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Thermal Shock: Comparisons with FAVOR and Weibull 

Stress Approaches   
by 

Bogdan Wasiluk, Xudong Qian and Robert H. Dodds Jr. 

 

Abstract 

Thick-walled reactor pressure vessels (RPVs) can potentially experience rapid temperature and pressure 
changes under pressurized thermal shock (PTS) conditions. This work describes progress towards utiliza-
tion of a Weibull stress approach for cleavage fracture assessment of RPVs subjected to PTS events. The 
Weibull stress approach couples the macroscopic crack driving force, J or JK , with the local, crack-front 
conditions for cleavage characterized by the Weibull stress and requires realistic stress analyses. Exten-
sive previous work focused on the conventional, linear-elastic stress-intensity factor (SIF), IK  values for 
flaws in RPVs. This study begins by comparing predictions of the macroscopic crack driving force ( JK ) 
made by the FAVOR (Fracture Analysis for Vessels – Oak Ridge) code with detailed, linear-elastic and 
elastic-plastic finite element analyses for circumferentially and axially embedded flaws located in a repre-
sentative RPV and subjected to two well characterized transients, denoted here as transients A and B. 
These solutions provide needed benchmarks for future efforts to approximate the nonlinear material re-
sponse near the crack front through a simpler, linear-elastic IK -T stress field imposed on a 2-D, small-
scale yielding configuration. The postulated loadings considered here include a critical thermal transient 
with a small change of internal pressure (Transient A) and a mild thermal transient concurrent with sig-
nificant re-pressurization (Transient B). The RPV models employ ferritic steel for the base material and 
austenitic steel for the cladding; the combination leads to pronounced mismatches in both the mechanical 
and thermal properties. The SIF computed from the linear-elastic analyses show lower values than the 

JK -solutions obtained from the elastic-plastic analyses. Based on previous research for the Weibull stress 
approach applied to through-crack fracture specimens, the current study concludes with proposals for re-
fined and simplified engineering procedures, as well as a IK -T stress methodology, for defect assess-
ments of curved, embedded flaws in RPVs under PTS conditions. 

 

Paperwork Reduction Act Statement 
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quirements of the Paperwork Reduction Act of 1995 (44 U.S. C. 3501 et seq.). 
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Foreword 
 
The U.S. Nuclear Regulatory Commission (NRC) has analyzed the potential for cleavage fracture in reac-
tor pressure vessels (RPVs) under pressurized thermal shock (PTS) loading, which may cause sudden fail-
ure without prior or extensive deformation. These analyses have been performed using the NRC-
supported Fracture Analysis of Vessels – Oak Ridge (FAVOR) computer code developed and maintained 
by the Oak Ridge National Laboratory (ORNL), which calculates crack opening (mode-1) linear-elastic 
stress-intensity factors (K1) for three-dimensional (3-D) embedded or surface cracks in the wall of an 
RPV. In contrast to the linear-elastic solutions generated using the FAVOR code, during a real fracture 
event, crack propagation would be accompanied by some level of plastic deformation at the crack front 
that would redistribute the stresses calculated by linear-elastic fracture mechanics (LEFM) theory to adja-
cent material. Use of LEFM analysis is simpler and computationally expedient but under certain loading 
conditions and crack sizes leads to less accurate values of the crack driving force (KJ) as predicted by the 
elastic-plastic fracture mechanics (EPFM) analyses presented in this report. This report describes a 
method for using EPFM analyses to improve accuracy in the LEFM-based FAVOR code predictions. 

This report describes 3-D elastic-plastic analyses for selected RPVs under severe PTS transients and pro-
vides a detailed procedure to benchmark probabilistic fracture mechanics schemes for implementation in 
an EPFM-based modular structural integrity evaluation code. Also, this study improves the understanding 
of failure assessment procedures for embedded cracks in RPVs under PTS events by (1) comparing the 
prediction of crack driving force (KJ) values via the linear-elastic FAVOR code and the detailed, elastic-
plastic, 3-D finite element analyses and (2) discussing in depth the three detailed assessment procedures 
and providing an illustrative example involving postulated PTS transients. 

The approach described in this report demonstrates the analyses used to evaluate reactor vessel’s resis-
tance to cleavage fracture, as implemented in the FAVOR code, is generally conservative.  For future ap-
plications of the FAVOR code to components in situations that exhibit greater plasticity (e.g., piping and 
thin-walled sections), this report describes a method for calculating the crack driving force with greater 
accuracy. 

 

 

_____________________________ 
        Jennifer L. Uhle, Director 
        Division of  Engineering 
        Office of Nuclear Regulatory Research 
        U.S. Nuclear Regulatory Commission 
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Executive Summary 
 
This work advances the understanding and numerical analysis procedures to predict the crack driving 
forces for embedded 3-D flaws in reactor pressure vessels (RPVs) subjected to pressurized thermal shock 
(PTS) events. A PTS event generates rapid cooling and significant changes in the internal pressure acting 
on an RPV. The decrease in temperature and the temperature gradients increase the probability of cleav-
age failure for ferritic steels in the wall of an RPV by localized loading along the crack front and by re-
ducing the material fracture toughness. The statistical sampling of potential flaws contains a wide range 
of shapes, sizes, locations and orientations in the wall of an RPV, constructed using ferritic steels with 
complex thermal and mechanical properties. The potential for cleavage fracture in RPVs under PTS 
causes concern since sudden failure can occur without extensive, prior deformation. One developing, 
probabilistic method of integrity assessment for such RPVs correlates the macroscopic toughness-
temperature relationship described by the Master Curve (as detailed in ASTM E-1921[29]) with the 
Weibull stress framework which characterizes the local, crack-front conditions through a scalar Weibull 
stress value. To compute the cumulative probability of fracture, this assessment approach requires a de-
tailed, realistic stress analysis, which depends significantly on the geometry of the existing flaw, tempera-
ture-dependent material properties, and complex thermal gradients over the wall thickness.   

In the past two decades, substantial research efforts [3-7] have generated comprehensive libraries of lin-
ear-elastic, stress-intensity weight functions for embedded or surface breaking flaws in RPVs subjected to 
combined thermal and mechanical loadings. The inherent assumption of linear-elastic behavior enables 
various superposition schemes to compute stress-intensity factors for real, 3-D flaws, coupled with 
Monte-Carlo simulations to characterize the key fracture toughness parameters in assessments of vessel 
integrity. The Fracture Analysis of Vessels – Oak Ridge (FAVOR), a computer code developed and main-
tained by the Oak Ridge National Laboratory (ORNL), provides a convenient tool to calculate mode I, 
linear-elastic stress-intensity factors ( IK ) for 3-D, curved flaws in the wall of an RPV. Stress redistribu-
tion in the real, elastic-plastic material behavior generally elevates the stress values adjacent to the other-
wise linear-elastic, asymptotic crack-tip field, and leads to increases of the crack driving force measured 
in terms of JK . Under elastic-plastic deformations, the interactions between the base (wall) and cladding 
materials of the RPV (with mismatched yield strengths) impose a potential effect on the crack-front stress 
fields near the base-cladding interface. The effects of nonlinear material response near the crack front and 
the interaction between the base and cladding materials under severe thermal-mechanical loading condi-
tions likely require a more accurate numerical description implemented in the framework of elastic-plastic 
fracture mechanics. The elastic-plastic analyses of RPVs under severe thermal-mechanical transients de-
scribed here establish benchmark cases for future efforts to approximate the elastic-plastic crack-front 
region by a simpler, IK -T field in a 2-D, small scale yielding (SSY) configuration.   

The scalar Weibull stress value can be used to characterize the local conditions for cleavage fracture 
along the front of an embedded flaw in an RPV. Computation of the Weibull stress integrates (numeri-
cally) an “effective” stress over a small fracture process zone surrounding the crack front. The value of 
the Weibull stress thus depends on the Weibull modulus (m), which characterizes the size distribution of 
microcracks in the material, and the size of the fracture process zone, defined by the stress cutting pa-
rameter (λ). A properly calibrated Weibull exponent, m, and a suitably defined λ determine directly the 
Weibull stress value, and thus affect the predicted cumulative probability of facture.  

Applications of the Weibull stress framework to RPVs under PTS conditions rely upon extensive previ-
ous research efforts [25-28, 39, 40] on the calibration schemes for various Weibull stress parameters of 
ferritic steels. These earlier works address the effects of crack-front constraint and the temperature de-
pendence (or independence) of the Weibull stress parameters for through-crack fracture specimens with 
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uniform temperature along the crack front. In contrast, the curved, 3-D crack fronts in the wall of an RPV 
experience potentially significant temperature gradients, which lead to variations in material properties 
and thermal loadings along the front. The temperature dependent Weibull scaling parameter, uσ , and the 
Weibull threshold stress, w minσ − , thus vary along the crack front. Applications of the 3-D Weibull stress 
framework to the embedded flaws in RPVs would require enormous numbers of complex 3-D models and 
nonlinear analyses; therefore, simplifications are needed for realistic engineering applications. 

The present study first examines the accuracy of different finite element types and models of material be-
havior on the computed values of macroscopic crack driving forces ( JK ) along the front of an embedded 
flaw in the wall of an RPV under two realistic thermal and mechanical transients. The numerical investi-
gation compares stress-intensity factors computed using the (linear-elastic) FAVOR code with the fully 
elastic-plastic analyses performed in the finite element code, WARP3D [36]. An independent numerical 
procedure computes the Weibull stress values from the 3-D stress fields obtained from the detailed, elas-
tic-plastic finite element analyses. Effects of two definitions for the Weibull “effective” stress are exam-
ined together with values specified for the stress cutting parameter (λ). Based on the current investigation 
and previous research work on the Weibull stress model [28, 39, 40], this study proposes a refined, a sim-
plified and a IK -T approximation approach for integrity assessments of RPVs with crack-like defects un-
der pressurized thermal shock events. The refined procedure divides the entire crack front into different 
subregions with a uniform temperature and a constant JK -value within each subregion. The total Weibull 
stress obtained through this procedure reflects a temperature-dependent uσ -value along the front. The 
simplified procedure adopts a uniform material toughness for the entire crack front. The IK -T methodol-
ogy approximates the nonlinear 3-D crack-front fields with an equivalent IK -T field on a 2-D SSY con-
figuration.  
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1 Introduction  
 

Reactor pressure vessels (RPVs) are thick-walled, cylindrical steel structures enclosing the reactor core in 
a nuclear power plant. RPVs experience a wide range of complex, thermal-mechanical loadings during 
their service life. Pressurized thermal shock (PTS) refers to an accident scenario in an RPV that causes 
severe cooling concurrent with or followed by significant pressure changes within the vessel. Non-
uniform temperature distributions and subsequent differential expansions and contractions generate poten-
tially significant tensile stresses in the vessel and thereby elevate the load intensity on any crack-like de-
fect located in an RPV. Rapid cooling at a high internal pressure may cause conditions that increase the 
potential for crack initiation and cleavage (brittle) fracture at critical locations in the wall of an RPV. De-
terministic fracture mechanics assessments become extraordinarily challenging in view of the complex 
geometry and transient thermal-mechanical loading histories, coupled with a wide range of potential crack 
sizes, shapes, and locations in the vessel wall. However, limited studies using deterministic fracture me-
chanics offer an opportunity to benchmark various simplified, probabilistic fracture mechanics schemes, 
which provide a more convenient and computationally affordable tool for the failure assessment of RPVs 
under PTS conditions. Such simplified probabilistic approaches [1-2] adopt principles of linear-elastic 
fracture mechanics (LEFM) to make the computational effort tractable, even though significant plastic 
deformation would often occur along the front of a critical crack during a PTS event.  

Over the past two decades, significant computational modeling has generated catalogs of linear-elastic 
solutions for 3-D crack configurations of the type that can develop in RPVs [3-7]. The Oak Ridge Na-
tional Laboratory (ORNL) in the U.S. leads the work to formulate the extensive database of stress-
intensity-factor influence coefficients (i.e., weight functions) for flaws located in the wall of an RPV [6, 
7]. The Fracture Analysis of Vessels – Oak Ridge (FAVOR), a computer code developed and maintained 
by ORNL, incorporates these weight functions to compute linear-elastic, mode I stress-intensity factors 
for realistic 3-D flaws in RPVs, with accuracy ensured through extensive benchmark studies [8, 9]. Prob-
abilistic assessments of vessel integrity, for example, as performed using the FAVOR code [10, 11], em-
ploy various superposition schemes made possible by the assumption of linear-elastic behavior to make 
tractable Monte Carlo analyses on desktop PCs (statistical sampling of crack size, shape, orientation, po-
sition, loading transient, etc.).  

