Measurement of $\Delta\Gamma_{\rm s}$ at CDFI

Along with ΔM , $\Delta \Gamma$ and ϕ are the other two parameters describing mixing in a system of the neutral *B* mesons. $\Delta\Gamma \propto \Delta M$, hence large ΔM in the $B_s - \overline{B}_s$ system predicted by the Standard Model means large $\Delta\Gamma_s$. While larger ΔM is more difficult to determine experimentally, the larger $\Delta\Gamma$ is the easier it is to measure. This presentation reviews a measurement of $\Delta\Gamma_s$ accomplished by the CDF Collaboration using 260 pb⁻¹ of data.

Users' Meeting • June 09, 2005

1. Motivation

$$egin{bmatrix} d' \ s' \ b' \end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix} \ V^\dagger = V^{-1} \ V^st_{ub}V_{ud} + V^st_{cb}V_{cd} + V^st_{tb}V_{td} = 0 \end{cases}$$

Over-constrain UT:

- measure $lpha,eta,\gamma,R_u\,\&\,R_t$
- in particular, extract

B flavor oscillations

 \Rightarrow MIXING with eff. $H = \begin{bmatrix} M & M_{12} \\ M_{12}^* & M \end{bmatrix} - \frac{i}{2} \begin{bmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{bmatrix}$

→ Diagonalize and get two eigenstates: $|B^{L,H}\rangle = p|B^{0}\rangle \mp q|\overline{B}^{0}\rangle, \quad |p|^{2} + |q|^{2} = 1$ $\lambda_{L,H} = (M - \frac{i}{2}\Gamma) \mp \frac{q}{p}(M_{12} - \frac{i}{2}\Gamma_{12}), \quad \frac{q}{p} = \sqrt{\frac{M_{12}^{*} - \frac{i}{2}\Gamma_{12}^{*}}{M_{12} - \frac{i}{2}\Gamma_{12}}} = \begin{cases} e^{2i\beta}, B_{d} \\ 1, B_{s} \end{cases}$ $(e^{2i\beta_{s}}, \beta_{s} \approx 0.03)$

B flavor oscillations 2

$$M_{L,H} = Re(\lambda_{L,H}) \Rightarrow \begin{cases} \Delta M = M_H - M_L = 2|M_{12}| \\ \Delta \Gamma = \Gamma_L - \Gamma_H = 2|\Gamma_{12}|\cos\phi \\ \phi = \arg(-M_{12}/\Gamma_{12}) - \text{small} \end{cases}$$

$$M_{12} = -\frac{\eta_{Bq}}{3\pi} \frac{m_W^2}{m_b^2} F S_0(m_t^2/m_W^2)(V_{tq}^*V_{tb})^2$$

$$\Gamma_{12} = \frac{\eta'_{Bq}}{2} F \left[(V_{tq}^*V_{tb})^2 + V_{tq}^*V_{tb}V_{cq}^*V_{cb}\mathcal{O}\left(\frac{m_c}{m_b^2}\right) + (V_{cq}^*V_{cb})^2 \mathcal{O}\left(\frac{m_d}{m_b^4}\right) \right]$$
where $F = \frac{G_F^2 m_b^2 M_{Bq} f_{Bq}^2 B_{Bq}}{A_B \text{ Buras, W Slominski, and H Steger, Nucl. Phys. B245 369-398}$
 $\Rightarrow \Delta M, \Delta \Gamma \Rightarrow M_{12}, \Gamma_{12} \Rightarrow V_{td}, V_{ts} \qquad \boxed{\frac{\Delta \Gamma_s}{\Delta M_s} = (3.7 \frac{+0.8}{-1.5}) \times 10^{-3}}$
 $\Rightarrow \text{ Measure } \Delta M_{d,s} \text{ and } \Delta \Gamma_{d,s}$

$$\boxed{\frac{\Delta M}{B_d - \overline{B}_d}} \qquad 0.510 \pm 0.005 \text{ ps}^{-1} \qquad -0.007 \pm 0.038}$$

$$B_s - \overline{B}_s > 14.4 \text{ ps}^{-1} @95\% \text{ C.L.} \qquad \text{Today}}$$

K. Anikeev, FNAL

Today

With the state of the art technologies $\Delta M_{\mathcal{S}}$ measurement may still be hostage to the (un)kindness of Nature

Measuring large $\Delta\Gamma_{\rm S}$... is easy!

