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ABSTRACT 

This report describes the methodology of model abstraction in subsurface hydrology.  
Model abstraction is defined as the methodology for reducing the complexity of a 
simulation model while maintaining the validity of the simulation results with respect to 
the question that the simulation is being used to address.  The need in model abstraction 
may stem from the need to improve the reliability and reduce uncertainty of simulations, 
to make the modeling and its results more explicable and transparent to the end users, and 
to enable more efficient use of available resources in data collection and computations.  A 
comprehensive review of model simplification techniques developed in subsurface 
hydrology is included.  Abstractions of both model structure and model parameter 
determination are described.  A systematic and objective approach to model abstraction is 
outlined.  A case study is presented that is designed to illustrate how model abstraction 
can affect performance assessment of contaminant migration at a relatively humid site.  
Although the model abstraction methodology is generic, it is designed to be of practical 
use to NRC licensing staff in their review of the performance assessment of 
decommissioning sites and waste disposal facilities.  The model abstraction process 
provides a systematic approach to understand the adequacy of model simplification, and 
facilitates communication and transparency of the model to regulators, stakeholders, and 
the general public. 
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FOREWORD 
 

An important step in the U.S. Nuclear Regulatory Commission (NRC) staff evaluation of the 
proposed decommissioning of nuclear sites and facilities is the review of licensees' analyses of the 
performance of the proposed actions during extended periods of future time.  In complex cases, 
licensees often must develop their own conceptual models of their sites and facilities, and use a 
variety of computer codes to model the potential radionuclide transport pathways.  The model 
development process is often not systematic and does not identify simplifications made to reduce the 
complexity of the site’s features, events, and processes (FEPs) or explain that the simulation results 
honor the significant FEPs affecting subsurface flow and radionuclide transport assessments.  To 
better understand the model development process and its implications on modeling of complex 
cases, the NRC partnered with the U.S. Department of Agriculture’s (USDA) Agricultural Research 
Service (ARS) under Interagency Agreement (RES-02-008), “Model Abstraction Techniques for 
Soil Water Flow and Transport.”  The objective was to identify, test, and confirm the practicality of 
various model abstraction techniques for establishing the appropriate combination of site specific 
models and supporting data collection programs to simulate water flow and contaminant transport 
through soils. 
 
This report documents the conduct and findings of this research.  The research findings provide the 
technical basis for developing guidance to NRC licensees and NRC licensing staff on reviewing 
models of water flow and solute transport in soils, sediments, and porous rocks.  The report presents 
a systematic approach for identifying the need for model abstractions, identifies and reviews model 
abstraction techniques, discusses the process of selection of appropriate model abstraction 
techniques, and demonstrates the testing and confirmation of the model abstraction approach through 
an application to field data.  The case study demonstrates the effectiveness of model abstraction in 
selecting an appropriate level of simplicity for simulating soil water fluxes at a relatively humid site 
where transport may be affected by the presence of soil macropores and related preferential flow 
phenomena.  The case study shows the capabilities, limitations, and usefulness of selected model 
abstraction methods and confirms the utility and correctness of the model abstraction method 
through a series of comparisons.  The model abstraction process addresses the uncertainty in model 
structure and in model parameter determination, and facilitates transparency and realism in the site-
specific modeling of essential FEPs.  The results of this research supports regulatory decisions that 
will help make modeling activities and decisions on which they are based more efficient and 
effective. 
 
This report is a technology transfer document.  The NRC staff can use it in reviewing subsurface 
hydrologic models.  The implementation of the model abstraction methodology provides a context 
for more efficient use of modeling in the regulatory process.  Earlier versions of this report were 
used in training workshops at NRC headquarters on June 22─24, 2004, and May 31, 2005. The 
report was also circulated to cooperating Federal agencies working under the memorandum of 
understanding on research in multimedia environmental models.  The report was peer-reviewed by 
the researchers who earlier developed the general strategy of hydrologic modeling and uncertainty 
analysis for nuclear sites and facilities. 
 

