NIST Special Database 13

Census Miniform Test Database
Binary Images from Paper and Microfilm

Stan Janet

Computer Systems Laboratory
Technology Building Room A-216
National Institute of Standards and Technology
Gaithersburg. MD 20899 USA
Email: stan@magi.ncsl.nist.gov

1. Introduction

This document describes the NIST Special Database 13 (SD-13) CD-ROM, a database of Census
Miniform images. A Miniform is a non-sensitive portion of the Industry and Occupation section of an
actual 1990 Census Long Form. This database is designed for the evaluation of optical character recog-
nition (OCR) systems in a difficult but realistic form-based task on binary images from paper and
microfilm.

Each miniform image contains three fields with handwritten answers to the following questions
(Long Form Questions 28b, 292 and 29b respectively):

Describe the activity performed at location where employed.
What kind of work was this person doing?
What were this person’s most important activities or duties?

A possible set of responses would therefore be:

hospital
registered nurse
patient care

Question 28a was not included in the test in order to comply with privacy provisions required by Title
13 of the U.S. Code.

The forms were scanned from paper and microfilm, the latter yielding images of far lesser qual-
ity. The images are 624 by 744 pixels sampled at 78.74 pixelsfcm (200 pixelsfinch). They are packed
five to a file and are CCITT Group 4 [I] compressed. Source code for image manipulation, including
programs to uncompress and unpack the images, is present on the CD-ROM. The code is written in the
C programming language and was developed on Sun workstations ruming SunOS 4.1.1*. Figure 1
shows a better-than-average quality image scanned from microfilm. Figure 2 shows a typical image
scanned from paper.

SD-13 was produced in conjunction with The Second Census Optical Character Recognition Sys-
tems Conference [2], sponsored by NIST and the Burean of the Census, in which the participants

* Specific hardware and software products identified in this paper were used in order to adequately support the
development of the technology described in this document. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology, nor does it imply that the equipment identified is
necessarily the best available for the purpose.

SN
Egb R iy S

i .o E .

Vo
A o
Y,

1 RN RSNtk
) 4{0’?{; }: .-;;»))

N

-

.3 e

BN LIRS

Bs i SRR e
< EA

Lars ~ o
g T P

.. AL gt 4N o e vg. 3 LI
R T e N
N -

R vl
LSRR

T

Figure 1. Example form scanned from microfilm.

Describe the activity at location where empioyed. /' .

| WVEWSPAPLPER PubliSHiNG |

Eamﬂe:he@hl,nmwm’ _____ .

mall order house, autc engine manufacturing, -

retail bakery) - b.
c. Is this mainly — Fil ONE cirda

® Manufacturing - O Other (agriculture,

O Wholesale trade construction, service,

C Retail trade govemnment, etc.}

r—----

- v =

] ELECTRIC/ AN _j

(For example: registired nurse, personnel manager,
supervisor of order department, gasoline engine

T T ST 7 il
| ONTHE "Vﬁé-’-%“"ﬂ £ PRINTING E&.esazs

{For example: patient care, directing hiring
supervising order clerks, assembling engines, B
icing cakes) - o, €

wee wRr. Cak L o daem A ae b

Figure 2. Example form scanned from paper.

sought to determine the state of the art of the OCR industry on a challenging, realistic task. The results
of the Conference were published in NIST Internal Report (IR) 5452. That report is available on the
Internet in PostScript form via anonymous FIP from the server sequoyah.ncsl.nist.gov, maintained by
NIST’s Visual Image Processing Group. It is also available on request in hardcopy form.

The SD-13 CD-ROM is the third of three produced for the Conference and was used for the
actual system testing. The first and second CD-ROM’s, SD-11 and SD-12, contained data intended for
system training. Both training databases contain reference files, files with ASCII transcriptions of what
was written in each field. This disc was produced without reference files. Those files are distributed
with the CD-ROM on a DOS-formatted 3.5" floppy disk and have been publicly distributed from the
FIP server since the conclusion of the Conference.

The main focus of this report is to describe the contents of the SD-13 database (Section 1) and to
document the file formats (Section 2). Section 3 then describes the provided software in greater detail.
Section 4 contains a brief summary of the results from the Second Census Conference. Section 5 con-
tains descriptions of the files on the FTP server that are related to this database.

2. CD-ROM Contents

2.1. Mounting Procedure

In order for the files to be accessed in typical UNIX* environments, the CD-ROM must first be
mounted, which requires super-user privileges. For example, under SunOS 4.1.1, the user root would

mcutemefoﬂowingmmmmdmcethecaddycomainMgtheCD-ROMhasbeeninsertedinmthe
e:

mount -t hsfs -o ro /dev/sr0 /cd

The command assumes that /dev/sr0 is configured in the UNIX kernel as the CD-ROM device, and that
the directory hierarchy present on the disk is to appear under the directory /cd, which must already
exist.
The mounting process can be simplified by putting the following line in the file /etc/fstab:
/dev/sr0 /cd hsfs ro 0 0O

By storing the device name, filesystem type and mount options (ro, for read-only) in /etc/fstab, the
CD-ROM can be mounted by simply specifying the desired mount point:

mount /cd

22. Disk Hierarchy

Figure 3 illustrates the directory tree structure of SD-13. Images are packed in MIS files (the

MIS file format is defined in Section 3.3) in groups of five and the MIS files are grouped in subdirec-

tories of 100 files each. The files of images scanned from paper are organized under the top-level

directory data4 while the files of images scanned from microfilm are under data3. For each MIS file,

ﬂ&\?m isa .ref file on the accompanying floppy disk containing ASCII transcriptions of the fields on the
¢ miniforms.

2.3. Image Files

The SD-13 database contains 3000 miniform images from paper (9000 fields) under the data4
hierarchy and 3000 miniform images from microfilm (9000 fields) under the data3 hierarchy. All mini-
forms were scanned at 78.74 binary pixels/cm (200 pixels/inch), and the dimensions for each were 624
pixels wide and 744 pixels high. Paper forms were scanned using a Fujitsu 3096 scanner. Microfilm
was scanned on a Kodak Imagelink Digital Workstation.

* UNIX is a registered trademark of AT&T.

| | | | |
ta3 data4 dicts doc man src

e et T

|
l
doo ... do5
{ |
|
! | |
| d05£00.mis ... d05£99.mis
!
I |
d00£00.mis ... d00£99.mis
| |
| |
doo ... dos
| !
| d05£00.mis ... d05f99.mis
!
d00£00.mis ... d00£99.mis

Figure 3. CD-ROM directory tree structure.