$$rac{\Delta\Gamma_s}{\Gamma_s}\!=\!0.12\!\pm\!0.06$$

•
$$\sigma_t = au_{B_s}/10$$
 is all right

no tagging required

- effective signal size is much better than $S/100\,$

If you run a risk, it makes sense to have insurance — measure $\Delta\Gamma_s$

Straightforward approach facilitated by: $\frac{q}{p} = 1 \Rightarrow \begin{cases} |B_s^L\rangle = p|B_s\rangle - q|\overline{B}_s\rangle = \frac{1}{\sqrt{2}} \Big[|B_s\rangle - |\overline{B}_s\rangle \Big] & CP\text{-even} \\ |B_s^H\rangle = p|B_s\rangle + q|\overline{B}_s\rangle = \frac{1}{\sqrt{2}} \Big[|B_s\rangle + |\overline{B}_s\rangle \Big] & CP\text{-odd} \\ \end{cases}$ Phase convention: $CP|B_s\rangle = -|\overline{B}_s\rangle$

- statistically separate B_s^H from B_s^L using parity of the angular correlations in $B_s \to J/\psi\phi$ decay
- fit distinct lifetimes to B_s^H and B_s^L components
- cross-check the analysis by performing similar one on a $B_d o J/\psi K^{*0}$ sample

Analysis of $P \rightarrow VV$ decays

 $egin{aligned} B_d &
ightarrow J/\psi K^{st 0} \ B_S &
ightarrow J/\psi \phi \ _{J/\psi
ightarrow \mu\mu, \ \phi
ightarrow KK, \ K^{st 0}
ightarrow K\pi \end{aligned}$

Need three amplitudes to describe

 $S, D \ wave = P- ext{even}$ $(CP- ext{even for } B_s)$ $P \ wave = P- ext{odd}$ $(CP- ext{odd for } B_s)$

Angular analysis time-dependent kind

 $rac{d^4 \mathcal{P}}{dec{\omega} \, dt} \propto |A_0|^2 \cdot g_1(t) \cdot f_1(ec{\omega})$ $+|A_{\parallel}|^2 \!\cdot\! g_2(t) \!\cdot\! f_2(ec\omega)$ $+|A_{+}|^{2} \cdot g_{3}(t) \cdot f_{3}(\vec{\omega})$ $\pm Im(A_{\parallel}^{*}A_{\perp})\!\cdot\!g_{4}(t)\!\cdot\!f_{4}(ec{\omega})$ $+Re(A_0^*A_{\parallel})\!\cdot\!g_5(t)\!\cdot\!f_5(ec\omega)$ $\pm Im(A_0^*A_\perp) \cdot g_6(t) \cdot f_6(ec\omega)$ $\equiv \sum^6 {\cal A}_i \!\cdot\! g_i(t) \!\cdot\! f_i(ec\omega)$ i=1

$$egin{aligned} f_1(ec{\omega}) &= & 2\cos^2\psi(1-\sin^2 heta\cos^2\phi) \ f_2(ec{\omega}) &= & \sin^2\psi(1-\sin^2 heta\sin^2\phi) \ f_3(ec{\omega}) &= & \sin^2\psi\sin^2 heta \ f_4(ec{\omega}) &= & -\sin^2\psi\sin2 heta\sin\phi \ f_5(ec{\omega}) &= & rac{1}{\sqrt{2}}\sin2\psi\sin^2 heta\sin2\phi \ f_6(ec{\omega}) &= & rac{1}{\sqrt{2}}\sin2\psi\sin2 heta\cos\phi \end{aligned}$$

 $g_i(t)$ different for B_d and B_s and are rather non-trivial

A. Dighe et. al., Eur. Phys. J. C 6, 647-662

Angular analysis time-dependent kind

 $B_s
ightarrow J/\psi\phi$:

$$egin{aligned} &rac{d^4 \mathcal{P}}{dec \omega \, dt} \propto |A_0|^2 \cdot e^{-\Gamma_L t} \cdot f_1(ec \omega) \ &+ |A_{\parallel}|^2 \cdot e^{-\Gamma_L t} \cdot f_2(ec \omega) \ &+ |A_{\perp}|^2 \cdot e^{-\Gamma_H t} \cdot f_3(ec \omega) \ &+ Re(A_0^*A_{\parallel}) \cdot e^{-\Gamma_L t} \cdot f_5(ec \omega) \end{aligned}$$