Carl J. Paperiello, Director 
Office of Nuclear Regulatory Research
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EXECUTIVE SUMMARY 

This report describes and demonstrates the methodology of model abstraction in 
subsurface contaminant hydrology. Model abstraction is defined as methodology for 
reducing the complexity of a simulation model while maintaining the validity of the 
simulation results with respect to the question that the simulation is being used to 
address. ). Thus, model abstraction reduces the complexity of the system to be simulated 
to its essential components and processes through a series of conceptualizations, selection 
of significant processes and appropriate scales, and identification of the associated 
parameters.  
 
The need in model abstraction addresses the concerns of the NRC licensing staff that the 
use of overly complex simulation models in decommissioning plans and performance 
assessment may cause an excessive burden of data collection and computations as well as 
difficulties in interpreting simulation results and conveying the simulation approach to  
both technical and lay audiences. The presumed risk of leaving some important process 
or feature out often leads the model users to employing fairly complex flow and transport 
models that simulate subsurface systems through detailed numerical grids and associated 
data inputs, thereby introducing large computational and intensive data-collection 
requirements.  However, many of the detailed features, events and processes represented 
in these complex models may have limited influence on the performance of a specific 
site.  
 
The feasibility of model abstraction has been demonstrated in many research and 
engineering fields that give ample examples of models having strikingly different 
complexity and yet the same accuracy. In contaminant hydrology, model abstraction is 
possible because the complexity of flow and transport pathways at a specific site is easy 
to perceive but difficult to represent in mathematical equations of the model without 
making strong simplifying assumptions. Different sets of plausible assumptions lead to 
different models that are consistent with the available observations. The multiplicity of 
models reflects the multiplicity of possible conceptual approaches to representation of 
complex subsurface processes in mathematical form tractable within limitations of 
existing computer and measurement technologies. 
 
The methodology of model abstraction has been developing for more than 30 years in 
various research and engineering fields. Most of the model abstraction techniques are 
specific to the type of mathematical models used in a specific field.  This report contains 
an overview and annotated examples of model abstraction in modern contaminant 
hydrology. Two main targets of abstraction are (1) the model structure, i.e. the formal 
description of specific processes and their interactions that affect flow and transport 
variables, and (2) the parameter determination, i.e. the estimation of constant and 
functions serving as coefficients in model equations. 
 
Structure of hydrologic models is changed with model abstraction via (a) using pre-
defined hierarchies of models, (b) delimiting input domain, (c) scale change done by 
either upscaling or aggregation, and (d) metamodeling. A predefined hierarchy contains a 
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series of progressively more simple conceptual and corresponding mathematical 
representations of porous media. The class of model abstraction techniques based on the 
delimiting input domain utilises the fact that some features, events, or processes may be 
not relevant for a given set of scenarios or for a given set of model outputs. Scale change 
provides transitions between four operational scales – core, profile/”pedon”, field, and 
watershed scales that are of interest in contaminant hydrology. Model abstraction with 
scale change alters model equations, variables and parameters with two classes of 
methods:  upscaling and aggregation. Upscaling model abstraction methods use the fine-
scale model and the fine scale media properties to derive the coarse-scale model 
equations and to relate the coarse-scale and fine-scale transport parameters. On the 
contrary, model abstraction with aggregation does not assume any relationship between 
model parameters and equations at the fine and at the coarse scales. Parameters of the 
coarse-scale model are lumped, and are subject to calibration with field data. Aggregation 
can be also done without the change in the model equations by combining several soil 
horizons or geologic strata. Metamodeling seeks to simulate the input-output 
relationships of the complex model with a simple statistical relationship. 
 
