on the observation

Λ_b Updated knowledge

Colors:

Mass m = 5619.9 ± 1.7 MeV/c ² Mean life $\tau = (1.229 \pm 0.080) \times 10^{-12}$ s		- PDG2004
$c\tau = 368 \ \mu \text{m}$ $\Lambda^0_L \text{ DECAY MODES}$	Fraction (Γ_i/Γ)	beyond current PDG2004
$\frac{J}{J/\psi(1S)\Lambda}$ $\Lambda^{+}\pi^{-}$	$(4.7 \pm 2.8) \times 10^{-4}$ $(4.1 \pm 2.0) \times 10^{-3}$	L _b mass
$\Lambda_{c}^{c} a_{1}(1260)^{-}$	(4.1 ± 2.0) × 10 seen (5.5 ± 1.8) %	Delphi 5668. ± 16. ± 8.
pK + pπ $\Lambda_c^+ \pi^- \pi^- \pi^+$	< 2.2 x 10 ⁻⁵ seen	Aleph 5614. \pm 21. \pm 4. CDF 5621.0 \pm 4.0 \pm 3.0
$Λ_{\gamma}^{\gamma}$ $Λ_{c}(2593) + /υ$	< 1.3 × 10 ⁻³ seen	CDF II (this) • 5619.7 ± 1.2 ± 1.2
$\Lambda_{c}(2625) + / \upsilon$ $\Sigma_{c}^{++} \pi^{-} / \upsilon$ $\Sigma_{c}^{-0} \pi^{+} / \upsilon$	seen seen seen	
		55/5 5600 5625 5650 5675

BR & Rare decays

- •Exploit the large B production rate
- •Measure relative BR (e.g. $\mu\mu$ to J/ ψK) to factor out absolute ϵ and luminosity measurements
- •SM: BR(B_s→µµ) <3.8E-9
- Sensitive to new physics!

Result: World's best limits BR($B_s \to \mu\mu$) < 2.0x10⁻⁷ @95% CL BR($B_d \to \mu\mu$) < 4.9x10⁻⁸ @95% CL

Publ: PRL 93, 032001 2004 Update: Hep-ex/0502044

$$BR(D^0 \to mm) \le 2.4 \times 10^{-6} at 90\% CL$$

PRD 68, 091101 2003

Lifetimes

 Lifetimes are an important experimental reference:

 Overlap with B factories → understanding of detector/trigger/analysis biases
 Further test on species not produced at B factories

•Systematic shift in HQE predictions?

•We can test this: samples are at hand!

Lifetimes: fully reconstructed hadronic modes

- Testbed for our ability to understand trigger biases
- •Large, clean samples
- Prerequisite for mixing fits!

 $\tau(B^+) = 1.661 \pm 0.027 \pm 0.013$ ps $\tau(B^0) = 1.511 \pm 0.023 \pm 0.013$ ps

 $\tau(B_s) = 1.598 \pm 0.097 \pm 0.017 \text{ ps}$

Systematics (µm)

1	Effect	Variation (μm)	Variation (μm)
Λ		B^0	B_s
	MC input $c\tau$	negligible	negligible
cenario:	p_T reweight	1.9	1.9
+LOWPT	Scale Factor	negligible	negligible
ĩ –	Bkg ct description	1.1	1.1
-	Bkg fraction	2.0	2.0
	I.P. correlation	1.0	1.0
0.3 0.35	Eff. parameterization	1.5	1.5
	L_{xy} significance	negligible	2
1 ·····	$\Delta \Gamma_s$	-	1.0
A	Alignm. + others	2.4	2.4
0.3 0.35	Total	4.2	4.7

http://www-cdf.fnal.gov/physics/new/bottom/050303.blessed-bhadlife/

Lifetimes: semileptonic

http://www-cdf.fnal.gov/physics/new/bottom/050224.blessed-bsemi-life/

- •Largest statistics B sample
- More complicated background
- •Full statistics sample still under study. Statistical uncertainty expected:

$$B^+$$
± 0.025 ps B^0_d ± 0.035 ps B^0_s ± 0.04 ps L_b ± 0.05 ps

@~400 pb⁻¹

- •Our understanding of sample composition tested with 'inclusive lepton' sample: $\tau(B^+) = 1.653 \pm 0.029 \pm 0.032$ p
- Working on systematics!