Probabilistic assessment of vessel integrity also requires a realistic modeling of the expected statistical 
variations in fracture toughness of the ferritic steels used to construct RPVs. The probabilistic treatment 
of cleavage fracture toughness utilizes a statistical description [12] (typically the weakest link model [13-
16]) for the transgranular cleavage mechanism in ferritic steels. The Weibull stress framework, originally 
proposed by the Beremin group [16, 17], assumes that there exist small, but finite, volumes of material 
which fully embody a population of flaws, whose size and density constitute material properties. The cu-
mulative probability of fracture depends on the statistical distribution of the microcracks, which can be 
characterized by the so-called Weibull stress using the Griffith fracture criterion [18]. The Weibull stress 
framework has become a commonly recognized approach to quantify the driving force for cleavage frac-
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ture [19-22], to characterize material toughness properties [23, 24], and to develop and apply constraint 
corrections [25-27] which accommodate differences in crack-front conditions between small laboratory 
test specimens and RPVs. Recent work by Petti and Dodds [28] suggests that coupling of the Weibull 
stress approach and the macroscopic Master Curve concept (as outlined in ASTM E-1921 [29]) can dra-
matically reduce the (laboratory) testing of fracture specimens required for calibration of parameters in 
the Weibull stress model for a specific ferritic steel. The outcome is a new modeling process that attains 
the simplicity of an “engineering” approach for assessment of vessel integrity for a cleavage fracture 
event. 

Current research efforts in the U.S. and Europe aim to extend the linear-elastic fracture mechanics 
(LEFM) framework as represented by FAVOR to include effects of elastic-plastic deformation along the 
fronts of 3-D flaws to support a more accurate (and realistic) estimation of the probability of cleavage 
fracture in an RPV. This new work is driven by the following two developments in recent years: the 
widespread application of the Master Curve approach to characterize the cleavage fracture toughness of 
RPV steels for elastic-plastic conditions that occur over the ductile-to-brittle transition region [30-32], and 
developments in the analytical-computational methods that make possible approximate treatments of plas-
ticity on driving forces for complex geometries ( IK  coupled with the T-stress) [33, 34]. Kirk and Mitchell 
[35] describe potential applications of the Master Curve concept in characterizing the fracture toughness 
for PTS assessments of reactor pressure vessels. Recently, thirty-four researchers representing twenty-five 
organizations from thirteen countries participated in an international project titled "International Com-
parative Assessment Study of Pressurized Thermal Shock in Reactor Pressure Vessels (RPV PTS ICAS)" 
[34]. This project performed a comparative evaluation of analysis methodologies employed in the assess-
ment of RPV integrity under PTS conditions. The assessment methodologies reflect the work of three task 
groups: deterministic fracture mechanics (DFM), probabilistic fracture mechanics (PFM) and thermal-
hydraulic mixing (THM). One outcome of this effort is a conflicting set of stress-intensity factor values 
computed for embedded and surface breaking defects in RPVs that differ based on model refinement, 
element type and meshing details. 

The current study continues and extends these efforts. The macroscopic crack driving force, JK , is com-
puted along the crack front for axially and circumferentially embedded flaws in two benchmark PTS tran-
sients, denoted here as Transients A and B. The computational models employ very detailed, 3-D finite 
element meshes built from 8-node or 20-node brick elements, with linear-elastic or elastic-plastic material 
properties. The computed crack driving force ( JK ) provides a measure to compare the (current) linear-
elastic version of the FAVOR code with the detailed, elastic-plastic analyses which represent more 
closely the nonlinear response along the crack front. This comparison builds key benchmark solutions for 
future, planned efforts to approximate the elastic-plastic material behavior near the crack front using a 
simplified, linear-elastic IK -T field coupled with Weibull stress computations for 2-D (plane-strain) 
small-scale yielding (SSY) models. The current study also computes Weibull stress values along the en-
tire front of the embedded cracks to explore different effective stress definitions and details of the nu-
merical procedure. The existing Weibull stress framework successfully characterizes the probabilistic as-
pects of cleavage fracture for through-thickness cracks, in laboratory test specimens. In such cases, the 
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local variations of JK  and local Weibull stress values along the (relatively) straight crack fronts pose no 
significant difficulties in applications of the Weibull stress model. For embedded cracks in RPVs, with 
strong variations of the crack driving force along the curved fronts from through-wall thermal gradients, 
the proper application of the Weibull stress model becomes considerably more complex. Some prelimi-
nary numerical results for Weibull stress values computed for embedded flaws in RPVs under PTS tran-
sients are presented to guide future work. To motivate follow-on efforts, the current study proposes re-
fined and simplified Weibull stress approaches for embedded cracks in RPVs under PTS events.  

The organization of this report is as follows. Section 2 describes briefly the computational procedure 
adopted in the FAVOR code and key features of the domain integral approach to incorporate thermal 
loading as implemented in the WARP3D code. A short summary of the Weibull stress model is included 
for completeness. Section 3 outlines the finite element modeling procedures employed here, including the 
geometry of the RPVs, material properties, the transient loading conditions and the details of the con-
structed models, using 8-node and 20-node brick elements. Section 4 compares the crack driving forces, 
characterized by linear-elastic IK -values and elastic-plastic JK -values, computed for Transients A and 
B. Section 5 provides Weibull stress values for the axially embedded flaw under the Transient A, and ex-
plores two definitions of the kernel for the Weibull stress integral and definitions of the fracture process 
zone. Section 6 outlines the simplified and refined approaches to apply the Weibull stress model in the 
assessments of RPVs with embedded cracks. Section 7 summarizes the conclusions drawn from this 
study. 
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2 Computational Procedures and the Weibull Stress Model 
 

2.1 FAVOR Code 

The Oak Ridge National Laboratory (ORNL) develops and maintains a computer code, the “Fracture 
Analysis of Vessels – Oak Ridge” (FAVOR), to perform deterministic and probabilistic fracture mechan-
ics analyses of nuclear reactor pressure vessels subjected to pressurized thermal shock and other pressure-
thermal events [10, 11]. FAVOR computes the temperature profile through the wall of an RPV over the 
time history of an event by solving the transient heat conduction equation for a 1-D axisymmetric finite 
element model of the combined cladding and base materials in the vessel wall. FAVOR also performs a 
linear-elastic, finite element, thermal-mechanical stress analysis using a 1-D, axisymmetric model for the 
vessel wall. The stress values derive from the computed displacements through a linear, strain-
displacement relationship and a linear-elastic stress-strain relationship. These stress values approximate 
the loading of material in a vessel wall (no openings or discontinuities) in the absence of a crack. FAVOR 
computes values of the linear-elastic stress-intensity factors using the principle of superposition. Flaws 
are assumed to experience only mode I loading and plastic zones near the crack front are assumed to re-
main vanishingly small. With these assumptions, FAVOR computes the mode I stress-intensity factors for 
realistic, three-dimensional geometries containing embedded flaws through a comprehensive library of 
weight functions (stress-intensity-factor influence coefficients), and for surface flaws with a finite or infi-
nite length. Nominal stresses from the 1-D axisymmetric solutions, that vary over the wall thickness, pro-
vide the “applied” stresses to scale and to integrate the weight function values. Prior research using the 
ABAQUS code (http://www.simulia.com) for generation of the weight function values ensures acceptable 
accuracy of FAVOR IK  values. The stress-intensity factors computed using FAVOR in the current study 
refer to the mode I stress-intensity solutions for an embedded crack in the wall of an RPV. The ongoing 
developments for the FAVOR code include many advanced technologies from the latest research work 
[10, 11].  

 
2.2 Computation of J Integral Values for Mechanical and Thermal Loading 

The current study employs the domain integral approach implemented in the finite element research code 
WARP3D [36] to compute the linear-elastic and elastic-plastic crack driving forces along 3-D curved 
crack fronts subjected to combined mechanical and thermal loading. The local energy release rate at a 
point s along a 3-D, non-growing crack front under static and thermal loadings follows from, 

( ) 10 1
lim i

ji j
uJ s Wn P n d
XΓΓ

Γ
→

⎡ ⎤∂
= −⎢ ⎥∂⎣ ⎦

∫ ,  (1)  

where Γ is a vanishingly small contour in the plane normal to the crack front at s, and n is the unit vector 
normal to the contour Γ. W is the strain energy density, and jiP  is the component of the nominal stress 
tensor (1st Piola-Kirchhoff stress tensor), which is the non-symmetric tensor denoting the stress compo-
nents based on the undeformed geometry. 1X - 2X - 3X  form a local Cartesian coordinate system at point 
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s along the crack front with an origin at the crack-tip. 3X  lies tangent to the crack front at s in the crack 
plane, while 1X  and 2X  lie in the plane normal to the crack front at s, with X2 perpendicular to the crack 
plane. 

In the domain-integral approach for a three-dimensional crack front, Eq. 1 becomes a surface integral de-
fined over a small tube-shaped region from point as  to cs , 

( ) ( ) 1 20
lim c

a

s
a c

s
J J s q s d J J

Γ
Γ−

→
⎡ ⎤= = +⎣ ⎦∫ ,  (2)  

where s denotes a position along the crack front, and q(s) is a weight function, essentially defining a vir-
tual displacement field in the direction of crack extension. With application of the divergence theorem, 
the energy release rate under static loading, 1J , and the energy release rate under thermal loading, 2J , 
become 

1
1 1orig

i
ji origV j

u q qJ P W dV
X X X

⎛ ⎞∂ ∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ,  (3) 

2

2
1 1orig

i
ji origV j

uWJ P q dV
X X X

⎛ ⎞∂∂
= − −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
∫ ,  (4) 

where origV  represents the undeformed volume of the finite domain surrounding the crack-tip. The 2J in-
tegral vanishes for homogeneous, elastic material (linear or nonlinear) in the absence of thermal strains. 

Replacing jiP  by the conventional Cauchy stress tensor, ijσ , for small strains and small displacement 
gradients, Eq. 4 further simplifies to, 

2
1 1orig

ij
ij ij origV

a
J a q dV

X X
Θσ Θ

∂⎛ ⎞∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫ ,  (5) 

where Θ  refers to the deviation of temperature from a reference temperature, and ija  denotes the tensor 
of thermal expansion coefficients. For a constant (isotropic) thermal expansion coefficient, a, Eq. 5 be-
comes, 

2
1orig

ij origV
J a q dV

X
Θσ ∂

=
∂∫ .  (6) 

The J-integral value at point bs  derives from the mean-value theorem over the interval a cs s s< < . 

( )
( ) ( )

( )

c

a

c

a

s

s
b s

q
s

J s q s ds JJ s
Aq s ds

≈ =
∫
∫

.  (7) 

The crack driving force, denoted as an equivalent stress-intensity factor, JK , follows from the J integral 
value,  
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21J
JEK

v
=

−
,  (8) 

for the assumption of effectively plane-strain conditions locally along the front of an embedded crack in 
the vessel wall. The conversion to an “equivalent” JK -value applies strictly under linear-elastic and 
small-scale yielding conditions (as implied in ASTM E-1921). Consequently, JK -values computed here 
using WARP3D for linear-elastic material response are directly comparable to IK -values computed using 
FAVOR for the same configuration and loading. Under elastic-plastic conditions, JK -values typically 
exceed IK -values due to load redistribution of plastically deforming material along the crack front. The J 
→ JK  conversion thus provides only a “convenient” value for comparison to IK -values computed for 
linear-elastic material response. 