Model abstraction applied to parameterization of hydrologic models does not provide a 
substitution for the model calibration, but rather seeks to obtain reasonable estimates of 
parameter values and their variability. Such estimates are useful for setting initial values 
of parameters for the model calibration, using non-calibrated model in pilot studies and 
field campaign designs, assigning values of parameters that are shown to be not sensitive, 
etc. Abstraction of parameter determination affects parameter estimation via (a) 
discretization, (b) scaling, and (c) pedotransfer functions. The discretization abstraction 
techniques replace the continuously varying spatial fields of parameters with piece-wise 
constant spatial distributions. The scaling abstraction techniques are useful when models 
are coarsened, i.e. the grid cell size is substantially increased but no changes in the model 
structure is made.  The scale-dependence in model parameters is usually encountered in 
such cases, and scaling relationships are needed to convert the original parameter values 
and measurement data to the parameters values of the coarsened model. The pedotransfer 
techniques convert the readily available data to the hydraulic and transport parameters of 
the unsaturated flow and transport. Those parameters are notoriously difficult to measure, 
and s substantial effort has been made to estimate these parameters from the data 
available from soil survey or borehole logs. The empirical functions used for such 
estimating are often called pedotransfer functions. Large databases have been assembled 
to encompass variety of soil properties in developing pedotransfer functions in different 
parts of the world. New powerful heuristic tools, such as artificial neural networks and 
regression trees, appeared to be useful in the development of pedotransfer functions. Still, 
the accuracy of pedotransfer functions outside of their development dataset remains 
essentially unknown, and the use of ensembles of pedotransfer functions is strongly 
recommended.  
 
The model abstraction implementation has to conform requirements of objectiveness, 
systematic implementation, comprehensiveness, and efficiency. The MA process starts 
with an existing base model that can be calibrated and used in simulations. The key 
output of the model id defined that provides the necessary and sufficient information to 



 xv

decide on issues of interest. The base model may need abstraction for one or more of the 
following reasons (a) the base model includes a complex description of processes that 
cannot be observed well and yet need to be calibrated; the calibrated values of parameters 
of those processes are very uncertain, (b) the base model propagates uncertainty in the 
initial distributions, parameters, and forcing in a manner that creates an unacceptable 
uncertainty of the key output, (c) the base model produces inexplicable results in terms of 
the key output, (d) the base model requires an unacceptable amount of resources for 
computations, data preprocessing, or data post-processing, e.g. the base model is not 
suitable to be used as a part of a real-time modeling system that requires short computer 
runtimes, (e) the base model lacks transparency to be explicable and believable to the 
users of the key output. 
 
The model abstraction process, as described in this report, is a transparent step-by-step 
formalized procedure of justification of the use of a simplified model. It includes the 
following steps (1) justify the need for the model abstraction, (2) review the context of 
the modeling problem, (3) select applicable model techniques, (4) determine the model 
abstraction directions that may give substantial gain, (5) simplify the base model in each 
direction. Statistical criteria are provided to justify of the need in model abstraction in 
case it is related to the uncertainty in calibrated parameter values or in the model key 
output. The context of the modeling problem is described that has to be reviewed to 
realize what details and features of the problem are omitted or de-emphasized when the 
abstraction is performed, and thus to warrant the comprehensiveness and objectiveness of 
the model abstraction process. Model abstraction can lead to simplifications via (a) the 
number of processes being considered explicitly, (b) process descriptions, (c) coarsening 
spatial and temporal support, (d) the number of measurements for the reliable parameter 
estimation, (e) reduced computational burden, (f) data pre-processing and post-
processing. To guide the selection of applicable model abstraction techniques, classes of 
model abstraction techniques are specified that lead to each type of the simplification. 
Each abstracted model has to be parameterized and confirmed in the uncertainty context. 
 
The model abstraction case study was design to illustrate the model abstraction process 
and techniques. The main objective of the test case was to demonstrate how the model 
abstraction can be applied to understanding and prediction of soil water fluxes at a 
relatively humid site where transport may be affected by the presence of soil macropores 
and related preferential flow phenomena. The test site was located in Bekkevoort, 
Belgium. The 1.5-m deep test trench was dug in a loamy soil and was instrumented to 
measure soil water content and soil matric potential in 60 locations at five depths hourly, 
soil temperature in 6 locations at five depths hourly, and soil water fluxes in three 
locations at two depths once in one to four days. Vegetation was removed and a thin layer 
of fine gravel covered the soil. Soil water monitoring continued for 384 days. Soil was 
sampled at 90 locations at three depths to measure soil water retention in laboratory. The 
base model was the Richards equation of water flow in variably saturated porous media. 
The model was calibrated using almost 200,000 measurements of soil water content and 
soil water potential. The key output of the model was total soil water flux at two 
measurement depths and at the bottom of the soil profile over three wetting-drying 
periods.  



 xvi

 
The need in model abstraction was justified by the fact that the calibrated base model 
predicted substantial runoff whereas no runoff was observed at the site during the 
monitoring period. The base model produced inexplicable results in terms of the key 
output. 
 