$$\begin{split} \tau(B^{\scriptscriptstyle +}) &= 1.653 {\pm} 0.029 {\pm} 0.032 \text{ ps}, \\ \tau(B^{\scriptscriptstyle 0}) &= 1.473 {\pm} 0.036 {\pm} 0.054 \text{ ps} \\ \tau(B^{\scriptscriptstyle +})/\tau(B^{\scriptscriptstyle 0}) &= 1.123 {\pm} 0.040 {\pm} 0.040 \end{split}$$

Constraining HQET tools for V_{cb} CDF can probe HQET and constrain it!

Moments: kinematic parameters in $B \rightarrow IvX_c$ decays

CP Violation & Mixing

CP: $B \rightarrow hh modes$

- •Difficult competition with B factories for t-dependent tagged measurements
- -Interesting B physics measurement of BR and γ
- •Signals overlap within mass resolution
- •Exploit kinematic handles and dE/dX to disentangle components in a combined fit:

•Μ_{ππ}

•the two track's momentum imbalance

•dE/dX

With perfect particle ID, separation would be 'only' ~60% better

CP: hh modes

•Good agreement with B factories

•First measurement ever of $B_s \rightarrow KK$

 $\frac{BR(B_d \to \pi^{\pm} \pi^{\mp})}{BR(B_d \to K^{\pm} \pi^{\mp})} = 0.24 \pm 0.06 \ (stat.) \pm 0.05 \ (syst.)$

$$A_{\mathsf{CP}} = \frac{N(\overline{B}_d^0 \to K^- \pi^+) - N(B_d^0 \to K^+ \pi^-)}{N(\overline{B}_d^0 \to K^- \pi^+) + N(B_d^0 \to K^+ \pi^-)} = -0.04 \pm 0.08 \; (stat.) \pm 0.01 \; (syst.)$$

$$\frac{f_d \cdot BR(B_d \to \pi^{\pm}\pi^{\mp})}{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})} = 0.48 \pm 0.12 \ (stat.) \pm 0.07 \ (syst.)$$
$$\frac{f_s \cdot BR(B_s \to K^{\pm}K^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} = 0.50 \pm 0.08 \ (stat.) \pm 0.07 \ (syst.)$$

$$\begin{aligned} &\frac{BR(B_s \to \pi^{\pm}\pi^{\mp})}{BR(B_s \to K^{\pm}K^{\mp})} < 0.10 \ @ \ 90\% \ C.L. \\ &\frac{BR(B_d \to K^{\pm}K^{\mp})}{BR(B_d \to K^{\pm}\pi^{\mp})} < 0.17 \ @ \ 90\% \ C.L. \\ &\frac{f_s \cdot BR(B_s \to K^{\pm}\pi^{\mp})}{f_d \cdot BR(B_d \to K^{\pm}\pi^{\mp})} < 0.11 \ @ \ 90\% \ C.L. \end{aligned}$$

http://www-cdf.fnal.gov/physics/new/bottom/040722.blessed-bhh/

$$BR(\Lambda_b \to hh) < 22 \cdot 10^{-6} \ (90\% C.L.)$$

http://www-cdf.fnal.gov/physics/new/bottom/040624.blessed_Lb_hh_limit/

$CP: S\overline{S}S$

- •b→sss transitions are 'misbehaving' at B factories
- •...CDF II can look at them too. We started from ϕK :

B_s Mixing 101

 \rightarrow

Amplitude Scan

• $\Delta m_s >> \Delta m_d$

Different oscillation regime

Perform a 'fourier **B** lifetime transform' rather than fit for frequency 1.5 Mixing Asymmetry $\Delta m_d = 0.5 \text{ ps}^{-1}$ $\Delta m_s = 14 \text{ ps}^{-1}$ Α 0.5 -0.5 10 20 30 10 12 Proper decay time t $\Delta m_s [ps^{-1}]$ $(\Delta m_s \boldsymbol{s}_t)^2$ SeD^2 Significance = $\frac{A}{s(A)}$ 2