 
2.3 Weibull Stress Model 

The weakest link model assumes that fracture of an entire volume of material depends on a single initiator 
[12, 37, 38], or equivalently a single microcrack. Weakest link concepts form the technical basis for the 
first testing standard developed specifically to address the unique statistical issues with ferritic steels at 
temperatures over the ductile-to-brittle transition region (ASTM E1921 [29]). The macroscopic fracture 
model, as outlined in ASTM E-1921, assumes that the temperature, the local stress field and the local J-
values remain essentially uniform along the entire crack front and that small-scale yielding conditions 
prevail at the cleavage fracture event. SSY conditions insure the unique correspondence across specimens 
between the crack-front J-value and the local crack-front strains-stresses at fracture. The corresponding 
microscopic fracture model employs directly the strains-stresses at each crack-front location. SSY condi-
tions then become unnecessary to establish the link with the scalar measure (J) of the loading. The 
Beremin group [16] introduced the most widely used microscopic model. In this model, a local fracture 
parameter, the so-called Weibull stress ( wσ ), defines an integrated, scalar measure of the crack-front con-
ditions driving cleavage fracture at increasing levels of external loading. Numerical analyses connect val-
ues of wσ  with external loading of the specimen-structure and may include complexities from variable 
crack-front geometry, cladding, large-scale yielding, thermal-mechanical loading, etc.  

By correlating an assumed, inverse-power density distribution of critical microcrack sizes with the local 
stress through a simple fracture mechanics model, the Beremin group [16] derived the cumulative failure 
probability for a two-parameter Weibull stress model, 

( ) 1 exp
m

w
f w

u
P σ

σ
σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

,  (9) 

where m is the Weibull modulus, the value of which depends on the statistical distribution of microcrack 
sizes in the material, and the scalar Weibull stress, wσ , follows,  

1/

0

1
f

m
m

w eff fV
dV

V
σ σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
∫ . (10) 
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The Weibull scale parameter, uσ , denotes the Weibull stress value at a cumulative fracture probability of 
0.632, or ( )f w uP σ σ= = 0.632. 0V  defines the (normalizing) reference volume and fV  represents the 
fracture process zone. The practical approach to compute the Weibull stress employs numerical integra-
tion of an “effective” stress measure, effσ , over the fracture process zone at each loading level imposed 
on the finite element model. The effective stress most often takes the value of the maximum principal 
stress, 1σ , or the hydrostatic stress, ( )1 2 3 / 3Hσ σ σ σ= + + .  

The fracture process zone contains a region of plastically deformed, crack-front material over which the 
effective stress exceeds a characteristic value, 0λσ , with a typical value of 2λ =  (here 0σ  denotes the 
uniaxial, tensile yield stress). The normalizing volume, 0V , cancels in applications of the Weibull stress 
model to compare crack-front conditions for the same material and takes a value of unity in this paper. 
The numerical implementation of the Weibull stress calculation follows, 

1/
1 1 1

1 2 31 1 10

1

e

m

m
w eff Jac

n

J d d d
V

σ σ η η η
− − −

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦
∑∫ ∫ ∫ , (11) 

where en  denotes the number of elements inside the fracture process zone, and JacJ  defines the determi-
nant of Jacobian between the global coordinate system ( x, y, z ) and the element local coordinate system 
( 1 2 3, ,η η η ). 

Petti and Dodds [28] propose a Weibull stress-based, three-parameter cumulative probability of fracture 
model, which requires a minimum threshold Weibull stress to obtain non-zero probabilities of fracture, as 
given in Eq. 12, 

  ( )
4/ 4 / 4

/ 4 / 41 exp
m m
w w min

f w m m
u w min

P σ σ
σ

σ σ
−

−

⎡ ⎤⎛ ⎞−⎢ ⎥= − −⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
. (12) 

The minimum (threshold) Weibull stress, w minσ − [ ( )w min w J minK Kσ σ− = = ], depends on the crack-front 
length, material flow properties, temperature and Weibull parameters (m, 0V ) [28]. Equation 12 maintains 
consistency with the macroscopic, three-parameter expression employed in E-1921 [29] to characterize 
the cumulative fracture probability, with JK as the crack front driving force. For a fixed exponent (m), 
Petti and Dodds [39] demonstrate that the Weibull scaling parameter, uσ , increases with increasing tem-
perature, which reflects the increasing microscale toughness of ferritic steels caused by local events that 
include plastic shielding of microcracks, microcrack blunting and microcrack arrest. Further, w minσ − will 
vary with temperature as the material flow properties vary with temperature over the DBT (even though 
the macroscopic threshold toughness, minK , is often assigned a temperature invariant value). 

Applications of the Weibull stress model to fracture assessments of RPVs require calibration of the 
Weibull parameters, m, uσ  and w minσ −  (or minK ). Gao et al. [21] developed a new approach to calibrate 
the Weibull stress parameters (m, uσ ) for ferritic steels. Their approach derives from the imposed re-
quirement that, over the DBT region, the Weibull stress fracture model predict the macroscopic (1) varia-
tion of fracture toughness vs. temperature and (2) statistical variability of toughness values at each tem-
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perature over the DBT region as represented by the Master Curve model-procedures reflected in ASTM 
E1-1921. The calibration procedure employs measured fracture toughness values obtained for high con-
straint (SSY) and low constraint [large scale yielding (LSY)] configurations. Petti and Dodds [39] utilize 
the Master Curve characterization of the macroscopic toughness ( JcK ) vs. temperature relation obtained 
by as few as six fracture specimens at one temperature to calibrate the Weibull scale parameter, uσ , as a 
function of temperature. They demonstrate, through measured properties of two pressure vessel steels 
(A533B and A508), that the scale parameter, uσ , increases significantly with temperature for a fixed 
Weibull modulus, m, in a three-parameter Weibull stress model. Wasiluk et al. [40] present a calibration 
study of the three parameter Weibull stress model for a 22Ni-MoCr37 pressure vessel steel, utilizing the 
large-scale datasets from a European Union research project – “Fracture toughness of steel in the ductile 
to brittle transition regime” [41, 42]. Wasiluk et al. [40] demonstrate an effective, temperature invariance 
of the Weibull modulus, m, and a temperature dependence of the Weibull scale parameter, uσ , through 
calibrations at two extreme temperatures of the ductile-to-brittle transition (DBT) regime for this common 
RPV steel. The calibration outcome for this type of steel implies that minK  increases gradually with tem-
perature, in contrast to the simpler assumption of a fixed value of 20minK =  MPa m  adopted in E-1921. 
Section 5.2 provides additional details on the calibration process to set the Weibull stress parameters for 
specific materials. 
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3 Finite Element Modeling 
 
3.1 RPV with Embedded Flaws 

The current study investigates a reactor pressure vessel containing embedded flaws for two different PTS 
transients, A and B. Figure 1 illustrates the geometric configuration of the reactor pressure vessel. The 
designated RPV has an internal radius of iR = 1994 mm, with a wall thickness of wallt = 204 mm. The 
height of the cylindrical part in the RPV is 6960 mm. The numerical analyses consider planar elliptical 
flaws, axial and circumferential, with both embedded near the interface of the base and cladding material. 
The plane of the circumferentially embedded flaw lies perpendicular to the longitudinal axis of the cylin-
drical part in the RPV. The plane of the axially embedded flaw lies on the plane formed by the longitudi-
nal axis and the radial axis of the cylinder. Table 1 lists the location parameter (d) and dimensions of the 
embedded cracks. Previous investigations [43] assess the conditional probability of initiation (CPI) and 
indicate that the selected flaw sizes and locations for study here contribute significantly to the CPI. The 
circumferential flaw represents an idealized elliptical crack with / 10c a =  and 2 4a = mm, while the axial 
flaw has an assigned value of / 6c a = , with 2 17a = mm. The distance d between the inner edge of the 
RPV and the nearest point along the crack front is 1.9 mm for the axially embedded flaw and 2.5 mm for 
the circumferentially embedded flaw. The thickness of the cladding material, cladt , equals 4 mm for both 
models. 

 
3.2 Material Properties of the Base and Cladding Steels 

The base material of the RPV for the models is representative of an ASTM-A533B ferritic steel, with a 
typical yield strength, 499yσ =  MPa, and the Young’s modulus, 193E =  GPa. The cladding material has 
properties of an austenitic stainless steel with 163yσ =  MPa, and 157E =  GPa. The Poisson ratio is 
fixed at 0.3 for both materials. Figure 2 shows the uniaxial true stress – logarithmic strain relationship for 
the ferritic steel and the austenitic steel. The maximum logarithmic strain value equals 2 for the base ma-
terial to enhance the accuracy of the stress-strain solutions near the crack-front. Beyond the maximum 
strain specified in Fig. 2, the material properties follow a perfectly plastic response. The coefficient of 
thermal expansion (CTE) has a value of 614 10−×  o1/ C  and 617 10−×  o1/ C  for the base and cladding 
steels, respectively. With this yield strength and CTE, the cladding steel experiences larger thermal 
changes in strain and more plastic deformation than does the base steel under a pressurized thermal shock 
condition. This preliminary study adopts temperature independent properties for both materials (the val-
ues above remain constant with variations in the temperature during the transient loading imposed on the 
computational model). 
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Table 1. RPV and embedded elliptical flaw dimensions.  
 

Parameters [mm] Circumferential Axial 
d 2.5 1.9 
2a 4 17 
2c 41 102 

twall 204 
tclad 4 
Ri 1,994 

 
 

3.3 PTS Transients 

These RPVs with embedded flaws would experience both rapid cooling and internal pressurization 
changes during a PTS event. Figure 3 illustrates the variations of coolant temperatures and internal pres-
sures for Transients A and B respectively. These transients follow from a risk assessment performed by 
the Sandia National Laboratories to identify sequences that may be important for risk due to PTS. Varia-
tions of the thermal-mechanical responses over the time history for the critical transients are generated 
using the RELAP5 code [44]. Simple linear interpolation of these cooling temperatures and the internal 
pressures yields the smoothed thermal and mechanical loading histories for application in the fracture me-
chanics models. For Transient A, the coolant temperature decreases from 286 o C  at 0t =  to 43 o C  at 

18t =  min. The internal pressure decreases from 15.9 MPa at 0t =  to 0.4 MPa at 20t =  min, and then 
remains at a constant value of 1 MPa for 21t >  min. For Transient B, the coolant temperature decreases 
from 278 o C  at 0t =  to 61 o C  at 141t =  min, and thereafter increases again to 113 o C  at 200t =  min. As 
observed on these figures, Transient B shows a more complex mechanical loading history. The internal 
pressure decreases from 14.5 MPa at 0t =  to 6 MPa at 8t =  min. The pressure remains approximately at 
the same value until 139t =  min, when the internal pressure increases rapidly to 16.9 MPa at time 

147t =  min and maintains that level until 200t =  min.  

With these estimated coolant temperature histories for the PTS event, the FAVOR loading module [10, 
11] computes the temperature variation across the wall thickness of the RPV over the time history using 
deterministic analyses with 1-D axisymmetric models. Figure 4 shows the computed temperature profiles 
over the normalized wall thickness, ( ) /nom i wallt R R t= − , for Transients A and B at time intervals of 5 
minutes, where 0nomt =  indicates the inner surface of the vessel. For Transient A, the temperature near 
the inner surface decreases rapidly as a result of sudden cooling, which generates high temperature gradi-
ents and local bending stresses across the wall thickness. Figure 4b indicates a less severe temperature 
gradient over the wall thickness for Transient B. 
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3.4 Finite Element Models 

The current study employs two types of finite element models constructed using 8-node brick elements 
and 20-node brick elements, respectively. Both elements are of the isoparametric formulation. A very 
convenient, MS-Windows-based crack mesh generator, FEACrack [45], is used to build the crack-front 
mesh, with subsequent, additional mesh generation completed in MSC Patran. For the linear-elastic 
analyses, the crack-front mesh utilizes collapsed elements sharing a single node at each crack front loca-
tion. For meshes generated with 20-node elements, the mid-side of the first ring of elements incident on 
the crack front are positioned at the quarter-point location along the corresponding element edges. For 
elastic-plastic analyses, elements at the crack front are also collapsed at the same location, but with 
unique nodes and numbering. The mid-side nodes for the nonlinear models remain at the mid-point loca-
tion of the element edges for meshes using 20-node elements. For both the linear-elastic and elastic-
plastic analyses, the cladding steel at the inner surface of the RPV is modeled with four layers of ele-
ments. 

Figure 5 shows the 8-node finite element mesh for the RPV with a circumferentially embedded flaw. The 
presence of two global planes of symmetry permits the use of a quarter-symmetric model. The linear-
elastic analysis employs a model with 83,976 elements and 90,500 nodes, while the elastic-plastic analy-
sis utilizes the same number of elements with 90,748 nodes. The finite element model has 30 elements 
along the full length of the semi-elliptical crack front, with 20 focused domains (rings) of elements for 
computation of J-integral values around each crack-front node. Each “domain” then contains 8 elements 
enclosing each crack-front location, i.e., the mesh resolution in the θ  direction is 8 elements.  