The review of the modeling context revealed that (a) soil water contents across the trench 
demonstrated strong temporal persistence, and (b) a substantial preferential flow should 
occur in soil. The persistence was used to estimate soil bottom flux from water content 
measurements, and those flux flow estimates were used to assess evaporation from soil 
surface. Thus, the review of modeling context helped to improve knowledge about 
boundary fluxes that have not been measured. 
 
Four classes of applicable model abstraction techniques were selected. Model structure 
abstraction was achieved using the hierarchy of model, aggregation, and metamodeling. 
The hierarchy of models included the Richards equation and a simple soil water budget 
model. Aggregation was done by replacing the layered soil profile with the homogeneous 
profile. Metamodeling was done with the artificial neural network that used daily and 
weekly precipitation as input to estimate monthly cumulative soil water fluxes. An 
ensemble of 22 pedotransfer functions was used in model abstraction of parameter 
determination. HYDRUS1-D, MWBUS, and MATLAB software packages were used to 
calibrate the abstracted models and to run Monte Carlo simulations to evaluate the 
uncertainty in calibrated model outputs. 
 
The abstraction with the hierarchy of models was useful. The simple soil water budget 
model was less accurate in predictions of soil water content compared with the Richards 
model. However, unlike the more complex Richards model, this simple soil water budget 
model correctly predicted the absence of runoff and measured cumulative soil water 
fluxes. The prediction of runoff was an artifact of the Richards model calibration in 
absence of measured boundary fluxes. This abstracted model appeared to be instrumental 
in both explaining behavior of the complex model and in predicting the key output – soil 
water fluxes.  
 
The abstraction with aggregation was not useful in this case. The Richards model was 
less accurate with respect to soil water contents and continued to generate large simulated 
runoff when a homogeneous soil layer was introduced. 
 
The abstraction of parameter determination with pedotransfer functions was useful. It 
showed that the Richards model with parameters in correct ranges is able to correctly 
simulate soil water fluxes. The ensemble of pedotransfer functions represented field 
water retention better than data from laboratory soil water retention measurements. Soil 
water content predictions with the Richards model were more accurate with the ensemble 
of pedotransfer functions than with laboratory data.  
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The neural network metamodel was extremely accurate in estimating cumulative soil 
water fluxes. It was also five orders of magnitude faster than the numerical algorithm 
coded in HYDRUS-1D. 
 
In general, the model abstraction process was successful in this case study. Model 
abstraction explained the strange behavior of the complex model, and provided the 
correct description of the system behavior and plausible parameter ranges. The case has 
also demonstrated the need in model calibration and uncertainty analysis toolboxes and 
appropriate user interfaces to perform the model abstraction in the uncertainty context.   
 
Overall, the intensive use of models in subsurface contaminant hydrology has resulted in 
development of many model abstraction techniques that to-date have been used mostly in 
research. Potential benefits of model abstraction include improvement of understanding 
and communication of modeling results, more robust predictions, and better 
understanding of essential factors and their representation in models. This makes model 
abstraction an attractive methodology for engineering modeling applications.  The model 
abstraction process can be set as a transparent step-by-step formalized procedure of 
justification of the use of a simplified model. An important feature of models abstraction 
is the explicit treatment of model structure uncertainty. The model structure, along with 
the data uncertainty, and scenario uncertainty, is known to introduce the uncertainty in 
modeling results.  Unlike the uncertainty in input data, in model parameters, and in 
scenarios, the effect of the model structure uncertainty on the uncertainty in simulation 
results is usually impossible to quantify in statistical terms. Using model abstraction, a 
series of models with feasible structures can be built and evaluated in a systematic 
manner. Each of the models is evaluated from results of an ensemble of simulations by its 
accuracy to measurement data and by its predictions with respect to scenarios that have 
not been observed. 
 