B_s Mixing: tagging performance

	εD² Hadronic (%)	εD² Semileptonic (%)
Muon	$0.46 \pm 0.11 \pm 0.03$	$0.577 {\pm} 0.047 {\pm} 0.034$
Electron	$0.18 \pm 0.06 \pm 0.02$	$0.293{\pm}0.033{\pm}0.017$
JQ/Vertex	$0.14 \pm 0.07 \pm 0.01$	$0.263{\pm}0.035{\pm}0.021$
JQ/Prob.	$0.11 \pm 0.06 \pm 0.01$	$0.150{\pm}0.026{\pm}0.015$
JQ/High p _T	$0.24 \pm 0.09 \pm 0.01$	$0.157{\pm}0.027{\pm}0.015$
Total	1.12 ± 0.18	1.429 ± 0.093

- convention: first uncertainty is statistical, second is systematic
- use exclusive combination of tags
- results for hadronic and semileptonic comparable within errors
- use calibration derived from appropriate sample (ie hadronic for $D_s\pi$)

B_s Mixing: semileptonic

B_s Mixing: hadronic

Low statistics, but promising!

Combined Bs mixing limit

B_s Mixing Perspectives

Analysis is pretty much defined! We know where we can improve:

•Statistics

- •Data (brute force)
- •ɛD² :
 - •Additional taggers (SSK, OSK...)
 - Improve existing algorithms

•Proper time resolution

•What happens for extremely large values of Δm_s ? •We have a backup plan...

Probing at large Δm_s : $\Delta \Gamma / \Gamma$

- $B_s \rightarrow J/\psi \phi$
 - $B \rightarrow VV$, mixture of CP even/odd separate by angular analysis
 - Combine two-lifetime fit + angular $\rightarrow \Delta\Gamma_{\rm s} = \Gamma_{\rm H} \Gamma_{\rm L}$
 - SM $\Delta\Gamma_s/\Gamma_s$ =0.12±0.06 (Dunietz, Fleischer & Nierste)
- Indirect Measurement of Δm_s

$$- \left. \frac{\Delta \Gamma_s}{\Delta m_s} \right|_{SM} = \frac{2}{3p} \frac{m_t^2}{m_b^2} \frac{h\left(\frac{m_t^2}{M_W^2}\right)}{\left(1 - \frac{8}{3}\frac{m_c^2}{m_b^2}\right)} = (3.7^{+0.8}_{-1.5}) \times 10^{-3}$$
$$\frac{\Delta \Gamma_s}{R} = 0.65^{+0.25}_{-0.33} \pm 0.01$$

PRL 94, 101803 2005

Conclusions

- 48 public results so far: lots of successful h.f. physics!
 - Well established samples and techniques
 - Competitive with and complementary to B factories
- Infrastructure, tools and first measurements of B_s mixing are ready!
- Accumulating statistics is now crucial!
- ...still much more to come!

Backup Slides

Results Omitted

- Taggers calibration
 - Semileptonic (050224)
 - Hadronic (050224)
- B mixing with SST (040812)
- Mixing with combined taggers (040812)
- NN based JQT on semileptonics (050303)
- Improved JQT in semileptonics (040812)
- Likelihood based SET (040812)
- Likelihood based SµT (040722)
- Relative BR and CP asym. For $D^0 \rightarrow KK, K\pi, \pi\pi$ (031211)
- Λ_b lifetime (030710)
- X(3872) (040624, 040920, 050324)
- $\Delta M(D_s D^+)$ (030320)
- D₁ and D₂ masses (040805)
- B hadrons masses (040428)
- Pentaquark searches (040819, 040428, 040219, 040428)
- J/ψ inclusive cross section (030904)
- Direct charm cross section (030403)
- (Wrong sign) $D^0 \rightarrow K\pi PR$ (040930)
- QCD:
 - Inclusive B jet production (Apr '05)
 - Bbbar dijet production (Apr '05)

Tracking: Lepton ID: COT (central wire Muons: CMU, CMX, CMP chamber) Electrons: CEM (EM calorimeter) **ISL** (Intermediate **CPR** (pre-shower detector) Silicon Layers) SVX II (silicon vertex detector) Layer 00 (Innermost layer of the Si detector, glued to the beam pipe) PID: dE/dX in COT

TOF (Time of flight detector)

Exciting results in the B sector

 $B_{d.s} \rightarrow hh$ $B_{u,d,s} \rightarrow ID^{*/+/0}X$ $B_{u,d} \rightarrow ID^{**}X$ $B_s \rightarrow D_s \pi$ $B_{s} \rightarrow \phi K$ $B_s \rightarrow \phi \phi$ $B_s \rightarrow \psi(2s)\phi$ $B_c \rightarrow J/\psi \pi$ $B_{c} \rightarrow J/\psi X$

•Despite the great success of B factories, there is room for interesting B physics at an hadron machine!