The miniforms represent an almost random sampling of 1990 Census Long Forms, with only a
small percentage of them having been discarded. Criteria for discarding a form included empty fields,
scanning errors, and hopelessly poor handwriting. A manual check was also made to ensure that no
miniform fields contained sensitive information that would identify an individual, such as proper names
and names of small companies.

SD-11 contains 13,500 miniform images scanned from microfilm (40,500 fields). SD-12 contains
6000 miniform images from paper (18,000 fields) and 12,500 miniform images from microfilm (37,500
fields).

2.4. Reference Fihs

The reference files in SD-13 contain the target strings that Conference participants’ systems were
required to match exactly in order to be considered correct at the field level. To avoid hypotheses
being considered incorrect due to largely irrelevant differences from the reference strings, both strings
were to be normalized in a manner announced to the participants. Specifically, the normalization pro-
cess entailed these five operations:

1. mapping lower-case characters to upper-case
2. mapping punctuation characters to spaces

3. removing leading or trailing spaces

4. mapping multiple adjacent spaces to one

5. truncating the strings at 36 characters

Reference files for fields on all paper forms were entered independently by two keyers, and by a
third keyer if the transcriptions were different. The strings keyed during the 1990 Census were used to
create the reference files for all microfilm forms.

2.5. Dictionaries

Each disc also contains three types of dictionary files for each of the three questions on the mini-
form which are useful in the correction of raw recognition system output and in steering hypotheses
toward answers that would be expected for occupation-related questions. One type of dictionary con-
tained words, while the others contained phrases (complete field responses conswtm,, of one or more
words).

The word dictionary files contain all of the words that appeared in responses to the corresponding
three questions in a sample of 132,247 1980 Census Long Forms:

Filename #Words
dicts/word_1.lng 15214
dicts/word_2.Ing 15127
dicts/word 3.Ing 18030

The long phrase dictionary files contain all of the full responses to the three comresponding ques-
tions:

Filename #Phrases
dicts/phrase_1.Ing 58088
dicts/phrase 2Jng | 56968
dlcts/phrase 3.Ing 75323

The short phrase dictionary files contain the full responses that appear at least twice in the master
phrase list for the corresponding field:

Filename #Phrases
dicts/phrase_1.sht 10227
dlcts/phrase 2.sht 10492
dlctslphrase 3.sht 9664

The short phrase dictionaries are apprommately 15% the size of the long ones, but contain
approxmately 60-70% of the unique reference strings. There is a fundamental trade-off associated with
dictionary size. Adding words or phrases to a dictionary may improve the coverage of the dictionary
over an application. Any such increase in coverage will contribute to improved OCR accuracy. On the
other hand, every additional word or phrase in the dictionary increases the confusion among the dif-
ferent words or phrases in the dictionary. This increase in confusion may contribute to reduced OCR
accuracy. Conference and NIST tests suggest that larger dictionaries will not improve results in this
application [2].

The dictionaries in SD-11 were created from the words and phrases that were given to the ques-
tions in a sample of 132,247 1980 Census Long Forms. The dictionaries in SD-12 were created by
removing misspelled words from the 1980 Census files, then adding in reference strings from SD-11
that weren’t already present in the files. The dictionaries in SD-13 were created from those in SD-12
by adding in the new reference strings from SD-12. The complete lists are available from the Census
Bureau’s anonymous FIP server, ftp.census.gov, in the directory pub/ocr/1980i+o.

NIST IR 5180 /3] contains a more complete discussion of the dictionary production process as it
was originally undertaken. Wlmtheproducuonofasecondtralmn,databaseandthetestdatabase the
process was ultimately expanded and redesigned as described above. The final process is discussed in
slightly greater depth in the Conference Report [2].

2.6. Supplied Source Code

NIST Special Database 13 contains source code for a program to check a directory tree of
hypothesis and confidence files and eight programs that manipulate THead and MIS image files, the two
image formats relevant to the benchmark. The programs are written in the C language and are included
under the top level database directory src. These programs are described briefly in Section 4.

3. File Formats

3.1. Image Files

Image file formats and effective data compression and decompression are critical to the usefulness
of image archives. In this application, a raster image is a digital encoding of light reflected from
discrete points on a scanned form. The 2-dimensional area of the form is divided into discrete locations
according to the resolution of a specified grid. Each cell of this grid, which is called a pixel, is
represented by a single bit value O or 1. The former represents a predominately white pixel; the latter
represents a predominately black pixel. This 2-dimensional sampling grid is then stored as a 1-
dimensional vector of pixel values in raster order, left to right, top to bottom. Successive scan lines (top
to bottom) contain the values of a single row of pixels from the grid.

Certain attributes of a raster image are required to interpret the 1-dimensional pixel data as a 2-
dimensional image. Examples of such attributes are the pixel width and pixel height of the image.
These attributes are stored in a machine-readable header prefixed to the raster bit stream. A program
that is used to manipulate the raster data must first read the header to determine the proper interpreta-
tion of the data which follows it.

32. IHead Header Format

] Record Length

ASCI Format Image Header

Binary Raster Stream
000000010000010000011111110. ..

* Representing the digital scan across the
page left to right. iop to bottom.

* ‘0’ - Represents a white pixel.

* ‘I’ - Represents a black pixel.

* 8 Pixels are packed into a single byte
of memory.

Figure 4. THead file layout.

Numerous image formats exist, but most image formats are proprietary and, furthermore, many
are much more predominant on some platforms, such as personal computers, than on others. A header
format named THead has been developed by NIST for use as a general purpose image interchange for-
mat. The THead header is an open image format which can be universally implemented across hetero-
geneous computer architectures and environments. Source code for the IHead format is publicly avail-
able and included with this database. IHead has been designed with an extensive set of attributes in
order to adequately represent both binary and gray level images. to represent images captured from dif-
ferent scanners and cameras, to support various image compression algorithms, and to satisfy the image
requirements of diversified applications including, but not limited to, image archivalfretrieval, character
recognition, and fingerprint classification. Figure 4 illustrates the [Head format.

Since the header is represented by the ASCII character set. IHead has been successfully ported
and tested on several platforms including UNIX workstations and DOS personal computers. All

attribute fields in the IHead structure are of a fixed length. All multiple character fields are null-
terminated, allowing the fields to be loaded into main memory in two distinct ways. The IHead attribute
fields can be parsed as individual characters and nuil-terminated strings, an input/output format common
in the C programming language, or the header can be read into main memory using record-oriented
input/output.