$$egin{aligned} &B_d
ightarrow J/\psi K^{st 0}\colon \ &rac{d^4 \mathcal{P}}{dec \omega \, dt} \propto \left\{ |A_0|^2 \cdot f_1(ec \omega)
ight. \ &+ |A_\parallel|^2 \cdot f_2(ec \omega) \ &+ |A_\perp|^2 \cdot f_3(ec \omega) \ &+ |A_\perp|^2 \cdot f_3(ec \omega) \ &\pm Im(A_\parallel^st A_\perp) \cdot f_4(ec \omega) \ &+ Re(A_0^st A_\parallel) \cdot f_5(ec \omega) \ &\pm Im(A_0^st A_\perp) \cdot f_6(ec \omega)
ight\} \cdot e^{-\Gamma_d t} \end{aligned}$$

• flavor blind decay - $\pm Im(...)$ terms average out • flavor specific decay - no linear sensitivity to $\Delta\Gamma$

Use these to extract $A_0, A_{\parallel}, A_{\perp}, \text{ and } \Gamma_{(L,H)}$ from data (set $arg(A_0) = 0$)

K. Anikeev, FNAL

06/09/2005

2. Measurement

 $J/\psi \rightarrow \mu^+ \mu^-$ trigger to collect samples of:

- $B_u
 ightarrow J/\psi K^+$
- $B_d \rightarrow J/\psi K^{*0}$
- $B_s \to J/\psi \phi$

 $260\,\mathrm{pb}^{-1}$ of data

- B candidate: { $(m, \sigma_m), (ct, \sigma_{ct}), \vec{\omega}$ }
 - m separate signal
 from background
 - ct lifetime fit +
 addt-l S/B separa tion
 - $\vec{\omega}$ angular analysis
- cross-checks in other B samples:
 - models
 - techniques

Modeling $\vec{\omega}$ - sculpting 3 does it work this way?

YES, IT DOES!

Indeed, no need to
parametrize/integrate
the acceptance

note:

 $|\xi_{1,2,3} \gg |\xi_5| > |\xi_{4,6}| \simeq 0$

i	$\xi_i^{B_s}$	$\xi_i^{B_d}$
1	3.81e-02	3.48e-02
2	4.06e-02	4.23e-02
3	4.07e-02	4.27e-02
5	-7.43e-05	-7.26e-04

Monte Carlo tests:

B_s prm.	input	fit result	diff., σ	
$ A_0 ^2$	0.5625	0.5627 ± 0.0019	0.0	
$ oldsymbol{A}_{\parallel} ^2$	0.2025	0.2048 ± 0.0029	+0.8	
$arg(A_{\parallel})$	2.0	1.980 ± 0.014	-1.4	
$c au_L,\mu{ m m}$	330.0	332.1 ± 1.4	+1.5	
$\Delta\Gamma/\Gamma,\%$	50.0	49.6 ± 0.9	-0.4	
N_{sig}		132129		

B_d prm.	input	fit result	diff., σ
$ A_0 ^2$	0.597	0.5912 ± 0.0020	-2.9
$ A_{\parallel} ^2$	0.243	0.2469 ± 0.0030	+1.3
$arg(A_{\parallel})$	2.5	2.5356 ± 0.0170	+2.1
$arg(A_{\perp})$	-0.17	-0.1743 ± 0.0128	-0.3
N_{sig}		132866	

3. Results

 $au_{B_u} = (1.659 \pm 0.033 \stackrel{+0.007}{_{-0.008}}) \,\mathrm{ps}$ PDG'04: $au_{B_u} = (1.671 \pm 0.018) ext{ ps}$ $au_{B_d} = (1.549 \pm 0.051 \stackrel{+0.007}{_{-0.008}}) \,\mathrm{ps}$

PDG'04: $au_{B_d} = (1.536 \pm 0.014) ext{ ps}$

 $au_{B_s} = (1.363 \pm 0.100 \stackrel{+0.007}{_{-0.010}}) \, \mathrm{ps}$

- $\rightarrow \tau_{B_u}$ and τ_{B_d} are in excellent agreement with PDG
- $\rightarrow \tau_{B_s}$ indicative of large $\Delta \Gamma_s$:

$$-\frac{2c\tau_H\tau_L}{\tau_H+\tau_L} = 460 \,\mu\text{m} \,\left(\Gamma_s = \Gamma_d\right)$$