- Lifetimes
- Branching ratios
- •Rare decays
- •CP violation
- •Probing of HQET
- •Mixing!

We also have Baryons!

- $\Lambda_b \rightarrow I \Lambda_c X$
- $\Lambda_b \rightarrow J/\psi \Lambda$
- $\Lambda_b \rightarrow \Lambda_c \pi$
- $\Lambda_b \rightarrow ph$

- Nice probe of HQET
- Inaccessible to b factories
 - •Lifetimes
 - •BR
 - •CP violation?

Ab DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	р (MeV/c)
$J/\psi(1S)\Lambda$	$(4.7\pm2.8) imes10^{-4}$		1744
$\Lambda_c^+ \pi^-$	seen		2345
$\Lambda_{c}^{+}a_{1}(1260)^{-}$	seen		2156
$\Lambda_{c}^{+} \ell^{-} \overline{\nu}_{\ell}$ anything	$[t] (9.2\pm2.1)\%$		-
$p\pi^{-}$	< 5.0 × 1	.0 ⁻⁵ 90%	2732
pK ⁻	$< 5.0 \times 1$.0 ⁻⁵ 90%	2711
$\Lambda\gamma$	< 1.3 × 1	.0 ⁻³ 90%	2701

- Large statistics: charm factory!
- $D^0 \rightarrow K\pi/\pi\pi/KK$
- $D^0 \rightarrow \mu \mu$
- D⁺→Kππ
- $D^* \rightarrow D^0 \pi$
- J/ψ→μμ
- $D^{**} \rightarrow D\pi$

•Many interesting questions:

Mostly prompt production

- •Production (σ , correlations, mechanisms)
- Branching ratios
- •CP violation
- •Masses and widths (excited states)

More 'exotic' stuff

Several nice results:

- Baryons
- X(3872)
 - Mass
 - Lifetime
- Pentaquarks

... I don't have to cover them, but you can look at:

http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

PRL 91, 241804 (2003)

Complementarity: B_c

http://www-cdf.fnal.gov/physics/new/bottom/050330.blessed-bc-jpsimu/

- •Mode that gave the first evidence of the B_c (CDF Run I)
- •Large yield, no clean resonance though!

 $\frac{\boldsymbol{s}_{B_c}(P_t > 6GeV) \cdot BR(B_c \to J/ymn)}{\boldsymbol{s}_{B^{\pm}}(P_t > 6GeV) \cdot BR(B^{\pm} \to J/yK^{\pm})} = 0.245 \pm 0.045^{+0.080}_{-0.032}$

•First signal of fully reconstructed B_c

Direct mass measurement!

 $m = 6.287 \pm 0.0048 \pm 0.0011 \frac{GeV}{c^2}$

Hep-ex/0505076

...incidentals!

Lifetimes

- Critical testbed of HQE
 - HQE vastly used for phenomenology predictions
 - b-hadrons lifetime ratios accurately predicted
- Important experimental reference
 - Overlap with B factories → understanding of detector/trigger/analysis biases
 - Further test on species not produced at B factories

Lifetimes: J/y modes http://www-cdf.fnal.gov/physics/new/bottom/040428.blessed-lft2/

This was the starting point:

- Clean unbiased sample
 - Precision measurement
 - •Reference for biased (e.g. displaced track) triggers
 - •Crucial test of our understanding of:
 - Detector
 - Analysis technique
 - •Sample composition

Systematic effect	Uncertainty on $c\tau_{B^+}\mu m$	Uncertainty on $c\tau_{B^0}\mu m$	Uncertainty on $c\tau_{B_s}\mu m$
SVX Alignment	± 1.0	\leftarrow same	\leftarrow same
Fit Model	± 1.7	\leftarrow same	$\leftarrow \text{same}$
Selection	negligible	\leftarrow same	\leftarrow same
Procedure Bias	± 1.3	\leftarrow same	\leftarrow same
Cross-feed		$+0.2\mu m$	$-1.7\mu m$
Total	± 2.4	± 2.4	$^{+2.4}_{-2.9}$

HQET: baryon lifetimes and B moments B lifetimes ↔ Vcb

Dominant uncertainty comes from HQET extraction!