The Record Length in Figure 4 represents an 8-byte field at the beginning of each IHead file con-
taining the null-terminated ASCII string "288", which defines the size in bytes of the image header.
Figure 5 contains the IHead structure definition written for the C programming language that the image
header should be read into.

Re&nnwhgthes&mmmenumdmnsﬁmwdinfi;nes,mefhmzmﬁbmth&iafﬂkmdisﬂmidmr
tification field, id. This field uniquely identifies the image file, typically by a file name. The attribute
field created is the date on which the image was digitized. The next three fields hold the image’s pixel
width, height, and depth. A binary image has a pixel depthoflwhereasagrayscalelmagecontamng
256 possible shades of gray has a pixel depth of 8. The attribute field density contains the scan resolu-
tion of the image in pixels per inch.

The next two fields determine the image data compression algorithm used, if any. In the IHead
format, images may be compressed with virtually any algorithm. The IHead header is always
uncompressed, even if the image data is compressed. This enables header interpretation and manipula-
tion without thc overhead of decompression. The field compress is an integer flag which significs if a
compression algorithm has been applied to the raster image data that follows the header. If the
compression code is zero, then the image data is not compressed, and the data dimensions: width,
height, and depth, are sufficient to load the image into main memory. However, if the compression code
is nonzero, then the field complen must be used in addition to the image’s pixel dimensions in order to
load the compressed image data into main memory. Once the compressed image data has been loaded
into memory, the appropriate decompression algorithm can be used to produce an image which has the
pixel dimensions consistent with those stored in its header.

The attribute field align stores the alignment boundary to which scan lines of pixels are padded.
Pixel values of binary images are stored 8 pixels (or bits) per byte. General images, however, do not
have a width that is an an even multiple of 8 pixels. In order to minimize the overhead of ending a
previous scan line and beginning the next scan line within a single byte, digitizers typically use padding
pixels to extend the previous scan line to a multiple of 8 or 16 pixels (a one or two-byte boundary).
The align field stores the image’s pixel alignment value used in padding out the ends of raster scan
lines.

The next three attribute fields identify binary interchange issues among heterogeneous computer
architectures and displays. The unitsize field specifies how many contiguous pixel values are bundled
into a single unit by the digitizer. The sigbit field specifies the order in which bits of significance are
stored within each unit — most significant bit first or least significant bit first. The last of these three
fields is byte_order. ¥ unitsize is a multiple of 8 greater than or equal to 16, this field specifies the
order in which bytes occur within the unit — in the high bits of the unit first, or vice-versa. Given
these three attributes, binary incompatibilitics across computer hardware and binary format assumptions
within application software can be identified and effectively dealt with.

#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_ CHARS 8 /* # of ASCII chars to represent a short */
#define BUFSIZE 80 /* default buffer size */
#define DATELEN 26 /* character length of date string */
typedef struct ihead {

char id[BUFSIZE]; /* identification/comment field */

char created[DATELEN]; /* date created */

char width[SHORT CHARS]; /* pixel width of image */

char height [SHORT_ CHARS]; /* pixel height of image */

char depth[SHORT CHARS]; /* bits per pixel */

char density[SHORT CHARS]; /* pixels per inch */

char compress[SHORT_ CHARS]; /* compression code */

char complen[SHORT_CHARS]; /* compressed data length */

char align[SHORT CHARS]; /* scanline multiple: 8| 16|32 */

char unitsize[SHORT_CHARS]; /* bit size of image memory units */
char sigbit; /* 0->sigbit first | 1->sigbit last */
char byte_order; /* 0->highlow | 1->lowhigh */
char pix_offset [SHORT CHARS]; /* pixel column offset */
char whitepix[SHORT CHARS]; /* intensity of white pixel */
char issigned; /* 0->unsigned data | 1->signed data */
char rm_cm; /* 0->row maj | l->column maj */
char tb _bt; /* 0->top2bottom | l->bottom2top */
char 1lr rl; /* 0->left2right | 1->right2left */
char parent [BUFSIZE]; /* parent image file */
char par_x[SBORT CHARS]; /* from x pixel in parent */
char par_y[SHORT CHARS]; /* from y pixel in parent */

} IBEAD;

Figure 5. The C language struct definition for IHead images.

The pix_offset attribute defines a pixel displacement from the left edge of the raster image data to
where a particular image’s significant image information begins. The whitepix attribute defines the
value assigned to the color white. For example, the binary images in this database are black text on a
white background, and the value of the white pixels is 0. This field is particularly useful to image
display routines. The issigned field is specifies whether the pixels of an image are signed or mnsigned.
For example, this attribute determines whether an image with a pixel depth of 8 should have pixel
values interpreted in the range of -128 to +127, or 0 to 255. The orientation of the raster scan may also
vary among different digitizers. The attribute field rm_cm specifies whether the digitizer captured the
image in row-major order or column-major order. The field tb_bt whether the scan lines of an image
were accumulated from top to bottom, or bottom to top, and the field rl Ir specifies whether left to
right, or right to left.

The final attributes in THead provide a single historical link from the given image to a parent
image, one from which it was derived or extracted. The parent field typically contains the full path-
name to the image from which the current image was extracted. The par_x and par y fields contain the
origin point (upper left-hand corner pixel coordinate) in the parent image from where the extraction
took place. These fields provide a historical thread through successive generations of image and subim-
age processing. If the image has no parent, the three fields contain an empty string. The IHead image
format contains the minimal amount of ancillary information required to successfully manage binary
and grayscale images.

3.3. MIS File Format

In order to facilitate operations on images of homogeneous dimensions and simplify image group-
ing, NIST has developed a Multiple Image Set (MIS) file format. The MIS format allows multiple
images of homogeneous dimensions and depth to be stored in one file. MIS is a simple extension or
encapsulation of the THead format described previously. As can be seen in Figure 7, a pointer to the
THead structure is a member in the MIS structure.

An MIS file contains one or more individual images stacked vertically within the same contigu-
ous raster memory, with the first scanline of each image following the last scanline of the previous
image. The individual images are referred to as MIS entries. The resulting contiguous raster memory is
referred to as the MIS memory. An MIS memory containing five entries of uniform width, height, and
depth is illustrated in Figure 6. The IHead attribute fields are sufficient to describe the MIS memory.
The IHead structure’s width attribute specifies the width of the MIS memory, and likewise the THead
stracture’s height attribute specifies the height of the MIS memory. In this way, the MIS memory can
be stored just like any normal raster image, including possibly compressed.