It is expected that as the model abstraction methodology will develop, knowing about 
model abstraction and applying it to the regulated sites will be helpful for the NRC 
licensing staff. Reviewers will have a means to determine whether the models submitted 
to support licensing actions adequately represent the site, and whether the investigations 
adequately represent important features, events, and processes for the site. Managers will 
have an advisory tool to decide whether the requests for additional information are 
targeted tat sensitive site parameters and processes. On the other hand, the NRC licensees 
will have a device to determine whether a simple model that is easy to understand and 
communicate to regulators, stakeholders, and the general public can adequately represent 
their site. 
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1D, 2D One-dimensional, Two-dimensional 
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ASCII American Standard Code for Information Interchange. 
CEC Cation Exchange Capacity  
CV Coefficient of variation 
FAO Food and Agriculture Organization of the United Nations 
GA Genetic algorithms 
HYDRUS Software package for simulating the movement of water, 
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MA Model Abstraction 
MACRO A model of water flow and solute transport in Macroporous  
  soil. 
MEPAS Multimedia Environmental Pollutant Assessment System 
MIN3P   Multicomponent reactive transport modeling in variably 

saturated porous media 
MODFLOW Three-dimensional finite-difference ground-water flow  
 model 
MWBUS Model of Water Budget of Unsaturated Soil  
Neuropack Neural Networks Package for fitting Pedotransfer Functions 
NRC  U.S. Nuclear Regulatory Commission 
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PEST A nonlinear Parameter Estimation and optimization package 
PTF Pedotransfer function 
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Rosetta Windows-based program that implements artificial neural 

network to soil hydraulic parameters 
SUFI Parameter estimation methodology 
TDR Time Domain Reflectometer 
UCODE A Computer Code For Universal Inverse Modeling 
USDA United States Department of Agriculture 
WGEN A weather generator 
 

Symbols 
Roman symbols 
a a parameter of PTF 
A a parameter of PTF  
b a parameter of PTF 
B a parameter of PTF 
C clay 
C coarse 
CA clay activity 
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clay percent clay 
D mean depth of sample in centimeters 
ds  geometric mean diameter of soil particle size distribution 
E simulated daily evaporation rate 
F fine 
h capillary pressure (the absolute value of the matric potential) 
hb  bubbling pressure in the Brooks-Corey water retention model 
he air entry potential 
hes air entry potential at a standard bulk density 
K  number of the working probes at one depth  
Ksat saturated hydraulic conductivity 
Kw unsaturated hydraulic conductivity 
l a parameter of unsaturated hydraulic conductivity model 
L loam 
lS loamy sand 
m a parameter of van Genuchten’s water retention model 
M medium 
MF medium fine 
n a parameter of van Genuchten’s water retention model 
N number of probes 
OC percent organic carbon 
OM percent organic matter 
Q interlayer water flux 
R rainfall rate 
R2 Coefficient of determination 
RMSE Root Mean Square Error 
S sand 
S soil water saturation 
sand percent sand 
SAR sodium adsorption ratio 
sC sandy clay 
scL sandy clay loam 
Si silt 
siC silty clay 
sicL silty clay loam 
siL silt loam 
silt percent silt 
sL sandy loam 
sβi standard derivation of the relative water content 
t time 
topsoil a parameter of PTF  
VF very fine 
w gravimetric water contents 
w330 gravimetric water contents at capillary pressures of 330 cm 
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α a parameter of van Genuchten’s water retention model 
βij relative water content 
β  average relative water content 
γ a parameter of unsaturated hydraulic conductivity model 
∆θ water content change 
∆t time interval 
∆z thickness of the soil layer 
δ a parameter of unsaturated hydraulic conductivity model 
θ  volumetric water content 
θe effective porosity  
θFC water field capacity 
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1 INTRODUCTION 
 

1.1 Background 
 
NRC staff review of performance assessments of nuclear facilities, e.g., decommissioning 
of the facilities, management of low-level and high-level radioactive waste disposal sites, 
frequently involves the review of models of water flow and solute transport in soils, 
sediments, and porous rocks in the vicinity of the nuclear facility (U.S. NRC, 1993, 
1994).  These models seek to represent complex and highly transient subsurface systems.  
Representation of those complex systems in existing models ranges from a very simple to 
a extremely sophisticated (Davis et al., 2004; Meyer et al., 1997; Neuman and Wierenga, 
2003; Reilly and Harbaugh, 2004; Hill et al., 2004).  
 