Figure 6 shows the 8-node finite element mesh generated for an RPV containing an axially embedded 
flaw. The model for the linear-elastic analysis consists of 82,586 elements and 90,176 nodes, and 58,636 
elements and 64,587 nodes for the elastic-plastic analysis. The crack front contains a highly refined mesh 
with 73 elements along the full length of the semi-elliptical crack front. 

We investigated the different element types to explore the potential effects on computed J-values for 
these thermal loadings with locally severe, spatial gradients. These temperature gradients induce bending-
type deformations which cause shear locking behavior in the 8-node brick elements, and thus an overly 
stiff response. The pressure loading alone generates very smooth, through-wall stress gradients readily 
accommodated with the fine mesh of 8-node brick elements. The 20-node elements with reduced 
( 2 2 2× × ) integration alleviate the shear locking phenomena but are more computationally demanding in 
these large, refined models. Figures 7 and 8 illustrate the details of the 20-node meshes for RPVs with a 
circumferentially and an axially embedded flaw, respectively. The crack front contains 30 elements with 
20 domains of focused elements to compute the values of the J-integrals at each crack-front node loca-
tion. 

The 8-node and 20-node meshes share identical, remote boundary conditions. On the two planes of sym-
metry ( 0y =  and 0z = ), the numerical analysis constrains the displacements perpendicular to the corre-
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sponding plane. To avoid remaining rigid body motions, the analysis prevents displacement in the x-
direction for the node located at 1994x =  mm, 0y =  and 0z = . 

To represent the mechanical loading during the PTS event, the analyses apply a spatially uniform pressure 
on the inner face and a spatially uniform traction on the plane normal to the y-axis at the remote end 
( 3480y =  mm) of the model. For these flaws located completely within the wall of the vessel, there is no 
applied crack face pressure. For the thermal loading, a special software code was developed to assign 
temperatures to every node of the finite element model over the entire time history with 1tΔ =  min. The 
temperature profile over the wall thickness follows the deterministic analyses performed for Transients A 
and B in FAVOR shown in Figs. 4a and 4b. Simple linear interpolation defines the temperature values for 
nodes located between positions in the wall thickness included in the FAVOR 1-D model. 

Finite element analyses of the 3-D models described above are performed using the research code 
WARP3D [36] on a high-end (Itanium) HP UNIX workstation. Nonlinear material response follows the 
Mises constitutive model with 2J  flow theory. The element response follows the finite-strain formula-
tion. The B  modification prevents the volumetric locking for 8-node elements during incompressible 
plastic deformation (but does not improve the shear locking behavior). The B  approach makes the 8-node 
element have constant mean stress over the element volume (this is the only formulation available for the 
8-node element in the widely used ABAQUS program, for example). The WARP3D includes domain in-
tegral procedures that automatically compute J values in the specified domains along the crack front. 
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4 Crack Driving Forces for Two Transients  
 
4.1 Transient A 

Figure 9 shows the linear-elastic, crack driving force, IK , along the elliptical crack front computed for 
both the axially embedded flaw and the circumferentially embedded flaw. The curves show the distribu-
tion of IK  values at three times, 10t =  min, 18 min and 30 min. These results are obtained with 8-node 
element meshes using the WARP3D code. The linear-elastic IK -values are computed from J-values us-
ing the plane-strain conversion, 2/(1 )IK EJ v= − . The sketch in Fig. 9 illustrates the positive and nega-
tive values for the positional angle along the crack front, φ. The crack driving force shows a minimum 
value at 0φ = (point A), and increases at locations nearer the inner surface or the outer surface of the 
RPV. IK  reaches the maximum value at / 2φ π= (point B), which also experiences the lowest tempera-
ture among all the crack-front nodes. Because the maximum crack driving force occurs at / 2φ π= , the 
stress-intensity factors reported in subsequent figures all refer to IK  values at / 2φ π= . 

Figures 10a and 10b compare the JK -values computed using the FAVOR code with the linear-elastic and 
elastic-plastic values obtained using the 8-node FE models in WARP3D. The values from FAVOR refer 
to the linear-elastic, mode I stress-intensity factor ( J IK K= ), computed from weight functions of SIFs 
with crack face loadings from the axisymmetric finite element models. The stress-intensity factors from 
3-D FE analyses in WARP3D, which include potentially mixed-mode crack driving forces caused by the 
thermal loading, follow from the J-integral values using the plane-strain conversion in Eq. 8. JK -values 
from WARP3D are identical to IK -values for linear-elastic analyses. 

The numerical solution for Transient A terminates at 50t =  min, beyond which the thermal and mechani-
cal loading does not produce a more critical crack-front condition than the loading conditions for 

50t < min (as illustrated in Fig. 3). For the circumferentially embedded crack, peak crack-front loads oc-
cur at 18t =  min for all three solutions as illustrated in Fig. 10a. Among the three analyses shown in Fig. 
10a, FAVOR predicts the highest JK -values. The JK -values computed for the (WARP3D) linear-elastic 
analysis and the elastic-plastic analysis remain approximately equal up to 14t =  min, beyond which the 
temperature gradient across the wall thickness becomes more significant, causing higher stress-intensity 
factors in the elastic-plastic solution. At 18t =  min, the linear-elastic solution from WARP3D indicates a 
20% lower value than the prediction by the FAVOR code, or (FAVOR) (WARP3D) 7.6I JK K− =  
MPa m . The JK -value at 18t =  min computed from the elastic-plastic analyses remains 9% lower than 
the (LEFM) FAVOR solution.  

Figure 10b compares the JK -values for an elliptical crack (axially embedded) in the wall subjected to 
Transient A, computed through the FAVOR code and WARP3D analyses (using models with 8-node ele-
ments). As found for the circumferentially embedded crack, the stress-intensity factor reaches a peak 
value again at 18t =  min for all three solutions. The circumferential hoop stress in the wall of a cylindri-
cal vessel (caused by the internal pressure), acting normal to the face of the axially embedded crack, has a 
value approximately twice as large as the longitudinal axial stress acting perpendicular to the face of a 
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circumferential flaw. The initial internal pressure, therefore, generates more significant plastic deforma-
tion near the tip of the axially embedded crack compared to the front region of the circumferentially em-
bedded crack. The stress-intensity factor computed using the elastic-plastic analysis deviates from the 
linear-elastic solution at an earlier time ( 10t ≈ min) for the axially embedded crack, compared to the 
circumferentially embedded crack which experiences similar magnitudes of linear-elastic and elastic-
plastic crack driving force, JK , until 14t =  min, as shown in Fig. 10a. At 18t =  min, the linear-elastic 
stress-intensity factor from WARP3D is 19% lower than the crack driving force predicted using the FA-
VOR code, while the elastic-plastic stress-intensity factor computed from WARP3D is 7% lower than the 
FAVOR solution.   

The stress-intensity factors computed using the 20-node element models demonstrate significantly higher 
values compared to the JK  solutions obtained from the 8-node element models, as illustrated in Figs. 10c 
and 10d for both linear-elastic and elastic-plastic analyses. For the circumferentially embedded crack, the 
peak stress-intensity factor (at 18t =  min) predicted by the elastic-plastic analysis (using the 20-node 
element model) approaches the (linear-elastic) IK -value calculated by the FAVOR code and is 8% higher 
than the value obtained from the 8-node element model. The linear-elastic stress-intensity factor calcu-
lated using the 20-node element model at 18t =  min shows a value of 10% lower than the FAVOR pre-
diction.  

In contrast, the peak stress-intensity factor (at 18t =  min) computed from the elastic-plastic analysis (us-
ing the 20-node element model) for the axially embedded crack exceeds the FAVOR prediction by 22%. 
The linear-elastic solutions agree well with the (LEFM) FAVOR predictions, with the peak JK -value (at 

18t =  min) remaining 7% lower than the FAVOR solution. The difference between the linear-elastic so-
lution and the elastic-plastic solution for the axially embedded crack exceeds the difference in the linear-
elastic and elastic-plastic JK -values for the circumferentially embedded crack. Comparison of the elastic-
plastic solution and the FAVOR estimation for the axially embedded crack implies that the FAVOR code, 
with a linear-elastic assumption, can potentially under-estimate the crack driving force for RPVs under 
PTS.  

Under the same PTS event (Transient A), the computed driving force for the axially embedded crack is 
much larger than that for the circumferentially embedded crack because: (1) the size of the axially em-
bedded crack is significantly larger than the circumferentially embedded crack, as shown in Table 1, (2) 
the axially embedded crack resides nearer the inner surface of the RPV, and thus experiences lower tem-
perature values along the crack front, compared to the circumferentially embedded crack, and (3) the dou-
bled nominal wall (hoop) stress normal to the crack plane.  
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4.2 Transient B 

Figures 11a and 11b show the stress-intensity factor values over the time history computed for an axial 
and a circumferential flaw in the wall for Transient B using 8-node element models. For the circumferen-
tially embedded crack shown in Fig. 11a, the combination of thermal and pressure loading generates a 
maximum stress-intensity factor at 31t =  min based on the FAVOR prediction. The crack driving force, 
calculated by the FAVOR code, then decreases with time and shows a slight increase at 140t =  min due 
to a sudden increase in the internal pressure. The WARP3D linear-elastic and the elastic-plastic solutions 
are lower than the FAVOR prediction for 100t ≤  min, as shown in Fig. 11a. The linear-elastic crack driv-
ing force shows a maximum value at 33t =  min, which is 15% lower than the peak value of the FAVOR 
solution. The elastic-plastic analysis shows a maximum JK -value at 54t =  min, with 13% lower than the 
peak value predicted by the FAVOR code. The large increase of the internal pressure at 147t =  min 
causes a larger increase in the JK -values in the elastic-plastic analysis than in the linear-elastic analysis. 
However, the JK -values at  147t =  min do not exceed the peak values obtained at time steps before the 
large pressure increase. 

For the axially embedded crack shown in Fig. 11b, similar trends exist in the JK  solutions up to 140t =  
min. For 140t >  min, the stress-intensity factor increases substantially due to the sudden increase in the 
internal pressure. The increase in the internal pressure causes a more significant impact for the axial flaw 
than for the circumferential flaw since the circumferential hoop stress in the wall of an RPV (due to inter-
nal pressure) acting normal to the face of the axial flaw equals approximately twice the axial stress acting 
normal to the face of the circumferential flaw. The stress-intensity factor thus shows a maximum value at 

147t =  min, with approximately twice the magnitude compared to the stress-intensity factor at 140t =  
min. The elastic-plastic analysis shows the highest value for the peak stress-intensity factor, with a value 
of 7% higher than the (linear-elastic) FAVOR solution. The WARP3D linear-elastic stress-intensity factor 
remains the smallest among the three analyses, with the peak value 9% lower than the FAVOR prediction. 

The analyses using the 20-node element models again show higher values of stress-intensity factors for 
both the circumferentially embedded and the axially embedded crack compared to the solutions obtained 
from the 8-node element models, as illustrated in Figs. 11c and 11d. For the circumferentially embedded 
crack, the maximum linear-elastic stress-intensity factor occurs at 35t =  min, with a 6% lower value than 
the FAVOR code prediction. The elastic-plastic analysis shows a peak value of 1% lower than the FA-
VOR solution, albeit at a later time step ( 82t =  min). The sudden increase in the internal pressure at 

147t =  min causes substantial increase in the crack driving force in all three analyses, but with the JK -
values (at 147t = min) remaining smaller than the peak values obtained before the sudden pressure in-
crease. 

The FE analyses for Transient B using the 20-node brick elements for axially embedded flaws again show 
higher JK -values than the values computed with the 8-node element models. The peak stress-intensity 
factors from both the linear-elastic and the elastic-plastic solutions demonstrate larger values than the 
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FAVOR prediction at 147t =  min, with the linear-elastic JK -value 5% higher than the FAVOR solution 
and the elastic-plastic JK -value 26% larger than the FAVOR solution.  