 $-0.23c\tau_H$ +0.77 $c\tau_L$ =409 μ m (CDF I)

Avg. lifetime measurements

 $-\frac{0.16\tau_H}{0.16\tau_H + 0.84\tau_L}c\tau_H + \frac{0.84\tau_L}{0.16\tau_H + 0.84\tau_L}c\tau_L = 409\,\mu\text{m}\,\,(\text{SU(3)})$

t-dep. angular analysis fit results

Fit projections

side-band subtracted, sculpting corrected signal. ct>0 cut applied

Cross-checks

1. " $\Delta\Gamma/\Gamma$ " from B_d

B_d sample	$\Delta\Gamma/\Gamma,\%$	$c au_{(L)}, \mu{ m m}$
Full, one c $ au$		461 ± 15
Full	14.5 ± 12.1	444 ± 21
Sub-sample 1	13.7 ± 27.9	422 ± 34
Sub-sample 2	25.1 ± 22.3	437 ± 39
Sub-sample 3	26.1 ± 23.0	437 ± 50
Sub-sample 4	-7.6 ± 27.6	475 ± 41

2.
$$f_{CP_{odd}}$$
 vs. ct cut

B_s : fitted	B_s : pred.	B_d : fitte
$f_{CP_{odd}},\%$	$f_{CP_{odd}},\%$	$f_{P_{odd}}, ?$
20.1 ± 9.0	-20.1-	21.6 ± 4.4
24.2 ± 10.3	24.1	$23.0\pm3.$
29.6 ± 12.7	28.6	$23.0\pm4.$
38.7 ± 11.6	33.6	$23.6 \pm 4.$
	$B_s: ext{ fitted } \ f_{CP_{odd}}, \%$ 20.1 \pm 9.0 24.2 \pm 10.3 29.6 \pm 12.7 38.7 \pm 11.6	$egin{array}{llllllllllllllllllllllllllllllllllll$

Systematic uncertainty summary

B_d	$ c au, \mu m$	$ A_0 ^2$	$ m{A}_{ } ^2$	$ A_{\perp} ^2$	$arg(A_{\parallel})$	$arg(A_{\perp})$
Bkg. angular model	± 3.9	± 0.013	± 0.006	± 0.007	± 0.01	± 0.01
Eff. and acc.						
$\mathrm{K} \leftrightarrow \pi$ swap		± 0.006	± 0.004	± 0.002	± 0.04	
Non-resonant decays		± 0.010	± 0.001	± 0.003	± 0.07	± 0.04
Lft. fit model	± 1.7					
SVX alignment	± 1.0					
Detector bias	-1.2					
B_s cross feed						
Total	$\begin{array}{c} +4.4 \\ -4.6 \end{array}$	± 0.017	± 0.007	± 0.007	± 0.08	± 0.04
B_s	$c au_L,\mu{ m m}$	$\Delta\Gamma/\Gamma$	$ A_0 ^2$	$ oldsymbol{A}_{\parallel} ^2$	$ m{A}_{\perp} ^2$	$arg(A_{\parallel})$
Bkg. angular model	± 3.7	± 0.007	± 0.011	± 0.013	± 0.002	± 0.03
Eff. and acc.						
Unequal $\# B_s, \bar{B}_s$						
Lft. fit model	± 1.7					
SVX alignment	± 1.0					
Detector bias	-1.2					
B_d cross feed	-5.0	± 0.008		± 0.003	± 0.003	
Total	$\begin{array}{c}+4.2\\-6.7\end{array}$	± 0.011	± 0.011	± 0.013	± 0.004	± 0.03

Final results

K. Anikeev, FNAL

06/09/2005

Comparison

1

CDF can do lifetimes (exceptionally) well

K. Anikeev, FNAL

06/09/2005

CDF can do amplitudes very well too

and even see some SU(3) symmetry :o)

Comparison

Summary

- PRL 94 101803 (2005)
- a lot of excitement in the community and even some controversy
- additional motivation for measurements of ΔM_s , au_s^{fsp} $Br(B_s o D_s^{(*)+}D_s^{(*)-})$
- more careful averaging farstriang of B_s lifetime measurements

→ Don't stop here!

- improve technique
- get better precision with more statistics
- use alternative methods and combine results

BACKUP SLIDES

MC-Data agreement know for B_u • check for B_d • assume for B_s

06/09/2005

MC-Data agreement