CDF can probe HQET and constrain it!

http://www-cdf.fnal.gov/physics/new/bottom/030710.blessed-lambdab-lifetime/

B→hh kinematics

•
$$\bar{B_s} \to K^+ \pi^-$$

•
$$B_s \to K^- \pi^+$$

•
$$\bar{B_d} \to K^- \pi^+$$

•
$$B_d \to K^+ \pi^-$$

•
$$B_s \to K^+ K^-$$

•
$$B_d \to \pi^+ \pi^-$$

Extracting γ from B \rightarrow hh Fleischer Hep-ph/9903456 •Measure $A_{CP}(B_s \rightarrow KK)$, $A_{CP}(B_d \rightarrow \pi\pi)$: 4 parameters: $A_{CP}^{B \to KK}(t) = A_{CPdir}^{B \to KK} \cos(\Delta m_s t) + A_{CPmir}^{B \to KK} \sin(\Delta m_s t)$ $A_{CP}^{B \to pp}(t) = A_{CPdir}^{B \to pp} \cos(\Delta m_d t) + A_{CPmir}^{B \to pp} \sin(\Delta m_d t)$ •With each asimmetry: $A_{CP\,dir} = \pm \frac{2d\sin q \sin g}{1 - 2d\cos q \cos g + d^2}$ $A_{CPmix} = \pm \frac{\sin 2(\mathbf{f} + \mathbf{g}) - 2d\cos \mathbf{q}\sin(2\mathbf{f} + \mathbf{g}) + d^{2}\sin 2\mathbf{f}}{1 - 2d\cos \mathbf{q}\cos \mathbf{g} + d^{2}}$

Where d and θ are different for Bs and Bd, but related under U-spin by: $\Theta_{B_{a}} = \Theta_{B_{d}}$

$$d_{B_s} = d_{B_d} \frac{1 - \boldsymbol{l}^2}{\boldsymbol{l}^2}$$

Extracting γ from B \rightarrow hh Fleischer Hep-ph/9903456

$$A_{CP\,dir} = \pm \frac{2d\sin q \sin g}{1 - 2d\cos q \cos g + d^2} \qquad \begin{cases} \Theta_{B_s} = \Theta_{B_d} \\ d_{B_s} = d_{B_d} \end{cases}$$
$$A_{CP\,mix} = \pm \frac{\sin 2(f+g) - 2d\cos q \sin(2f+g) + d^2 \sin 2f}{1 - 2d\cos q \cos g + d^2} \qquad \begin{cases} \Theta_{B_s} = \Theta_{B_d} \\ d_{B_s} = d_{B_d} \end{cases}$$

Assuming also $\phi_d = \beta$, $\phi_s = 0$ we can constrain to the B $\rightarrow \psi K_s$ value and constrain simultaneously $(\beta, \gamma, d, \theta)$

 $=d_{B_d}\frac{1-l^2}{l^2}$

•SU(3) breaking of the order of 10-15% will lead to systematic effects on this determination of the order of 3°

This method requires measuring $A_{CP}(t)$ for $B_s \rightarrow KK...$ Rather unlikely at CDF

Extracting γ from B \rightarrow hh

London & Matias Hep-ph/0404009

$$A_{CP}^{B \to pp}(t) = A_{CPdir}^{B \to pp} \cos(\Delta m_d t) + A_{CPmix}^{B \to pp} \sin(\Delta m_d t)$$

$$A_{CPdir} = \pm \frac{2d \sin q \sin g}{1 - 2d \cos q \cos g + d^2}$$

$$A_{CPmix} = \pm \frac{\sin 2(f + g) - 2d \cos q \sin(2f + g) + d^2 \sin 2f}{1 - 2d \cos q \cos g + d^2}$$

$$R_d^s = \frac{\Gamma(B_s \to KK)}{\Gamma(B_d \to pp)} = e^{-1} \left| \frac{C'}{C} \right|^2 \frac{e^2 + 2ed_s \cos q \sin g + d^2}{1 - 2d \cos q \cos g + d^2}$$