As expected for all the analyses performed in WARP3D, the elastic-plastic stress-intensity factors ( JK -
values) show larger magnitudes than the linear-elastic solutions. The difference between the linear-elastic 
and elastic-plastic solutions can be significant as shown here, especially for the axially embedded crack 
under PTS transient loading histories. For the axially embedded crack under both transient loadings, the 
elastic-plastic stress-intensity factors show JK -values higher than the (linear-elastic) FAVOR code pre-
dictions. The magnitude of the difference does appear to be sufficient ( 20≈  MPa m ) in some cases to 
likely affect the assessment outcome. 

The 20-node element models show a uniform prediction of larger stress-intensity factors ( JK -values) 
than the 8-node element models. The isoparametric, 8-node elements exhibit shear locking behavior under 
bending-type deformations induced by the local, thermal gradients over the wall thickness of an RPV. 
The 8-node element model exhibits an overly stiff response, and leads to computation of a lower driving 
force along the curved crack front for RPVs under PTS. The extensive mesh refinement here, with more 
than 50 layers of elements across the wall thickness, does not improve the performance of the 8-node 
elements. The isoparametric, 20-node elements alleviate the shear-locking behavior and predict higher 
(and more realistic) JK -values than the 8-node elements. 

The differences in JK -values observed here for models constructed with 8 and 20 node elements are un-
expected. The 8-node element meshes have extensive refinement (84,000 elements), yet the 20-node ele-
ment meshes used here have far more extensive refinement (20,000 elements) than were used in much 
earlier studies to compute the weight function values incorporated into FAVOR. This likely is the key 
source of the usually (small) difference shown in Figs. 10 and 11 between the FAVOR JK -values and the 
corresponding linear-elastic values from the 20-node element meshes shown here.  
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4.3 Plastic Material Response Under PTS 

The larger elastic-plastic JK -values, compared to the linear-elastic solutions, indicate the influence of 
plastic deformations near the front of the axial and the circumferential crack, especially at the time of high 
temperature gradients across the wall thickness and/or internal pressures. In addition to plastic deforma-
tion near the crack front, the mismatch in yield strength of the base and cladding materials creates a po-
tential effect on the nearby crack-front fields.  

To illustrate this, Fig. 12 shows fringe plots of the Mises (equivalent) stress normalized by the yield stress 
of the base material at the peak stress-intensity value ( 18t =  min) for the axially embedded crack under 
Transient A. These results are obtained from the model using 20-node elements. Due to the different ma-
terial properties for the base and cladding steels and nonlinear response, the elastic-plastic analysis exhib-
its markedly different stress distributions, compared to the linear-elastic analysis (which reflects only an 
elastic modulus and CTE mismatch). For the elastic-plastic analysis, significant plastic deformation de-
velops in the base material as well as in the cladding material near the inner surface of the RPV 
( 3base cladding

ys ysσ σ≈ ). In the linear-elastic analysis, values of the Mises stress in the cladding material ex-
ceed three times the yield stress of the austenitic steel. The artificial, linear-elastic behavior of the clad-
ding material supports substantial additional forces, and thus shields the nearby base material, which oth-
erwise experiences a significant plastic deformation in the elastic-plastic analyses. Consequently, the 
crack driving forces show lower values in the linear-elastic analyses, compared to the elastic-plastic 
analyses.  

The difference in properties of the ferritic and austenitic steels causes substantially different stress fields 
in the base and cladding materials under linear-elastic and elastic-plastic analyses. The linear-elastic 
analysis computes unrealistically high stress values in the cladding material, which consequently affects 
the stress fields in the base material, and produces unrealistic, lower values of the crack driving force. In 
contrast, the elastic-plastic analysis properly incorporates the effects of the very low yield strength of the 
cladding material, and computes a more realistic stress field near the crack front and thus more realistic 

JK -values. 
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5 Weibull Stress Approach 
 

5.1 Weibull Stress Values for RPVs Under PTS 

The region between the cladding material and the axially embedded crack for Transient A develops sig-
nificant plastic deformation under a pressurized thermal shock event as demonstrated by the fringe plots 
in Fig. 12. The potential process zone for cleavage fracture in the base material is therefore larger in vol-
ume for the elastic-plastic analysis and is subjected to larger local, loading levels than predicted by the 
linear-elastic analysis. The larger fracture process zone and loading levels increase the probability of 
cleavage fracture failure. The Weibull stress approach provides a framework to characterize the effects of 
plastic deformation coupled with potential constraint loss from the proximity of the crack front to the in-
ner wall of the vessel. 

The effective stress, effσ , acting on material within the process zone represents a local driving force that 
triggers the propagation of microcracks. Different micro-scale criteria for cleavage (e.g., the coplanar en-
ergy release rate criterion and the maximum principal stress 1σ -criterion) yield different definitions of the 
effective stress [23]. The 1effσ σ=  approach implies that the most favorably oriented carbide particle 
aligns in the direction of 1σ  and that imposes the most likely loading to propagate the microcrack associ-
ated with the particle. The most commonly used definition of the Weibull stress adopts the maximum 
principal stress, 1σ , as the effective stress. Williams et al. [47] adopt the hydrostatic stress, 

( )1 2 3 / 3Hσ σ σ σ= + + , as the effective stress, rather than the maximum principal stress. They demon-
strate that 1effσ σ=  fails to correlate the cumulative failure probability between biaxially loaded bend and 
conventional bend specimens, i.e., biaxial bend specimens have a high level of mechanically imposed 
stress parallel to the (through) crack front. A shallow-notch, biaxial bend specimen thus imposes crack-
front loading that more closely represents the crack-front loading in an RPV.  

To compare different definitions of effσ  in engineering applications of the Weibull stress approach for 
RPVs under PTS, the current study computes the Weibull stress using Hσ  and 1σ , respectively. The 
characteristic “cutting stress” parameter, λ, which determines the effective volume of the fracture process 
zone, takes four typical values between 1.5-2.7 for 1effσ σ= ( 1 0/λ σ σ= ), and four values between 1.25-2 
for eff Hσ σ= ( 0/Hλ σ σ= ). Material volumes in the crack-front region with effective stress values below 
the cutoff value do not enter into the computed value for wσ . The λ  value thus imposes a “threshold” 
parameter in the Weibull stress model. Ideally, the calibrated exponent, m, for a material effectively 
eliminates or minimizes any impact of λ  on the wσ  values, i.e., for 1effσ σ=  and m > 12-15, the typical 
values for λ  make no difference on wσ  values [28]. Large values of exponents (m) severely limit the in-
fluence of stress levels below the maximum value ahead of the crack front (e.g., compare the value of 

150.9 0.21=  relative to 151 =1.0). 

The current study calculates the Weibull stress values for the 20-node element model of an axially em-
bedded crack under Transient A, since this configuration demonstrates the highest crack driving force 
among the four cases investigated. Figure 13 compares the Weibull stress values computed using 
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1effσ σ=  over a typical range of values for m and λ. A larger value of λ reduces the volume of the frac-
ture process zone, Vf (in Eq. 10).  At high values of λ ( 2.5≥ ), the computed Weibull stress remains at 
zero well into the PTS event, as demonstrated in Figs. 13c and 13d. The effective stress remains below 
the λ-imposed threshold. For the smaller λ values ( 2.0≤ ), the calculated Weibull stresses show negligi-
ble differences among different λ values for the same Weibull modulus, m, as illustrated in Figs. 13a and 
13b. The difference in the computed Weibull stress values for low λ-values decreases with increasing m 
⎯ a higher value of m promotes the contribution to wσ  of high stress material very near the crack tip. A 
too large value of the cutting stress parameter for a low m-value underestimates the Weibull stress values 
and subsequently the cumulative probability of fracture. For Transient A with 1effσ σ= , the Weibull 
stress (computed using the same value of m) remains approximately the same for λ below 2. The maxi-
mum difference between the Weibull stresses using 1.5λ =  and 2λ =  equals 3% for a small value of m 
( 10= ), and remains less than 1% for 15m ≥ .  

Similar trends exist for the calculated Weibull stress values with eff Hσ σ= , as illustrated in Fig. 14. At a 
large value of λ ( 2= ), the Weibull stress equals 0 until 13t =  min. For 1.5λ ≤ , the computed Weibull 
stress values remain approximately the same for different λ values, especially at larger values of m. The 
maximum difference between the Weibull stresses calculated using 1.25λ =  and 1.5λ =  equals 2% for a 
small value of m ( 10= ), and remains much less than 1% for 15m ≥ . Compared to the definition of 

1effσ σ= , the definition of eff Hσ σ=  reduces significantly the Weibull stress values. For the axially em-
bedded crack, the value of Weibull stress computed using eff Hσ σ=  at 1.5λ =  remains 25-30% lower 
than the Weibull stress with 1effσ σ= , for different values of m. These large differences in the Weibull 
stress values for 1effσ σ=  and eff Hσ σ=  must necessarily then lead to different calibrated values of m and 

uσ . However, no definitive study yet exists to investigate the definitions of effσ  on the calibrated Weibull 
stress parameters.     

For both choices of effσ , the Weibull stress reaches the maximum value at 18t =  min, corresponding to 
attainment of the maximum crack driving force ( JK ), see Fig. 10d. Both of these definitions for the effec-
tive stress provide the same trend of Weibull stress evolution over the time history. A large value of λ 
may lead to underestimated Weibull stress values, especially in the initial stage of the PTS, where the 
Weibull stress equals zero for 1effσ σ=  with 2.5λ ≥  and for eff Hσ σ=  with 2λ ≥ . For eff Hσ σ= , the 
Weibull stress reaches a stabilized value with respect to λ for a relatively large volume of the fracture 
process zone ( 1.5λ = ), compared to the case where 1effσ σ= ( 2λ = ). 

The definition of the effective stress and the variation of cutting stress parameters change the Weibull 
stress values which, combined with the Weibull stress parameters m and uσ , determine directly the cumu-
lative probability of failure. As an example, the Weibull stress (with 1effσ σ= ) equals 1.7 ysσ  for 2λ =  
and 1.6 ysσ  for 2.5λ = , for a typical Weibull modulus of 15m = . The cumulative probability of failure 
calculated from a simple two-parameter Weibull stress model ( 1 exp[ ( / ) ]m

f w uP σ σ= − − , or Eq. 9) equals 
( 1.7 ) 8.3%f w ysP σ σ= =  and ( 1.6 ) 3.5%f w ysP σ σ= = , with an assumed, typical value of 2u ysσ σ= . 

However, the cumulative probability of failure also exhibits sensitivity to the Weibull scaling parameter, 

uσ . For the same example with a slightly different value of the Weibull scaling parameter, 1.9u ysσ σ= , 
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( 1.7 ) 17.2%f w ysP σ σ= =  and ( 1.6 ) 7.3%f w ysP σ σ= = . Therefore, different definitions of the effective 
stress and the change in the cutting stress parameter can cause potentially significant variations in the cu-
mulative probability of failure.  

 
5.2 Estimation of Weibull Stress Parameters 

Engineering applications of the Weibull stress approach require the calibration of three Weibull stress 
parameters: the Weibull modulus, m, the Weibull scaling parameter, uσ , and the threshold Weibull stress, 

w minσ − . Previous investigations [21, 39, 40, 46] introduce new schemes to calibrate unique values of the 
key Weibull stress parameter, the modulus m. The most correct calibration procedure requires testing a set 
of high constraint fracture specimens and a set of low constraint fracture specimens at a common tem-
perature, combined with detailed, nonlinear 3-D finite element analyses of the specimens to compute the 
evolution of wσ -values with loading. The calibrated value of m then minimizes an error function which 
quantifies the difference in fracture toughness values, JcK , scaled for constraint variations from the high 
and low constraint specimens to a common, SSY configuration (often with 0Tσ = ). This same fracture 
testing also generates the reference temperature, 0T , for the material for subsequent use to help calibrate 

uσ . 

The current calibration methodology adopts a constant value of the exponent, m, over the ductile-to-brittle  
transition region of temperatures. The recent work of Wasiluk et al. [40] validates this assumption for a 
common RPV steel. With m known, uσ  represents the key remaining Weibull stress parameter. In the 
Weibull stress micromechanical model, uσ  plays the same role as 0K  in the macroscopic model de-
scribed and adopted in ASTM E-1921. With m taken as invariant of temperature, uσ  must vary with tem-
perature just as 0K  varies with temperature. 