It is generally agreed that models of the appropriate complexity may be required to 
capture certain flow and transport phenomena (Hunt and Zheng, 1999). How to reach this 
appropriate complexity remains an ongoing research issue. Suggested systematic 
approaches are based on the scale of interest. A “downward” approach in hydrologic 
modeling typically starts with a very simple model to capture the signature of, say, the 
annual runoff response of a catchment (Milly, 1994). Complexity is added as the spatial 
and temporal scales become finer.  (Jothityangkoon et al., 2001). Neuman and Wierenga 
(2003) addressed the issue of the suitable level of model complexity in the site-specific 
hydrogeologic modeling. They indicated that site-specific hydrogeologic heterogeneities 
and driving mechanisms may be controlled by the features, events and processes 
belonging to the larger scale(s), and that the models have to account for these controls. At 
the same time, site-specific hydrogeologic heterogeneities and driving mechanisms may 
be also significantly influenced by the smaller scale features, events and processes, and 
this also has to be accounted for in the model. Usually, the complexity of flow and 
transport pathways at the specific site may be easily perceived, but it is often difficult to 
represent it in mathematical equations of the model without making strong simplifying 
assumptions (Beven, 2002). This implies that several different structures of the model 
could be consistent with the available observations. Such multiplicity of models reflects 
the multiplicity of possible conceptual approaches to representation of complex 
subsurface processes in mathematical form tractable within limitations of existing 
computer and measurement technologies.  
 
It has been amply demonstrated that the increase in complexity of the model does not 
necessarily mean the increase in its accuracy. Examples of equally accurate models of 
strikingly different complexity can be found in various fields of modeling applications, 
such as regional ground water assessments (Kelson et al., 2002), chemical engineering 
(Diwekar, 1994), marine ecology (Stillman et al., 2000), runoff generation (Jakeman and 
Hornberger, 1993), population dynamics (Stephens et al., 2002), demographic projections 
(Smith, 1997), state-wide water supply systems (Palmer and Cohan, 1986), battlefield 
simulations (Sisti and Farr, 1997), etc.  
 
If the complexity is not inexorably linked with the accuracy, there may exist an 
opportunity to simplify models. Simplifying models may stem from several rationales. As 
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motivations for model simplification, Neuman and Wierenga (2003) list narrowly defined 
contextual or regulatory criteria, limited data or resources, and a quest for transparency. 
The narrowly defined criteria usually mean that the accuracy of the model is evaluated 
with respect to some (but not all) variables that this model predicts. Limitations of 
resources may refer to runtime and also to data pre-processing and post-processing. The 
transparency may be imperative in communicating model requirements and justifying the 
use of the specific model. 
 
1.2 Model abstraction 
 
Model abstraction is the methodology of model simplification performed systematically 
and objectively. Frantz (2002) defined the model abstraction as “a methodology for 
reducing the complexity of a simulation model while maintaining the validity of the 
simulation results with respect to the question that the simulation is being used to 
address” (Frantz, 2002). Thus, the model abstraction reduces the complexity of the 
natural system to be simulated to its essential components and processes through a series 
of conceptualizations, selection of significant processes, and identification of the 
associated parameters.  
 
The presumed risk of leaving some important process or feature out often leads the model 
users to employing fairly complex flow and transport models that simulate subsurface 
systems through detailed numerical grids and associated data inputs, thereby introducing 
large computational and intensive data-collection requirements.  Many of the detailed 
features, events and processes represented in these complex models may have limited 
influence on the performance of a specific site. This will cause an excessive burden of 
data collection and computations as well as difficulties in interpreting simulation results 
and conveying the simulation approach to  both technical and lay audiences. This has 
become a concern on the part of both NRC staff and the staff of other regulatory and 
research federal agencies involved in multimedia modeling. Applying model abstraction 
in a systematic manner will address this concern. 
 