Due to the uniform dimensions of MIS entries, the IHead structure’s width attribute also specifies
the width of the entries in the MIS memory. What is lacking from the original IHead definition is the
uniform height of the MIS entries and the number of MIS entries in the MIS memory. Realize that
given the uniform height of the MIS entries the number of entries in the MIS memory can be computed
by dividing the entry height into the total MIS memory height. The interpretation of two of the THead
atribute fields, par_x and par_y, changes when the IHead header is being used to describe an MIS

Dumtetucny st b oot/
i Tuber Ol’argro-__;s‘

o ammmpia: Moapel, weapeper pebdiaiing. =
:ﬁ-h.&-ﬂl-“

< In e maiuly — FECMNE axce
@ Mosudechning © Othar buphobums.
© Viisslagsln tude

ewisucion, suvkn,
© Rehinads oweamed, ac)

T Sl Sttt LS.
Dasche the actly at lecaton whos angloyad, /_|
e e]

\ NERSPAPLR PobiidNide |

o ansmple: hanptil, eovmspapes prebebing. [|

Figure 6. Layout of an MIS file containing five miniforms.

10

memory. Theparxﬁeldxsusedtoholdtheumformwxdthofthel\ﬂSenmes.andthepar_yﬁeldls
used to hold the uniform height of the MIS entries. In other words, width and height represent MIS
memory width and MIS memory height respectively, while par_x and par_y represent MIS entry width
and MIS entry height respectively. Using this convention, an MIS file is treated like an THead file.

typedef struct misstruct {
IHEAD * head;
unsigned char * data;
int misw;
int mish;
int misd;
int entw;
int enth;
int ent num;
int ent_alloc;

1 MIS;

Figure 7. The C language struct definition for MIS images.

Figure 7 contains the MIS structure definition for the C programming language. The structure
contains an IHead structure head, and an MIS memory data. In addition, there are 6 other attribute
fields which hide the details of the THead interpretation from application programs that manipulate MIS
memories. The MIS attributes misw and mish specify the width and height of the MIS memory. These
values are the same as the width and height attributes contained in the IHead structure pointed to by
head. The MIS attributes entw and enth specify the uniform width and height of the MIS entries. These
values are the same as the par x and par_y attributes contained in the IHead structure pointed to by
head. The MIS attribute ent_alloc specifies how many MIS entries of dimension entw and enth have
been allocated to the MIS memory data. The MIS attribute ent_num specrﬁes how many entries out of
the possible number allocated are currently and contiguously contained in the MIS memory data.

All image files in NIST Special Databases 11 through 13 are MIS files. The supplied program
dumpihdr prints the attributes of either MIS or IHead files. The following is that program’s output on a
example file from SD-13:

$ cdumpihdr /cd/sdl3/data3/d00/d00£00.mis
IMAGE FILE HEADER
Identity

Header Size

Date Created

d00/d00£00
288 (bytes)
Thu Oct 14 09:39:57 1993

Width 624 (pixels)
Beight 3720 (pixels)
Bits per Pixel 1

Resolution 200 (ppi)
Compression : 2 (code)
Compress Length : 252100 (bytes)
Scan Alignment : 16 (bits)
Image Data Unit : 16 (bits)
Byte Order High-Low
MSBit First

Column Offset
White Pixel
Data Units
Scan Order

0 (pixels)
0

Unsigned
Row Major,

_Top to Bottom,

11

Left to Right

The following command sequence illustrates how an MIS file can be copied to a magnetic disk,
decompressed, and then split using the supplied program fragmis into the five images that comprise it:

$cd /tmp

$ cp /cd/sd13/data3/ d00/d00£00 .mis
$ chmod 644 A00£00 .mis
$1s -1 d00£00 .mis
-rw-r—-r-- 1 stan

$ decomp d00£00 .mis

$ 1s -1 A00£00 .mis
-r—-xr--r—— 1 stan

$ fragmis d00£00 .mis £
$1s -1 £ _?2?2?.pct

252396 Apr 6 23:55 d00£00 .mis

290456 Apr 6 23:56 d00f00 .mis

-rw-r--r—-- 1 stan 58328 Apr 623:56 £ 000.pct
-rw-r--r—— 1 stan 58328 Apr 6 23:56 £ 001.pct
-rw-r—--r—-— 1 stan 58328 Apr 6 23:56 £_002 .pct
-rw-r--r—— 1 stan 58328 Apr 6 23:56 £ 003.pct
-rw-r--r-- 1 stan 58328 Apr 6 23:56 £_004.pct

The supplied program xtrctmis could have also been used. It allows THead files to be unpacked
from MIS files individually:

$ xtrctmis d00£00 .mis £0.pct O
$ xtrctmis d00£00 .mis £l.pct 1
$ xtrctmis d00£f00.mis £2.pct 2
$ xtrctmis d00£00.mis £3.pct 3
$ xtrctmis dOO£00 .mis f4.pct 4
$1s -1 £2.pct

-rw-r—--r-— 1 stan 58328 Apr 6 23:56 f0.pct
-rw-r--r—— 1 stan 58328 Apr 6 23:56 f1.pct
-rw-r--r-- 1 stan 58328 Apr 6 23:56 f2.pct
~-rw-r--r-— 1 stan 58328 Apr 6 23:56 £3.pct
-rw-r--r—— 1 stan 58328 Apr 6 23:56 f4.pct

The dumpihdr program can in tum be run on any of the resulting IHead files, e.g.:

$ dumpihdr £0.pct
IMAGE FILE HEADER
Identity :
Header Size :
Date Created

f0.pct
288 (bytes)
Fri Apr 7 00:03:26 1995

width 624 (pixels)
Height 744 (pixels)
Bits per Pixel 1
Resolution 200 (ppi)
Compression : 0 (code)
Compress Length : 0 (bytes)
Scan Alignment : 16 (bits)
Image Data Unit : 16 (bits)
Byte Order High-Low
MSBit First
Column Offset 0 (pixels)

12

White Pixel : 0

Data Units : Unsigned

Scan Order : Row Major,
Top to Bottom,
Left to Right

3.4. Reference Files

Reference files for this database appear on the accompanying floppy disk, organized under the
same structure as the SD-13 CD-ROM. Reference files in Databases SD-11 and SD-12 are distributed
in the data subdirectories on the CD-ROM’s. The file correspondence is evident through their identical
basenames; the reference filenames have the extension .ref. Each reference file contains fifteen lines,
with the first three lines containing ASCIH transcriptions of the three questions in the MIS file’s first
miniform, etc.