ASTM E-1921 [29] employs an empirically developed Master Curve to describe the relationship of the 
median fracture toughness ( 0.5fP = ) with respect to temperature for a 1T specimen size (i.e., crack-front 
length equals 25 mm), 

  ( ) ( )1
030 70exp 0.019⎡ ⎤= + −⎣ ⎦

T
Jc medK T T  MPa m , oC (13) 

where 0T  defines the temperature at which the median toughness for a 1T size specimen equals 100 
MPa m . Petti and Dodds [28] couple the micromechanical approach in terms of the local stress parame-
ter, wσ , and the macromechanical approach in terms of the elastic-plastic far field loading, 1T

JK . They 
relate the Weibull scaling parameter uσ  to the macroscopic scaling parameter 1

0
TK , which derives from 

the unnormalized Master Curve and knowledge of 0T  for the material (found from tests to calibrate m), 

  ( )1
0 031 77exp 0.019⎡ ⎤= + −⎣ ⎦
TK T T  MPa m , oC. (14) 

The relationship between the Weibull stress and the JK -values follows from finite element analyses of 
the laboratory test speciments. Since Eq. 12 remains equivalent to the macromechanical approach de-
scribed in E-1921 for SSY ( 0Tσ ≥ ) conditions, the Weibull scaling parameter, uσ , thus equals 



 

36 

1
0( )T

u w JK Kσ σ= =  for SSY conditions. Petti and Dodds [39] adopt this relationship to calibrate uσ  over 
the ductile-to-brittle transition temperatures for an A508 steel. In a subsequent work, Wasiluk et al. [40] 
first calibrate the values of m and minK  based on a set of high constraint test data and a set of low con-
straint test data. The values for uσ  and w minσ −  in Eq. 12 then follow the relationship between wσ  and J, or 
simply 1 , 1 , 1

0( )T SSY T SSY T
u w Kσ σ= and 1 , 1 , 1

min min( )T SSY T SSY T
w w Kσ σ− = . The application of their approach on the Euro-

dataset [42] proves to be successful in predicting the probability of failure over a wide range of tempera-
tures in the ductile-to-brittle transition. 

The coupling of microscopic Weibull stress and the macroscopic crack driving forces, together with the 
existing, verified calibration procedures for the Weibull stress parameters, forms a theoretical basis for the 
practical application of the Weibull stress procedure in assessments of cleavage fracture in RPVs under 
PTS. In the next section, we propose two procedures for the PTS assessment which employ these cou-
pling and calibration procedures.  
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6 Application of Local Approach to PTS Assessment  
 

6.1 Complications for RPVs 

In typical research applications of tfhe Weibull stress framework conducted to date, the laboratory speci-
mens have relatively straight, through-thickness cracks with constant temperature at all locations along 
the front. Consequently, the Weibull stress parameters, uσ  and w minσ − , and material flow properties re-
main constant at all crack-front locations. Local JK -values along the crack front remain relatively uni-
form except for much lower values over the thin boundary layer transition at the outside surface of the 
specimens. The 3-D finite element analyses that accompany these tests readily yield a thickness average 

JK -value and the corresponding (single) wσ -value at each level of applied loading. The JK -value corre-
sponds to the value found using the measured P- CMODΔ  curve and an η-value for the specimen configura-
tion, or through direct, 3-D finite element analysis of the specific specimens. Experimental and computa-
tional studies using the measured JcK -values and corresponding wσ -values are thus greatly simplified by 
the constant uσ  and w minσ −  values, and flow properties along the crack front. 

The conditions for an embedded crack in the wall of an RPV under time-dependent, thermal-mechanical 
loadings become far more complex. The temperature, and thus uσ  and w minσ − , can vary significantly 
along the crack front. Similarly, uσ , w minσ −  and flow properties likely also vary along the crack front 
from differing levels of material damage caused by accumulated radiation exposure over years of service 
life. This potentially strong variation in local fracture and flow properties along the crack front, coupled 
with strong variations in crack-front loading of the type computed here (see Fig. 9) leads to a very com-
plex situation to apply the Weibull stress framework (or any other framework). In essence, each segment 
of material along the front of an embedded crack is effectively a small “component” with its own loading 
history and time varying flow and toughness properties (σ -ε ; 0K , uσ and w minσ − ). The assumption (now 
apparently validated) of temperature invariant exponent, m, does provide some much needed simplifica-
tion.  

This section describes three approaches to apply the Weibull stress framework for PTS assessments under 
these complex conditions. The first “refined” approach represents the most complicated method and in-
corporates the most detailed analysis and calibrations of material parameters. The second approach adopts 
a uniform material toughness (at the lowest temperature along the front) for the entire crack front to sim-
plify the process. In the third approach, the nonlinear 3-D analysis of the RPV is replaced by a linear-
elastic IK -T solution over the loading history coupled with 2-D, SSY boundary layer models (driven by 
the IK -T values) to generate the evolution of Weibull stress values over the PTS transient.    

6.2 A Refined Procedure of PTS Assessment for RPVs 

The variation of temperature along the front of an embedded crack likely causes significant spatial and 
temporal changes in both the material properties and the local crack driving force, which require detailed 
mathematical descriptions for an accurate estimation of the cumulative probability of failure. The thermal 
loading varies the mechanical properties of the material along the crack front and introduces a strong im-
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pact on the Weibull scaling parameter, uσ , and a small impact on the threshold Weibull stress, w minσ − . 
Meanwhile, the local Weibull stress may change significantly along the crack front, as demonstrated by 
the variation of the macroscopic crack driving force JK  in Fig. 9. To include the variation of material 
properties along the crack front, a refined procedure for PTS assessment divides material along the entire 
crack front into n small subregions each with length ic()  ( 1, 2, ...i n= ). Each subregion thus experiences a 
spatially constant temperature and a spatially constant loading 

( )iJK . The total cumulative failure prob-
ability follows as, 

  ( ) ( ) ( )

( ) ( )

4/ 4 / 4

/ 4 / 4
1

1 exp i i

i i

m mn
w w minTotal

f k m m
i u w min

P t
σ σ

σ σ
−

= −

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= − −⎢ ⎥⎜ ⎟−⎝ ⎠⎢ ⎥⎣ ⎦
∑ , (15) 

where 
( )iuσ  and 

iw minσ − ()
 denote the Weibull scaling parameter and the threshold Weibull stress parameter 

of the subregion i. Equation 15 defines the total, cumulative failure probability of the embedded flaw in 
the RPV at a specific time kt  of the transient. 

The following steps describe the procedure which incorporates the variation of the thermal and mechani-
cal material responses along the entire crack front, and operates on predefined subregions to predict the 
total cumulative failure probability. 

1.  For an RPV with a designated flaw size and location, determine the temperature variation along the curved, 3-
D crack front at times of interest during the PTS transient.  

2. Using the procedure described in the Appendix, calibrate the temperature independent Weibull modulus (m) 
for the base material of the RPV. Compute values of uσ  and w minσ −  at selected, representative values of the 
temperature experienced along the crack front, at times of interest during the PTS event. 

3. Perform a detailed 3-D, nonlinear analysis of the flawed RPV, including temperature dependent flow proper-
ties for the base material. Compute the macroscopic crack driving force ( JK ) along the crack front (as exem-
plified in Fig. 9) for each time increment of the PTS transient. Divide the material along the crack front into n 
subregions based on the temperature variation (determined in step 1) and the variation of JK -values along the 
crack front, such that each subregion experiences a spatially constant temperature and the spatially constant, 

( )iJK . 

4. Compute the Weibull stress value, 
( )iwσ , within each segment along the crack front, for every time increment 

of the PTS transient using the calibrated m (or a range of values for a sensitivity study). The computed Weibull 
stress reflects a “history” effect, i.e., 

( )iwσ  is not permitted to decrease below an earlier (larger) value during 
the PTS event. 

5. At the time of interest, insert the computed 
( )iwσ  and calibrated 

( )iuσ  and 
( )iw minσ −  values for each subregion 

along the crack front into Eq. 15 to compute the cumulative probability of failure ( fP ) for the embedded crack 
at that time during the PTS event. 

6. Repeat step 5 for a new (increased) time during the PTS transient. 

Examples of this refined approach will appear in future work. 
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6.3 A Simplified Procedure of PTS Assessment 

Without using detailed evaluations of the varying (temperature dependent) Weibull stress parameters 
along the front of an embedded crack, the proposed simplified procedure first identifies the (critical) 
crack-front location with the smallest uσ -value (corresponding to the lowest temperature and thus the 
lowest microcrack toughness value). The simplified procedure then adopts calibrated (or a range of) val-
ues of m and w minσ −  to compute the cumulative probability of fracture for the entire crack front but using 
the Weibull scaling parameter only at the critical location. This approach likely yields a conservative es-
timate for the cumulative probability of failure (to be confirmed in future work by comparison with the 
“refined” approach).  

The following steps detail the proposed simplified procedure for RPVs under PTS, 

1. For an RPV with a designated flaw size and location, identify the location with the lowest temperature along 
the 3-D crack front, denoted as location critP  for discussion. This location usually resides near the inner surface 
of the RPV (point B in Fig. 9 for example). 

2. Using the procedure described in the Appendix, calibrate the temperature independent Weibull modulus (m) 
for the base material of the RPV. Compute values of uσ  and w minσ −  at selected values of the temperature ex-
perienced at critP . 

3. Perform a detailed 3-D, nonlinear analysis of the flawed RPV. Compute the Weibull stress value, wσ , at each 
time increment of the PTS transient for the full crack-front length using the calibrated m (or a range of values 
for a sensitivity study). The nonlinear analysis uses temperature dependent flow properties for the material. 
The computed Weibull stress reflects a “history” effect, i.e., wσ  is not permitted to decrease below an earlier 
(larger) value during the PTS event. These results are in the form of Fig. 13. 

4. For a time during the PTS transient, insert the computed wσ  and the calibrated uσ  and w minσ −  value into Eq. 
12 to compute the cumulative probability of failure ( fP ) at that time during the PTS event. 

5. Repeat step 4 for a new (increased) time during the PTS transient. 

Figure 15 illustrates this simplified assessment procedure for the axial flaw analyzed in this study under 
Transient A. To compute the cumulative probability of fracture for a real, 3-D curved flaw under PTS, the 
calibration procedure computes the denominator of Eq. 12 through a SSY configuration. The constant C 
(normalized by the C value at 20MP mminK = ) shown in Fig. 15a defines the relationship between the 
far-field JK  and the local Weibull stress, or 4m

w JCBKσ =  (B = crack front length), obtained from an ideal, 
plane-strain SSY reference configuration ( 0Tσ = ), with assumed values of m and 5 3

0 1.64 10 mV −= ×  (or 
1 3in ). As large m-values promote the contribution of high stresses to wσ , the plateau magnitude of C (at 
large JK -values) shows a large increase for increased m-values compared to the C value at a relatively 
low crack driving force, minK . With C computed from the SSY model, the Weibull scaling parameter 
(shown in Fig. 15b) at different temperatures of the transient follows 0( )u w Kσ σ= , where 0K  is deter-
mined using Eq. 14 with the temperature at critP  along the front of the axially embedded flaw in Transient 
A and an assumed value of o

0 130 CT =  for aged RPV steels reflecting radiation embrittlement. The 
threshold Weibull stress, w minσ − , follows the wσ - JK  relationship determined from the SSY model, corre-
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sponding to a fixed value of 20MP mminK = . Figure 15b compares uσ  values (normalized by the mate-
rial yield strength) determined using different m values with respect to temperature at the critical crack-
front location critP . A small m defines a small uσ  value and consequently yields a higher probability of 
fracture as shown in Fig. 15c, which illustrates the cumulative probability of fracture computed using Eq. 
12 for the axially embedded flaw. As indicated in Fig. 13, the Weibull stress remains unchanged beyond 
the occurrence of the maximum crack driving force (at 18 mint = ) since the Weibull stress computation 
includes the effect of loading history on effσ  and does not allow decreases in magnitude below a previ-
ously larger value. The temperature dependent uσ -value therefore causes the variation in the cumulative 
probability shown in Fig. 15c beyond the occurrence of the maximum crack driving force (see Fig. 4 that 
shows a monotonically decreasing temperature over the vessel wall). Figure 15d illustrates the sensitivity 
of fP  (calculated through Eq. 12) with respect to uσ  for fixed values of wσ  (as for the wσ -value beyond 
the peak crack driving force in the axially embedded flaw shown in Fig. 13) and w minσ −  (as in the current 
example, ( )w min w minKσ σ− = , where minK  remains fixed at 20 MPa m ). The cumulative probability of 
fracture demonstrates strong sensitivity to the uσ -value, especially in cases where uσ  and w-minσ  are of 
similar magnitudes. However, variations in the w minσ −  value do not affect significantly the cumulative 
probability failure for fixed values of wσ and uσ . For the assumed values of m and a large 0T , the cumu-
lative probability of fracture remains small ( 2.5%< ) for this large flaw size, location and orientation in 
the RPV with the measured material properties and postulated transients.   