Successful model abstraction results in a simpler model that renders more easily 
understandable description of the problem and allows discussions to be focused on the 
most important aspects. It is often imperative to explicitly acknowledge the abstraction 
strategy to make a model justifiable and defensible. Finally, model abstraction explicitly 
deals with uncertainties in modeling. Therefore, model abstraction techniques that can 
simplify and expedite the assessment of complex systems without significant loss of 
accuracy would greatly benefit the synthesis and review of performance assessments. 
 
Recently, the issue of model simplification has been addressed for the subsurface 
hydrologic modeling in the comprehensive strategy developed by Neuman and Wierenga 
(2003) who advocated the need in systematic approach. This report develops and 
illustrates such approach. 
We note that the term “model abstraction” is sometimes applied to describe the model 
development, i.e. representation of the complex reality with a specific conceptual and/or 
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mathematical model, or to describe a development of a set of progressively simplified 
models.  Such meaning of the term is not used in this report. 
 
 
1.3 Objectives 
 
The general goal of this work was to provide the NRC with an improved analysis 
capability that would enhance the credibility and defensibility of site performance 
reviews. Toward this goal, the specific objectives of this study were  
(1) to identify model abstraction techniques that may be appropriate for characterizing 
and simulating water flow and contaminant transport in vadose zone, and  
(2) to develop a case study that will demonstrate the efficiency of some of model 
abstraction techniques for a specific site.   
Our presumption was that model abstraction techniques that reduce either the conceptual 
complexity, or the parameter determination complexity, may also enhance 
communications with stakeholders and help clarify the scientific bases for decision-
making related to the first-order importance issues. 
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2 MODEL ABSTRACTION TECHNIQUES 
 
2.1 Background 
 
Two definitions of the term ‘simple’ are pertinent to modeling: (1) easily understood or 
done, and (2) plain and uncomplicated in form, nature, or design (Weiner and Simpson, 
1991). The definition 1 applies to the user perception and to the model use. The definition 
2 pertains to the model structure and to the details of modeling. Simplification of models 
has been analyzed in both directions for more than 30 years. The first comprehensive 
discussion of model simplification was presented by Meisel and Collins (1973). These 
authors listed four advantages of using the simplified models: 

• they are less expensive to use; such savings will permit more thorough analysis 
for a given analysis budget;  

• they have fewer input requirements;  
• they are easier to transfer and/or combine with other models; 
• they are easier to interpret; it is easier to understand the properties of and results 

from a model with a small number of state variables and parameters than the 
properties and results of one with more.   

The first summary of model simplification techniques was compiled by Ziegler (1976) 
who introduced four categories of the model abstraction techniques:  

• dropping unimportant parts of the model,  
• replacing some part of the model by a random variable,  
• coarsening the range of values taken by a variable,  
• and grouping parts of the model together.  

Innis and Rextad (1983) noted that model can be simplified at various stages of a 
modeling project. They listed 17 categories of simplification techniques that were used in 
ecological modeling (Table 2-1). The authors emphasized that the model simplification 
has to be conditioned on the purpose of modeling and proposed the first guidelines of 
using the model abstraction in modeling natural systems. 
 
Frantz (1995) has viewed the model abstraction as a simplification of the model that 
assures validity of the model for the specific purpose. He introduced a comprehensive 
taxonomy of the model abstraction techniques presented in Fig. 2-1. Table 2-2 describes 
the meaning of the classes of techniques proposed by Frantz (1995). The model boundary 
abstraction changes the real-world factors accounted for in the model by changing the 
exogenous variables of the model. The model behavior abstraction eliminates the 
transitions through the system states that are irrelevant to the simulation requirements. 
Finally, the model form abstraction uses inputs and outputs from the multiple simulations 
with the model to define the relationship between input and output with a simpler 
mathematical model. Frantz (1995) noted that different model abstraction techniques tend 
to be applied simultaneously. Later, other classifications of model abstraction techniques 
have been proposed (Caughlin and Sisti, 1997; Ziegler, 1998; Yilmaz and Ören, 2004) 
that have less detail but generally cover the same set of techniques as the Frantz’ (1995) 
classification. 
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Table 2-1. A set of model simplification techniques suggested by Innis and Rextad (1983) 
for four steps of model development 
 
No. Technique Examples 

Step 1. Hypotheses 
1 System 

organization 
In a conservative system, one of compartment can be represented by 
subtraction; self organization can impose relationships between parameters 
that effectively eliminate one or more parameters, 

2 Filtering Fluctuations in a state or driving variable at very high frequencies are not 
sensible to the remainder of the system. For instance, rapid changes in solar 
insolation have little effect on the growth of a tree.  