The first eight characters of every line in a reference file contain a 7-character ficld string called
a field identifier which is unique inside the file, followed by a space character. The characters that fol-
low that space comprise the reference string that the recognition system output for that field is to be
compared against.

As stated previously, reference files for fields on all paper forms were entered independently by
two keyers, and by a third keyer if the transcriptions were different. The strings keyed during the 1990
Census were used to create the reference files for all microfilm forms. While no amount of care can
rcsolve truly ambiguous handwriting, any remaining differences between the reference strings from what
was actually written by Census respondents should not pose a significant problem to the recognition
task.

The reference files are directly readable by the NIST Image Recognition System Scoring Package
[5]. The software was used to produce results for the two Census OCR Systems Conferences [2,6].
Version 1.0 of the Scoring Package is available on CD-ROM from NIST Standard Reference Data just
as SD-13 and the other two CD-ROM’s are. Version 2.0 will be released soon, and information will be
available on the FIP site or from the author of this document via email.

The files of recognition system hypotheses were required to have the same general format as
reference files, but with hypotheses following field identifier and space character. The directory hierar-
chy was to mirror that of the test images, with .hyp extensions in place of .mis files. Corresponding
files of field-level confidence values were also to be returned with .con extensions. In those, a floating
point number between 0.0 and 1.0 (inclusive) was to follow the field identifier and space character.
Appendix A contains an example form reference file and hypothetical recognition system output files.

4. Program Descriptions

NIST Special Database 13 contains source code for a program to check a dircctory tree of
hypothesis and confidence files and eight programs that manipulate [Head and MIS image files, the two
formats used in the benchmark. The programs are written in the C programming language and are
included under the top-level database directory src. These programs, their primary supporting subrou-
tines, and associated filenames are described below. Manual pages are included in Appendix B and are
located on the CD-ROM in the top-level directory man.

4.1. Program Compilation

CD-ROM is a read-only storage medium. This fact requires that the files located in the directory
src be copied to a writable disk partition prior to being compiled into executable form. Once the files
have been copied, binaries can be produced by invoking the UNIX utility make. An example command
sequence that copies the files to /usr/localiocr2/src from under the CD-ROM mount point /cd is:

$ cp —pr /cd/src /usr/local/ocr2/src
$ cd /usr/local/ocr2/src

$ chmod 755 .

$ chmod 644 *

$ make —-f makefile.mak

13

42. chkfiles <root-directory> <subdirectory-count> <filespec>

The program chkfiles is supplied to check Conference hypothesis and confidence files and their
directory structure. Submissions that did not meet the Conference specifications were rejected. This
program performs eleven checks, such as confirming the presence of expected files and lines and con-
firming correct line syntax. Use a filespec value of 1 to check hypothesis files or a value of 3 to check
confidence files.

43. decomp <IHead file in> <IHead file out>

The program decomp decompresses an image in IHead format. The output file specified will be
an image in IHead format with its image data uncompressed. The main routine for the program is found
in decomp.c and calls the external functions readihdrfile() and writeihdrfileQ.

The procedure readihdrfile() is responsible for loading an IHead image from a file into main
memory and is found in the file loadihdr.c. This routine reads the image’s header data returning an ini-
tialized IHead structure by calling readihdr(). In addition, the image’s raster data is returned to the
caller uncompressed. The images in this database have been 2-dimensionally compressed using CCITT
Group 4 [1], therefore readihdrfile() invokes the external procedure grpddecomp() which decompresses
the raster data. Upon completion, readihdrfile() returns an initialized IHead structure, the uncompressed
raster data, and the image’s width and height in pixels. The Group 4 compression and decompression
software was developed by the CALS Test Network and adapted by NIST for use with this and other
databases. It is found in the file g4decomp.c.

The function readihdr() is responsible for loading an image’s THead data from a file into main
memory. This routine allocates, reads, and returns the header information from an open image file in an
initialized IHead structure. This function is found in the file ihead.c. The IHead structure definition
listed in Figure 5 is found in the include file ihead.h.

4.4. dumpihdr <IHead file>

The program dumpihdr reads an image’s IHead data from the given file and formats the header
data into a report which is printed to standard output. The main routine of the program is found in the
file dumpihdr.c and calls the external function readihdr().

4.5. fragmis <misfile> <rootname>

The program fragmis takes the concatenated MIS entries_contained in a single MIS file and writes
each entry to a separate IHead image file. The program is given the MIS file to be fragmented and the
root name to be used in creating the resulting IHead image files. A sequential index and an extension
pct will be added to the specified root name in order to create unique file names. The main routine for
the program is found in fragmis.c and calls the external function fragmis(). The MIS structure defini-
tion listed in Figure 7 is found in the include file mis.h.
4.6. xtretmis <misfile> <outfile> <index>

The program xtrctmis copies a specified MIS entry into a separate IHead image file. The inputs
are the MIS file to be used, the file in which the MIS entry is to be stored, and the index of the MIS

entry to be copied. The index is zero-oriented. The main routine for the program is in xtrctmis.c and
calls the external routine xtretmis().

4.7. ihdr2sun <IHead file>

The program ihdr2sun converts an image from NIST IHead format to Sun rasterfile format. It
loads an IHead formatted image from a file into main memory and writes the raster data to a new file
appending the data to a Sun rasterfile header. The main routine for the program is found in the file
ihdr2sun.c and calls the external function readihdrfile(). The include file rasterfile.h, which is needed
to compile ihdr2sun, is part of the SunOS distribution and is not included with SD-13.

4.8. sunalign <Sun rasterfile>

The program sunalign is a program which ensures the Sun rasterfile input has scanlines of length
equal to an even multiple of 16 bits. It has been found that some Sun rasterfile applications assume
scanlines which end on an even word boundary. IHead images may contain scanlines which do not

14

conform to this assumption. Therefore, it may be necessary to run sunalign on an image which has been
converted using ihdr2sun. The main routine for the program is found in the file sunalign.c. Compilation
of this program will also require the Sun include file rasterfile.h.

4.9. Other Programs

The software distribution also contains source code for two programs that are not relevant to this
database. One of the programs, xtrctcls, operates on a file type (CLS) which is not part of SD-13. The
other. htoc, is a simple utility program for hexadecimal-to- ASCII character conversion.

Manual pages for all 9 of the programs included on the SD-13 CD-ROM are included in Appen-
dix B.