The simplified procedure ignores variations of the crack driving force and material properties along the 
curved, 3-D crack front. Warm prestress effects are also ignored in this example calculation but can be 
included in a more complex assessment. This approach is relatively simple and may lead to a conservative 
approach (higher fP ) for the failure assessment for RPVs under PTS, by applying the smallest uσ  to the 
entire crack front.  

6.4 KI-T Approximation for Nonlinear Crack-Front Fields 

The full 3-D, elastic-plastic analysis of the RPV model containing an embedded flaw provides the most 
realistic estimate for the macroscopic crack driving force ( JK ) and Weibull stress values ( wσ ) for input 
to defect assessments under PTS conditions. This procedure becomes extraordinarily challenging and 
time consuming when assessments of vessel integrity need to be performed for a wide range of flaw sizes, 
shapes, locations, and orientations for ferritic steels with different elastic-plastic material properties under 
a large spectrum of thermal transients. The assessment procedure developed here for RPVs under PTS 
computes the cumulative probability of fracture essentially driven by the computed values of the scalar 
Weibull stress. The cumulative probability of failure ( fP ) remains unchanged if values of the scalar 
Weibull stress computed from a full 3-D model and from a simplified 2-D model (say, a SSY boundary 
layer model) for the same material flow property and crack-front loading condition (characterized, for 
example, by a two-parameter, crack-front stress field) have the same magnitude. One of the simplified 
assessment approaches, therefore, applies the IK -T values obtained from linear-elastic analyses of the 3-
D embedded crack in an RPV, to a simplified 2-D, plane-strain SSY configuration, with the assumption 
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that the IK -T field in the 2-D SSY model replicates, with sufficient accuracy, the stress field near the 
front of the 3-D embedded crack in an RPV.  

For ideal, well-contained plastic deformation near the crack front (without constraint loss, 0Tσ ≥ ), the 
macroscopic crack driving force, IK , fully characterizes the crack-front stress field. The Weibull stress 
values computed from a 2-D SSY model and from a 3-D fracture model (under high constraint), both sub-
jected to an equivalent IK  field ( 0Tσ = ), become identical. Under plane strain, SSY conditions, the non-
zero T-stress characterizes the effect of geometry (specimen sizes, crack configurations, etc.) and loading 
mode (bending vs. tension) on the crack-front fields. Under SSY conditions, a negative T-stress quantifies 
the effect of constraint loss experienced in the crack-front field for real, 3-D flaws in an RPV. Therefore, 
the IK -T methodology (applied on a 2-D SSY model) can offer a simplified and realistic approximation 
of the stress fields near the front of the 3-D embedded crack in an RPV (with and without constraint loss) 
to compute Weibull stress values. Gao and Dodds [48] employ the IK -T methodology to assess the con-
straint effect on cleavage fracture specimens. Ongoing work [43] at ORNL also explores the feasibility of 
the 2-D IK -T approximation for embedded flaws in an RPV under PTS condition. 

The essence of the IK -T approximation approach relies on the development of the relationship (or weight 
functions) between the Weibull stress value and values of the applied IK -T stresses on SSY configura-
tions. This requires extensive analyses of the plane-strain SSY model with various IK -T displacement 
boundary conditions, including the temperature dependent material flow properties of various RPV mate-
rials. With wσ  represented by a comprehensive library of functions dependent on IK  and β 
( / IT a Kπ= ), the assessment procedure for RPVs under PTS simplifies into the following steps, 

1. For a given RPV material, calibrate the temperature independent Weibull modulus (m), using the procedure 
described in the Appendix. Compute values of uσ  and w minσ −  at selected, representative values of the tem-
perature experienced along the crack front, at times of interest during a PTS event. 

2. Perform a linear-elastic 3-D analysis of the flawed RPV. Compute the IK -T values along the embedded crack 
front for each time increment of the PTS transient. Divide the material near the crack front into n subregions. 
Each subregion experiences spatially constant values of temperature, IK  and T-stress. Use the -( , )w IKσ β  re-
lationship developed from the 2-D SSY analyses to compute the Weibull stress value (

( )iwσ ) in each subregion, 
including proper thickness corrections (as outlined in the Appendix) for each subregion.   

3. At the time of interest, insert the computed 
( )iwσ  and calibrated 

( )iuσ  and 
( )iw minσ −  values for each subregion 

along the crack front into Eq. 15 to compute the cumulative probability of failure ( fP ) for the embedded crack 
at that time during the PTS event. 

4. Determine if SSY conditions remain in effect in the RPV for this level of loading through comparisons to fully 
3-D, benchmark analyses. 

5.  Repeat step 3 for a new (increased) time during the PTS transient. 
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7 Summary and Conclusions  
 

This study improves the understanding of failure assessment procedures for embedded cracks in RPVs 
under PTS events by (1) comparing the prediction of crack driving forces ( JK -values) via the conven-
tional (LEFM) FAVOR code and the detailed, linear-elastic and elastic-plastic, 3-D finite element analy-
ses, (2) computing the Weibull stress values along the full crack-front length of an embedded flaw, and (3) 
introducing details of three detailed assessment procedures based on the Weibull stress framework with 
an illustrative example. The selected RPV experiences two postulated transients: Transient A with a sig-
nificant temperature gradient over the wall thickness coupled with a small change of the internal pressure 
and Transient B with a mild temperature gradient concurrent with significant repressurization. The de-
tailed, 3-D thermal-mechanical analyses of RPVs conducted in this work investigate the effect of finite 
element types and models of material behavior on the magnitude of the macroscopic crack driving force 
( JK ). The computation of Weibull stress values for the embedded crack front in an RPV demonstrates the 
influence of different effective stress definitions and values of the stress cutting parameter on the value of 
the scalar Weibull stress. The three proposed procedures for integrity assessments of RPVs include (1) a 
refined approach which considers the temperature dependent material flow and toughness properties 
along the crack front, (2) a simplified procedure which utilizes a spatially uniform, toughness value for 
the entire crack front, and (3) a IK -T methodology that approximates the 3-D crack-front fields through a 
linear-elastic, IK -T field on a 2-D, plane-strain SSY configuration. 

The present work supports the following conclusions: 

(1) The 20-node element models provide more realistic JK -values than the 8-node element models, which 
exhibit shear locking behavior under bending-type deformation caused by the thermal gradients across the 
wall thickness. Very detailed mesh refinement on the 8-node elements does not alleviate the shear locking 
phenomenon, and thus underestimates the JK -values. The use of 8-node element models for PTS analyses 
of RPVs should be discontinued.  

(2) The 3-D linear-elastic (WARP3D) analysis predicts lower stress-intensity factors for embedded, elliptical 
flaws under PTS transients, compared to JK -values computed from elastic-plastic (WARP3D) analyses. 
The elastic-plastic JK -values are 20-30% higher than the linear-elastic SIFs for the axially embedded flaw 
under the examined Transients A and B. Similarly, the current version of the FAVOR code, which super-
imposes the mode I, stress-intensity-factor influence coefficients (weight functions) obtained from linear-
elastic analyses, predicts lower stress-intensity factors than does the elastic-plastic analysis performed in 
WARP3D. FAVOR thus underpredicts the crack driving force values for the vessel geometries, crack sizes 
and loadings considered here. 

(3) The elastic-plastic analyses offer a more realistic description of the nonlinear behavior of material near the 
crack front. The actual, elastic-plastic material behavior redistributes the otherwise linear-elastic, asymp-
totic stresses near the crack front to adjacent material and increases the JK -values, compared to linear-
elastic SIF solutions. The mismatch in yield strengths of the cladding and base material also generates a po-
tential influence on the nearby crack-front stress fields.  

(4) The unrealistic, high stress in the linear-elastic cladding shields the nearby base material between the near-
est crack front and the base-cladding interface from significant plastic deformation. In contrast, the elastic-
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plastic analyses includes the low yield stress of the cladding material, which redistributes stresses to the 
base material around the nearby crack front, and thus provides a more realistic and higher crack driving 
force ( JK ). The difference in the computed linear-elastic and elastic-plastic JK -values are sufficient to 
cause non-trivial changes in the cumulative probability of failure. For example, the peak elastic-plastic 
stress-intensity values exceed the linear-elastic value by 21 MPa m  for the axially embedded flaw loaded 
by Transient A. 

(5) For the specific embedded circumferential and axial flaw configurations considered in this work, the axial 
flaw has much higher JK -values along the crack front than the SIF solutions computed for the circumfer-
ential embedded flaw under the two transient loadings (for other crack sizes and locations through the ves-
sel wall this observation may not hold). The remote (hoop) stress normal to the plane of the axially embed-
ded flaw generated by the internal pressure equals approximately twice the (longitudinal) stress normal to 
the plane of the circumferentially embedded flaw. The axial flaw also resides nearer the inner surface of the 
RPV, and thus experiences lower temperatures than does the circumferential flaw. The size of the axially 
embedded flaw is also larger than the size of the circumferentially embedded flaw.  

(6) The Weibull stress values for the embedded flaw under PTS events depend significantly on the definition 
of the “effective” stresses. The Weibull stress computed using the hydrostatic stress, 

( )1 2 3 / 3Hσ σ σ σ= + + , show 20-30% lower values than wσ -values calculated using the maximum princi-
pal stress, 1σ . The effect of the stress cutting parameter, λ, on the computed Weibull stress value vanishes 
for high m values ( 13≥ ), which promote the contribution of only the very highest stressed material to the 
Weibull stress. 

(7) The three proposed assessment procedures for embedded flaws under PTS conditions apply the Weibull 
stress framework (conventionally applied to straight, through-thickness cracks with uniform temperature) 
to the curved, embedded crack front with varying temperatures over the wall thickness of an RPV. The re-
fined approach calibrates the temperature dependent material toughness properties in each of the n seg-
ments (“fracture specimens”) along the entire crack front and computes the cumulative probability of fail-
ure through Weibull stress values calculated in each segment with spatially constant temperature and JK -
values. The simplified approach applies the lowest toughness value (corresponding to the point with the 
lowest temperature along the front) to the entire crack front and computes the cumulative probability of 
failure through a Weibull stress value integrated (numerically) over the entire crack front. The IK -T meth-
odology approximates the 3-D crack-front fields in an RPV via a simplified 2-D, plane-strain SSY configu-
ration, linear-elastic IK -T fields. The Weibull stress values in different segments of the 3-D crack front 
therefore follows superposition of Weibull stress weight functions derived from the extensive 2-D SSY 
analyses. The cumulative probability of failure follows from the Weibull stress model (Eq. 12) including 
the temperature dependent material toughness properties along the crack front. Ongoing work will compare 
the applications of these three approaches. 
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Appendix A: Calibration of Weibull Stress Model 
 

The calibration procedure for the unique, temperature invariant Weibull modulus, m, utilizes the 
constraint difference between two different sets of fracture toughness values measured at a common 
temperature ⎯ one set measured using high constraint specimens and one set measured using low 
constraint specimens. The low constraint specimens fracture at crack-front conditions characterized by at 
least two independent parameters (i.e., the K-T field or the J-Q field) which enable calibration for a 
unique pair (m, uσ ). The calibration procedure uses trial values of m to scale (constraint correct) each set 
of toughness values to a common reference configuration (typically 1T plane-strain, small scale yielding 
condition with zero T-stress), through the following equation, 

( )( ) ( ) ( )( )
1/ 4

1/ 4 1/ 4
(1 )

1

xT xT xTSSY T xT
Jc min Jc min min

T

BK K g M K g M K
B

⎛ ⎞⎡ ⎤= + − ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
, (A1)  

where the ( )( )xTg M  function characterizes the level of constraint difference between the ideal, plane-
strain 1T SSY condition (with zero T-stress) and a specific fracture specimen with a thickness of xT. The 

( )( )xT
ming M  term in Eq. A1 defines the constraint difference corresponding to the far field crack driving 

force minK K= , and equals 1.0 for common test specimen sizes (1T) which experiences no constraint loss 
at minK K= . The ( )g M  function derives from the (constraint) difference reflected by the wσ - JK  
relationship computed from the 3-D, nonlinear finite element analysis for a plane-strain, SSY boundary-
layer model and that for a specific fracture specimen, as described by, 

( )4
( )

m
w J avgCBK g Mσ = , (A2)  

where 0 / avgM b Jσ=  and avgJ  denotes a through-thickness average value. The parameters b and B define 
the ligament length and the thickness of the specimen, respectively. The constraint function, ( )g M , 
equals 1.0 for all materials under plane-strain, SSY condition with zero T-stress. The coefficient C refers 
to a constant dependent on the material flow properties, temperature and Weibull stress parameters (m and 

0V ). The value of the coefficient C follows from the wσ - JK  solution for a plane-strain, SSY reference 
configuration ( 0Tσ = ) with ( ) 1g M =  in Eq. A2. (Equation A2 also provides the thickness correction 
scheme for SSY models [ ( ) 1g M = ] with different thickness, B, subjected to the same, remote IK -T 
field.) 