•Assuming also SU(3) ($d_d = d_s$, $\theta_d = \theta_s$) we have 3 unknowns (d_d , θ_d , γ) and 3 measurements (including the value of sin2 β) \Rightarrow we can determine γ

•SU(3) breaking effects are parameterized as well

СР: фК

 $\frac{BR(B^{\pm} \to \phi K^{\pm})}{BR(B^{\pm} \to J/\psi K^{\pm})} = 0.0076 \pm 0.0013 \,(stat.) \pm 0.0006 \,(syst.)$ $A_{CP}(B^{\pm} \to \phi K^{\pm}) = -0.07 \pm 0.17 \,(stat.) \,{}^{+0.03}_{-0.02} \,(syst.) \quad \text{Hep-ex/0502044}$

b→sss

B_s Mixing 101

I t's an Asymmetry measurement!!

- Reconstruct signal
 - Hadronic:
 - good momentum resolution
 - low statistics
 - Semileptonic:
 - worse momentum resolution
 - higher statistics
- Determine "time" of Decay
 - measure decay length
 - apply boost
- Sort the mixed from unmixed via b charge at production and decay

- $S'e = N_{mix} + N_{unmix}$

- $D = "Dilution" = 1-2P_{mistag}$
- $S \rightarrow S \epsilon D^2$
- Fix ∆m and fit A
- Scan vs ∆m

$$A_{mix}(t) = \frac{N_{mix}(t) - N_{unmix}(t)}{N_{mix}(t) + N_{unmix}(t)} \propto \cos \Delta m t$$

B_s Mixing: proper time

•Samples (N, S/B)

Proper decay length resolution

$$\mathbf{S}_{ct} = \frac{m_B L_{xy}}{P_t (lD_s)} \cdot \left\langle \frac{P_t (lD_s)}{P_t (B_s)} \right\rangle_{mc}$$

$$\mathbf{S}_{ct} = \frac{m_B}{P_t} \mathbf{S}_{L_{xy}} \oplus \left[ct \left(\frac{\mathbf{S}_{p_t}}{P_t} \right) \otimes \mathbf{S}_K \right]$$

B_s Mixing: systematics

Semileptonic sample

Hadronic sample

B_s Mixing: perspectives

Transversity angles

- $\bullet J/\psi$ rest frame
- •(x,y) from KK
- •X axis along ϕ momentum
- (Θ,φ) polar and azimuthal angles
 of μ⁺
- $\begin{array}{l} \bullet\Psi \text{ helicity angle} \\ \text{of } \phi \end{array}$

CP violation in charm

 $\begin{array}{rcl} A(D^{\circ} \to K^{+}K^{-}) &=& 2.0 \pm 1.2(stat) \pm 0.6(syst) \ \% \\ A(D^{\circ} \to \pi^{+}\pi^{-}) &=& 1.0 \pm 1.3(stat) \pm 0.6(syst) \ \% \end{array}$

http://www-cdf.fnal.gov/physics/new/bottom/040428.blessed-bphik_acp/

PDG 2004 averages: A(D⁰ \rightarrow KK): 0.5±1.6 % A(D⁰ \rightarrow $\pi\pi$): 2.1±2.6 % Best single exp. (CLEO02): A(D⁰ \rightarrow KK): 0.0±2.2±0.8 % A(D⁰ \rightarrow \pi\pi): 21.9±3.2±0.8 % For the future: •I ncrease statistics •Mixing: $\frac{\Gamma(D^0 \to K^+ p^-)}{\Gamma(D^0 \to K^- p^+)}$

•Large statistics gives access to detailed features!

•We will soon improve the knowledge of BR(D⁺ $\rightarrow \pi^{+}\pi^{-}\pi^{-}$)

•Theory predicts that direct CP asymmetry could be O(10⁻³) [hep-ex/9612005]

•E792: -0.017±0.042 [hepex/9612005]