5. Conference

5.1. Introduction

The goals of the First /6] and Second /2] Census Optical Character Recognition (OCR) Systems
Conferences were scientific in nature. The first goal was to gauge the state of the art of OCR of hand-
printed characters with respect to the particular problems associated with entering census data into a
computer database. The second was to learn what is currently limiting the state of the art. The third
goal was to determine whether new databases of handprinted characters for use either in training -or in
testing could be expected to help improve the state of the art of OCR for applications such as the
census, and if so. what types of new databases are needed.

Neither Conference was designed to produce results that could be used as the basis for purchasing
an OCR system. Decisions regarding the application of an OCR system to any specific task should be
based on the results of proctored tests with test materials that are representative of that task.

The tests of the First Conference consisted of classifying approximately 85,000 binary images of
properly segmented, isolated characters (roughly 60,000 digits, 12,000 upper case, and 12,000 lower
case letters). These activities were carried out from February through May of 1992. The results of the
Conference are available on the anonymous FTP server. The test disk (SD-7) and a previous training
disk of characters (SD-3) are no longer available. Those data sets and new data are collected on SD-19,
available from NIST’s Standard Reference Data Group*.

The activities of the Second Conference started in January of 1993, with twenty five organizations
agreed to participate. The first and second sets of training materials were shipped to the participants at
the end of August and the beginning of October, 1993, respectively. The test materials were shipped to
the participants by express carrier to arrive on December 1, 1993. The OCR results returned to NIST
for scoring were to be received by the participant’s express cartier by December 15, 1993 in order to be
considered on-time. However, late results were accepted provided that an express carrier received them
by January 31, 1994,

The test was very hard, and many participating organizations either withdrew from participation
or did not submit results for scoring before the Conference deadlines. Some participants submitted
results only for the test with forms scanned from paper, while others submitted results for both paper
and microfilm. The participants returned hypothesis files and field-level confidence files to NIST for
scoring on floppy disks, using the same directory structure used on the test CD-ROM.

Each participating organization was asked to fill out a questionnaire about the algorithms used in
their OCR system. At the Conference meeting, many participants presented quite detailed descriptions
of the systems they used. The presentations were considered more illuminating, so the viewgraphs from
the meeting are reproduced in the Conference Report.

52. Measures

Two different measures of classification error were calculated for this Conference: the field error
rate and the field distance rate /2,7]. The field rejection rate is defined as the ratio of the number of
fields rejected by the rejection process (based on their field-level confidence values) to the total number
of fields presented for classification. The field error rate R.(r) as a function of field rejection rate
was defined as:

* To order: call 301/975-2208, fax 301/926-0416, or send email to srdata@enh.nist.gov

15

F(r)
T F.0+F.(0
where, of the fields not rejected at rate r, F,(r) is the number recognized incorrectly (even just one
character wrong) and F,(r) is the number recognized correctly.
The field distance R;(r) as a function of the field rejection rate was defined as:
C.(r)
C.(r)+C.(r)

where C,(r) is the number of characters in the field that are correctly classified when the hypothesis
and reference fields are aligned and where:

. C.(r) =Ca(r) + Ci(r) + C(r)
with C;(r), C;(r) and C,(r) representing the respei:tive number of character deletion, insertion, and sub-
stitution transformations needed to convert each reference into the associated hypothesis.
The string alignment algorithm adopted was the generalized Levenshtein distance algorithm /8],
where the total edit cost is minimized based on edit costs for the operations deletion, substitution and
insertion. The costs used were 5, 3 and 1, respectively.

R (r)

Ry(r) =

5.3. Summary of Results

Tables 1 and 2 below list the field error and field distance rates at rejection rates of 60, 50, 40,
and 0 for both the paper and the microfilm tests for all of the results retmrned on-time. Table A also
gives the field distance and error rates at 0% rejection rate for the 1990 Census human key entry opera-
tion (KEY_ 90) for comparison with the machine results for the paper test.

None of the systems using no segmentation were among the most accurate. This suggests that
segmentation is an important subtask for this type of test, at least at the current state of the art. All sys-
tems that attempted segmentation except NIST’s used intentional oversegmentation as a means of
avoiding undersegmentation, and the best performing systems had sophisticated means for recombining
segments prior to dictionary-based correction. This suggests that segmentation is the most challenging
subtask for this type of test, and that intentional oversegmentation followed by sophisticated recombina-
tion methods, possibly in more than one of the downstream subtasks, is the best solution to the segmen-
tation problem at the current state of the art.

Miniforms Scanned from Paper
Field Error and Field Distance Rates at Field Rejection Rates
__EE—Inne System 60% 50% 40% %
CEDAR 0 376 205 | 387 204|415 213|587 373
CGK 0 138 47 1196 621|263 90505 246
ERIM O 3.6 0.3 6.3 16 | 122 43 | 39.7 18.7
FRIM 1 39 10| 75 24| 141 54419 208
HUGHES 0 616 260 | 692 387 | 743 475 | 846 634
IBM 0 4996 243|569 288 | 624 329|750 4438
IBM 1 536 247 [603 294 | 650 330 768 4438
IBM 2 8.6 586 |84 588 |89 594|931 634
IDIAP 0 107 26| 168 52 | 258 105|526 334
NIST O 466 162 | 538 217 | 601 272 | 753 462
UBOL_0 571 360|618 386|649 399 | 717 431
KEY 90 N/A NA|NA NA|NA NA| 85 1.6

Table 1. System Performance on Forms Scanned from Paper.

The complete results, including graphs of performance versus field rejection rate, and an in-depth
discussion are in the Conference Report. In addition, analysis of a hybrid system’s (created using
ERIM 0 and 1990 Census hypotheses) and a voting system’s (created using ERIM 0, IDIAP 2 and
CGK 2) hypotheses are included.

16

Miniforms Scanned from Microfilm
Field Error and Field Distance Rates at Field Rejection Rates

On-Time System 60% 50% 40% 0%

CGK 0 234 7.1 | 316 113 | 387 155 | 60.7. 32.6
ERIM 0 9.7 50 | 162 751246 118 | 500 25.7
ERIM 1 10.1 52 | 16.7 801254 124 ;509 26.7
IBM O 668 366 | 716 406 | 75.1 437 | 837 533
IBM 1 695 367 | 738 404 | 772 439 | 8.1 534
IBM 2 913 651|926 653 933 649 | 956 66.9
NIST 0 773 423 | 814 482 | 843 524 | 904 62.6
UBOL 0 708 476 1| 736 485) 771 524 | 820 554

Table 2. System Performance on Forms Scanned from Microfilm.

6. FTP Server

The Visual Image Processing Group of NIST's Computer Systems Laboratory makes the reports
from the Second Census Conference and some files associated with this set of databases available to the
public via an anonymous FIP server, sequoyah.ncsl.nist.gov. The files listed below are located in the
directory publocr_conf 2.