Wasiluk et al. [43] employ an updated version of the least square procedure to calibrate the Weibull 
modulus, m. The error measure applies a weight factor to each measured toughness value designed to 
reduce the relative contribution of experimental values with the largest uncertainty in failure probability. 

The following steps describe the calibration procedure: 

1. Test two sets of specimens at the same temperature in the DBT region that have markedly different constraint: 

• high constraint (HC) data set, with HCn  specimens, that approaches small-scale yielding conditions, 
having 100M ≥ , 

• a low constraint (LC) data set, with LCn  specimens, under large-scale yielding but without significant 
ductile tearing prior to cleavage fracture in each specimen.  
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The subsequently calibrated parameters for the Weibull stress model then apply strictly for the test 
temperature.  

2. Obtain uniaxial, (true) stress-strain curve for the test temperature to strain values of 2.0≈ (needed for ensuring 
accuracy in the finite element analysis) 

3. For the purposes of data visualization, rank order each of the experimental data sets and calculate the rank 
probability of failure for each specimen in each data set,  

LC
rank

LC

0.3
0.4i

iP
n−
−

=
+

, HC
rank

HC

0.3
0.4i

iP
n−

−
=

+
, (A3) 

where HCn  and LCn  denote the number of specimens in each data set and i refers to the rank number, 
respectively.  

4. Perform nonlinear 3-D finite element analyses as described in [43] for: 

• Both HC and LC test specimen geometries, and  

• The plane-strain reference configuration, 1T SSY (zero T-stress), 

The stored, stress-strain results for each element at each analysis load step enable very rapid computation of 
the Weibull stress value using Eq. 10 for a specified, trial value of m.  

5. Assume trial values for m and minK  (or fix minK  at 20 MPa m  as in E1921). From 3-D finite element results, 
compute the evolution of wσ  vs. J for the specimens (HC and LC) and for the 1T SSY reference condition. 
Convert J-values to JK -values by applying the plane-strain conversion (the calibration process is expressed in 
terms of JK  to maintain similarity with E1921 terminology). Set the value of ( )w min w J minK Kσ σ− = = . 

6. Correct the high and low constraint toughness values to the 1T SSY plane-strain condition using Eq. A1. This 
yields two sets of toughness values termed HC 1T SSY

JcK −  and  LC 1T SSY
JcK − , or generally as C 1x T SSY

JcK − . 

7. Compute HC 1
0

T SSYK −  for the high constraint data set, using the maximum likelihood method which yields, 

( )
( )

HC

1/ 44HC 1
( )HC 1

0
1 0.3068

T SSYn
minJc iT SSY

min
i

K K
K K

r

−
−

=

⎡ ⎤−⎢ ⎥= +⎢ ⎥−⎢ ⎥⎣ ⎦
∑ . (A4) 

Use HC 1
0

T SSYK −  and trial values of minK  to define a continuous, cumulative failure probability function termed 
here 1T SSY

JcK  from, 

( )
41

1
HC 1
0

1 exp
T SSY

T SSY minJc
f Jc T SSY

min

K K
P K

K K−

⎡ ⎤⎛ ⎞−⎢ ⎥= − −⎜ ⎟⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

. (A5) 

8. For the trial pair m and minK , calculate a scalar error measure to characterize differences between the HC and 
LC constraint corrected distributions. The new error measure here includes two parts: (1) the summed 
differences between the high and low constraint corrected data sets (step 6) and the continuous SSY 
distribution (step 7); and (2) the summed differences between the JcK -values for the high and low constraint 
data sets scaled to SSY (both from step 6). 

HC LC HC LC
C 1 1 HC 1 LC 1

( ) ( )
1 1

Error( , )
n n n n

x T SSY T SSY T SSY T SSY
min i iJc Jc Jc Jc

i i

m K K K WF K K WF
+ +

− − −

= =

= − + −∑ ∑ . (A6) 
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The multiplier, WF, denotes a weight function factor ( 1WF ≡∑ ), which scales the error contribution for a 
given value of i based on the confidence in the current failure probability. Wasiluk et al. [43] provide a detailed 
description of the weight function and include modifications to handle the case with HC LCn n≠ . 

Other, similar error measures likely would lead to equally satisfactory estimates for the parameters.  

9. Repeat steps 5-8 for additional trial values of m and minK . 

10. The calibrated pair (m, minK ) minimizes the error function (no convergence criterion is required). 

After calibration of m and minK , compute values for uσ and w-minσ  using the finite element results for wσ  
vs. J, with 1 1

0( )T SSY T SSY
u w JK Kσ σ= =  and 1 ( )T SSY

w min w J minK Kσ σ− = = . The following equation scales the 
calibrated 1T SSY

uσ  to the experimental specimen configuration (xTxC),  

1 1/ 4 / 4 / 44/
T SSY T SSY xTxCxTxC m m mm

u u w min w minσ σ σ σ− −= − +  (A7) 

where xTxC
w minσ −  denotes the wσ  value corresponding to J minK K=  for the xT size specimen of interest. The 

value of xTxC
w minσ −  derives from Eq. A2, with ( ) 1.0g M =  for specimens without constraint loss at minK . 

Using m, xTxC
uσ , and xTxC

w minσ − , predictions of the cumulative probability of failure for the xT size specimen 
at a given temperature follow from Eq. 12.  
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 Appendix B: Future Work 
 
The current study develops simplified and refined procedures for failure assessments of RPVs 
under PTS events, based on detailed, elastic-plastic finite element investigations of an RPV 
under two postulated transients. The computation of the cumulative probability of fracture for an 
embedded flaw under a PTS transient employs the Weibull stress framework using the model 
parameters calibrated from approaches proposed by previous researchers [28, 42, 43]. With the 
current (elastic-plastic) benchmark studies, future research efforts aim to develop 
computationally more tractable approaches, incorporating the following tasks: 
1. Implement, through an independent (FORTRAN) code, the proposed, refined procedure to compute the 

cumulative probability of fracture for the entire front of an embedded flaw in an RPV under a PTS transient. 
The FORTRAN program will divide the curved crack front into multiple segments with spatially constant JK -
values and spatially constant temperatures, and compute the 

( )iwσ -values independently for each segment. The 
total cumulative probability of failure for the entire crack front follows Eq. 15, with temperature dependent 
Weibull scale parameter,

( )iuσ , and the Weibull threshold value, 
( )iw minσ − , calibrated for each segment. The 

difference in the cumulative probability of failure computed from this refined approach and that computed 
from the current simplified approach indicate the amount of conservatism offered by the simplified approach in 
the failure assessment procedure.  

2. Examine the feasibility and applicability of the IK -T methodology in approximating the Weibull stress values 
for the full 3-D crack front in an RPV through a 2D, plane-strain SSY model driven by the linear-elastic IK -T 
field obtained from the 3-D RPV model. This work will assess the effect of T-stresses on the Weibull stress 
values using the SSY configuration.  For applications of the IK -T methodology to RPVs under PTS events, 
the failure assessment procedure first computes the IK -T values in each crack-front segment of the embedded 
flaw. The elastic-plastic analyses of the SSY model under the corresponding set of IK -T values yield the 
Weibull stress values in each segment along the crack front. The total cumulative probability of failure (from 
Eq. 15), incorporating the temperature dependent Weibull stress parameters, represents a simplified but 
detailed failure assessment approach. 

3.  Apply the Weibull methodology to the biaxial cruciform EURO data generated by ORNL for the VOCALIST 
project [55]. The VOCALIST project [55] includes independent calibration of the Weibull stress parameters by 
different participating organizations, which demonstrate significant variance in the Weibull modulus, m, for 
different calibration schemes. Further investigation will focus on developing a standard procedure for 
application of the Weibull calibration methodology to cleavage fracture of RPV materials. 
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Appendix C: Analytical Solution for Thermal Induced T-stress  
 

This section describes the analytical solution for the radial stress, rrσ , derived for a very long cylinder 
under temperature variation over the wall thickness in the absence of mechanical loadings, using a 2-D, 
plane-strain mathematical model. The plane-strain condition approximates the condition for the RPV 
material near the symmetry plane at 0y =  (see Fig. 1). For either an axially embedded or a 
circumferentially embedded flaw in an RPV, the thermal induced T-stress for the crack-front region near 
symmetry plane ( 0y = ) depends solely on rrσ .  

The analytical solution adopts the following assumptions. The temperature variation, ( )T rΔ , depends on 
the radius only. The displacement along the circumferential direction, uθ , equals zero. The stress, strain, 
displacement field variables remain constant with respect to the variation in θ. The material properties of 
the RPV employ a homogeneous base material and neglect the mismatches in the mechanical and thermal 
properties between the base and cladding steels. The loading condition of the RPV includes thermal 
loadings only, and assumes zero internal pressure and body forces. 

Boley et al. [49] show that the plane-strain, stress solutions for a very long cylinder under temperature 
variation over the wall thickness follow, 

( )
1 2

2 2

' '' '
1 ' 1 '

i

r

rr
r

E C E CE Trdr
r r

ασ
υ υ

=− Δ + −
− +∫ , (C1)  

( )
1 2

2 2

' '' ' ' '
1 ' 1 '

i

r

r

E C E CE Trdr E T
r rθθ

ασ α
υ υ

= Δ − + +
− +∫ , (C2) 

where ( )2' / 1E E υ= − , ( )/ 1υ υ υ′ = − , and ( )' 1α α υ= + . ir  and or  refer to the inner and outer radius of 
the RPV respectively. 1C  and 2C  are constants depending on the following boundary conditions, 

( ) ( )0 0rr i rrr r r rσ σ= = = = , (C3) 

For a constant temperature variation over the wall thickness,  

0rr θθσ σ= = . (C4) 

For a linear temperature variation over the wall thickness, 

T ar bΔ = + , (C5) 

the radial and circumferential stresses become, 
2 2 2 2 3 3

2 2
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i o i o o i
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= −⎢ ⎥+⎣ ⎦
, (C6) 
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⎡ ⎤+ + +
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. (C7) 

For a quadratic temperature variation over the wall thickness, 
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2T ar br cΔ = + + , (C8) 

the radial and circumferential stresses follow from, 

( ) ( ) ( )

( )

4 4 3 3 2 2
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Figures A1a and A1b illustrate the quadratic approximation of the temperature variation over the wall 
thickness for transients A and B considered in the current study. The analytical stress solutions computed 
from Eqs. C9 and C10 demonstrate close agreement with the stress values computed from an FE analysis 
for the intact RPV under transient A at 20t =  min. The very small value of rrσ  indicates negligible T-
stresses for the nearby crack front generated by a quadratic temperature variation over the wall thickness. 
Figure A2 compares the T-stress values (at point B in Fig. 9) for the RPV under both transients computed 
using the interaction integral approach including the thermal loading and that excluding the thermal 
loading. The close agreement between T-stress values computed using these two approaches demonstrate 
that the T-stress for an axial or a circumferential flaw near the symmetry plane ( 0y = ) in an RPV derives 
mainly from the mechanical loading (internal pressure). 
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