In addition, the server also holds files associated with the First Census Conference
(publocr_conf 1), most of the Internal Reports produced by the Group (pub/nist_internal_reports), pre-
prints of other papers (publ/preprints), a listing of standard image databases produced by the Group and
available on CD-ROM (pub/databases/catalog.txt), samples of some standard image databases
(publ/databasesi/data), and some source code as well.

6.1. announce.tar.Z

Compressed tar file containing text files that describe the Second OCR Systems Conference task,
file formats, etc. It is a copy of the subdirectory doc/announce from the Special Database 11 CD-
ROM.

62. samples l.tar

Tar file containing a directory with a sampling of Industry and Occupation miniform images. It
has the same directory structure that was used for Special Databases 11 and 12, the Second OCR Sys-
tems Conference training databases. The subdirectory data contains images from microfilm (100 files,
500 miniforms, 1500 total fields) and no reference files, while the subdirectory data3 contains images
from paper (60 files, 300 miniforms, 900 total fields) and the corresponding reference files.

6.3. samples 2.tar
) Tarﬁlecontéiningadirectorywithasamp]ingoflndusu-yandOecupaﬁonminifonnimages.It
is a copy of the subdirectory data from the Special Database 11 CD-ROM. The directory contains
images from microfilm only (200 files, 1000 miniforms, 3000 total fields) and the corresponding refer-
ence files.
64. refs_paper.tar.Z

Compressed tar file containing reference files for the paper Conference test images (9000 total
fields) on SD-13.
6.5. refs_microfilm.tar.Z

Compressed tar file containing reference files for the microfilm Conference test images (9000
total fields) on SD-13.

17

6.6. ir_5452.ptl.ps.Z

Compressed PostScript document containing the first 103 pages of the Second Census OCR Sys-
tems Conference report.

6.7. ir_5452.pt2.tar.Z

tar file containing the 158 PostScript files that contain pages 104-261 from the
Second Census OCR Systems Conference report. Those pages are mainly viewgraphs from Conference
participants and plots of their system performance curves at many rejection rates. Many of the files are
several megabytes in size because they are composed of several digitized viewgraphs. So that printer
spool directory capacity is not exceeded on UNIX systems, it is recommended that these pages be
printed one at a time in a loop that either waits for the queue to empty or sleeps for the typical printing
time for a large file (a few minutes on a SparcPrinter, but dozens of minutes on an older printer such a
LaserWriter II).

6.8. ir_4912.ps.Z
Compressed PostScript document containing the First Census OCR Systems Conference report.

18

References

[1] CCITT, "Facsimile Coding Schemes and Coding Control Functions for Group 4 Facsimile
Apparatus”, 1984.)

[21J. Geist et al, The Second Census Optical Character Recognition Systems Conference, NIST Internal
Report 5452, National Institute of Standards and Technology, Gaithersburg, MD 20899, May
1994,

[31 R. A. Wilkinson, Dictionary Production for Census Form Conference, NIST Internal Report 5180,
National Institute of Standards and Technology, Gaithersburg, MD 20899, April 1993

[4] PKWARE, Inc., General Format of a ZIP File, File appnote.txt, included in PKZIP 1.10 distribution.

[5] M. D. Garris and S. A. Janet, NIST Scoring Package User’s Guide, Release 1.0, NIST Internal
Report 4950, National Institute of Standards and Technology, Gaithersburg, MD 20899, October
1992,

[6] R. A. Wilkinson et al, The First Census Optical Character Recognition Systems Conference, NIST
Internal Report 4912, National Institute of Standards and Technology, Gaithersburg, MD 20899,
July 1992.

[71 M. D. Garris, Methods for Evaluating the Performance of Systems Intended to Recognize Characters
from Image Data Scanned from Forms, NIST Internal Report 5129, National Institute of Stan-
dards and Technology, Gaithersburg, MD 20899, February 1993.

[81 D. Sankoff and J. B. Kruskal (Editors), Time Warps Strmg Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, Reading, MA: Addison-Wesley, 1983.

19

Appendix A:
Example Form Reference File
SD-11 data0/d00/d00f01 ref

r00_£01 SODA POP MANUFACTURING
r00_£02 PROJECT MANAGER

r00_£03 CONSOLIDATION PROJECT MGR
r0l £01 FOOD MANUFACTURING
r01_f02 MARKETTNG RRAND MANAGER
r0l_£03 MANAGING 3 FOOD BRANDS
r02_£01 ADOLEC TREATMENT CENTER
r02_£02 CHILD CARE COUNSLER
r02_£03 PATIENT CARE

r03_£01 BOSPITAL

r03_£02 REG NURSE

r03_£03 PATIENT CARE

r04_f01 BANK SECURTTY PRODUCTS
r04_£02 SERVICE WORK

r04_f03 SERVICE BANK EQUIPMENT

Hypothetical Corresponding Hypothesis File
data0/d00/d00f01.hyp

r00_£01 SODAPOP MANUFACTURING
r00_f02 PROJECT MANAGER

r00_f03 CONSULTATION PROJECT MR
r0l_£01 FOOD MANUFACTURING
r01_£02 MARKETING MANAGER
r01_f03 MANAGING 8 FOOD BRANDS
r02_£01 ALCOEOL TREATMENT CENTER
r02_f02 CHILDCARE COUNSELOR
r02_£03 PATIENT CARE

r03_f01 HOSPITAL

r03_£02 REG NURSE

r03_£03 PATIENT CARE .
r04_f01 BANK SECURITY PRODUCTS
r04_£02 SERVICE WORK

r04 £03 SERVICE BANK

Hypothetical Corresponding Field-Level Confidence File
data0/d00/d00f01.con

r00_£01 0.80
r00_£02 0.45
r00_£03 0.33
r01_£01 0.67
r01_£02 0.70
rOl_f£03 0.93
r02_£01 0.60
r02_£02 0.88
r02_£03 0.77
r03_£01 0.86
r03_£02 0.82
r03_£03 0.55
r04_£01 0.73
r04_£0Z 0.94
r04_£03 0.89

Appendix B:
Manual Pages for Supplied Software

21

CHK FILES(1) USER COMMANDS CHK _FILES(1)

NAME

chk files - is a program that checks all the subdirectories and files for the 2nd Census OCR Systems
Conference entries.

SYNOPSIS

chk_files <path> <number> <type>
<path> is the complete path to the directories containing the hypothesis files
<number> is the number of directories present at the path specified above

<type> is the type of files to be checked
0 for everything (all three types)
1 for hypothesis files
2 for rejection files

3 for confidence files

DESCRIPTION

Chk_files chocks

1) for the existence of each expected file in each expected subdirectory;
2) for the existence of each expected line of each file;

3) that the LINE ID is correct for each expected line of each file;

4) that each LINE ID is followed by one, and only one, space character;
5) that each line (except the last) of each file ends in a NEW_LINE code;

6) that all characters between the LINE ID and the NEW_LINE code are from the set consisting of the
ASCII digits, the ASCII upper case English letters, and the ASCII space character;

7) that the last character before each NEW_LINE code is not an ASCII space;

8) that each file has no extra lines.

9) that each reject or confidence file line has only one entry

10) that each confidence file line contains a valid IEEE floating point number

11) that each confidence value is greater than or equal to 0 and less than or equal to 1

EXAMPLES

BUGS

chk_files /pub/ind_occ3/data0 25 0

None known.

22

DECOMP(1) USER COMMANDS DECOMP(1)

NAME
decomp - general decompression of NIST Thead Raster images
SYNOPSIS
decomp </Head file in> <[Head file out>
DESCRIPTION
Decomp takes a compressed ihead image file, examines the compression field of the header, and
applies the correct decompression algorithm storing the results as a decompressed ihead image in the
out file.
OPTIONS
IHead file in
Any NIST IHead raster image /Head file out Any NIST IHead raster image
EXAMPLES
decomp foo.pct fool.pct
FILES
fusr/share/include/ibead.h
NIST’s raster header include file
SEE ALSO
dumpihdr(1)
DIAGNOSTICS
Decomp exits with a status of -1 if opening ihdrfile fails.
BUGS

23

DUMPIHDR (1) USER COMMANDS DUMPIHDR(1)

NAME
dumpihdr - takes a NIST IHead image file and prints its header content to stdout
SYNOPSIS
dumpihdr ihdrfile
DESCRIPTION
Dumpihdr opens a NIST IHead rasterfile, formats the header contents and prints the header information
to stdout.
OPTIONS
ihdrfile any NIST IHead image file
EXAMPLES
dumpihdr foo.pct
FILES
ihead.h NIST’s raster header include file
SEE ALSO
ihdr2sun(1)
DIAGNOSTICS
Dumpihdr exits with a status of -1 if opening ihdrfile fails.
BUGS

FRAGMIS(1) USER COMMANDS FRAGMIS(1)

NAME
fragmis - fragments a NIST IHead multiple image set into unique NIST IHead files.
SYNOPSIS
fragmis </Head mis file> <rootname>
DESCRIPTION
Fragmis fragments a NIST IHead muitiple image set into NIST IHead files containing only one image
per file and giving each file a unique name. The name is generates using the rootname and the images

index in the multiple image set.
OPTIONS

ihdrfile Any ibead raster image
EXAMPLES

decomp foo.pct fool.pct
FILES

/usr/share/include/ihead.h

NIST’s raster header include file

SEE ALSO

dumpihdr(1)
DIAGNOSTICS

Decomp exits with a status of -1 if opening ihdrfile fails.
BUGS

25

HTOC(1) USER COMMANDS HTOC(1)

NAME
htoc - takes a hexadecimal value and returns to standard output the ASCII equivalent value.

SYNOPSIS
htoc <hex value>

DESCRIPTION
Htoc is a hexadecimal to character converter. Htoc takes the hex value as input and converts it to the
ASCII equivalent value then returns this value to standard output.

OPTIONS
hex value
Any two digit hexadecimal string
EXAMPLES
htoc 30

FILES
DIAGNOSTICS
BUGS

26

IHDR2SUN(1) USER COMMANDS IHDR2SUN(1)

NAME
ihdr2sun - takes an NIST IHead binary raster file and converts it to a Sun rasterfile

SYNOPSIS
ihdr2sun ihdrfile

DESCRIPTION

Thdr2sun converts an NIST IHead binary raster file to a Sun rasterfile. The Sun image file created will
have the root name of ihdrfile with the extension .ras appended.

OPTIONS
ihdrfile any THead binary image

EXAMPLES
ihdr2sun r0000_00.pct

FILES ,
rasterfile.h Sun’s raster header include file

ihead.h NIST’s raster header include file

SEE ALSO
rasterfile(5)

DIAGNOSTICS
Ihdr2sun exits with a status of -1 if opening ihdrfile fails.

BUGS

27

SUNALIGN(1) USER COMMANDS SUNALIGN(1)

NAME
sunalign - takes a sun rasterfile and word aligns its scanlines

SYNOPSIS
sunalign sunrasterfile

DESCRIPTION
Sunalign takes the file sunrasterfile and determines if the stored scan lines in the file require word
alignment. If so, the command overwrites the image data making scan lines word aligned. This com-
mand is useful when taking clipped images from the HP Scan Jet and importing them into Frame
Maker.

OPTIONS

sunrasterfile

any sun rasterfile image

EXAMPLES

suualign foo.ras
FILES

fusr/include/rasterfile.h

sun’s raster header include file

SEE ALSO

rasterfile(5)
DIAGNOSTICS

Sunalign exits with a status of -1 if opening sunrasterfile fails.
BUGS

28

XTRCTCLS(1) USER COMMANDS XTRCTCLS(1)

NAME
xtrctels - takes a cls file and an index into that file and prints out the value for that index in the cls
file.

SYNOPSIS
xtretels -{c,h} <clsfile> <index>

DESCRIPTION
Xtretcels takes the els file and an index into the file and prints out the value associated with that index
in the cis file. One of the two options must be specific, either < or -h. The < option prints the value
in ASCH character form. The -h option prints the value in hexadecimal form.

OPTIONS
xtretels -h foo.cls 3

FILES
DIAGNOSTICS
Xtrctels exits with a status of -1 if opening cls file fails.

BUGS

29

XTRCTMIS(1) USER COMMANDS XTRCTMIS(1)

NAME
xtretmis - takes a NIST [Head multiple image set file and an index into that file and copies the image
at the indexed position into the outfile.

SYNOPSIS
xtretmis </Head MIS file> <outfile> <index>

DESCRIPTION
Xtrctmis takes the NIST IHead MIS file and an index into that file and copies in NIST IHead format
the image at the indexed position into the outfile.
OPTIONS
xtrctmis foo.mis fool.pct 3
FILES
DIAGNOSTICS
Xtrctmis exits with a status of -1 if opening mis file fails.
BUGS

30