3 Stochastic 
features 

Stochastic systems may be better represented directly rather than as 
stochastically disturbed deterministic systems 

4 Graph theory Analysis of diagrams of the interrelations between variables may help to 
isolate highly interactive subsystems for low resolution treatment 

Step 2. Formulation. 
5 Sensitivity-

based results 
Factors of little supposed importance may be omitted; susbsystems with little 
effect on system dynamics can be aggregated. 

6 Structure and 
logic analysis 

Models often contain numerous model-building artifacts whose removal may 
simplify the result. 

7 Dimensional 
analysis 

Using dimensionless variables can make results more broadly applicable. 

8 Repro-Meta 
modeling 

A model of a model may offer such advantages over the original model as (a) 
finding interrelations not obvious in the data or the model, (b) simulated data 
can be selected to meet restrictive requirements (e. g., being equally spaced in 
time), (c) regression of input/output parts applied to all or part of simulation 
may speed and reduce the cost of projection. 

9 Time 
constants of 
sub-systems 

Widely disparate rates in a model may be eliminated using suitable 
approximations, e.g. slowly changing variables may be replaced by constants, 
rapidly changing variables that equilibrate with other variables may be 
represented with algebraic expressions in place of dynamic equation, thus 
eliminating a need in large number of parameters. 

10 Analytical 
solutions 

Using eigenvalues and eigenvectors instead of solving evolutionary matrix 
equations 

11 Interdependen
cies 

Interdependencies among parameters can be utilized that stem from data or 
generally accepted theories. 

12 Perturbation  Correct linearization of the initial model. 
13 Calculation of 

output 
moments 

Computing statistical moments of the output directly from input data and 
model structure 

Step 3. Coding 
14 Languages Using the simulation language tailored to the needs of the study 
15 Coding 

improvement 
Coding improvements can ease reading and debugging as well as increase the 
execution speed. 

Step 4. Experiments 
16 Variance 

reduction 
Reducing the number of simulation runs needed to estimate an output value 
within a specified accuracy; accounting for correlations between variables 

17 Linear 
systems  

Retaining the dominant eigenvalues and eigenvectors 
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Figure 2-1. General taxonomy of model abstraction techniques after Frantz (1995). With 
permission.
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Table 2-2. Meaning and theoretical basis of model abstraction techniques (after Frantz, 2002) 
 
Class of model 
abstraction techniques 

Broad meaning. Theoretical background 

Hierarchy of models A pre-defined hierarchy of models can be created to include simplified 
models and more complex models. 

Graph of models (Addanki et al., 1991); 
compositional modeling (Falkenhauer 
and Forbus, 1991). 

Limited input space Limit the domain of inputs provided. Some process descriptions are not 
important or can be simplified because input parameters are in a limited 
range such that the additional processes have little or no effect on the 
results. 
 

Pre-defined experimental frame of 
reference (Zeigler, 1976, Zeigler et al. 
1998). 

Approximation Parameter elimination based on requirements of the simulation to be 
executed rather than being defined externally. Analysis determines which 
parameters in a model can be eliminated, yielding a new and 
computationally simpler model that provides approximate results that are 
within a certain tolerance necessary to meet the requirements of the 
simulation 
 

Causal relationships between parameters 
(Nayak, 1992), aggregation of variables 
(Simon and Ando, 1996). 

Selection by influences Simplifying models by using relationships between variables observed in 
the simulations. This approach focuses on determining which variables in 
the model must be exogenous, and requires that the effects of variables on 
other variables in the model be defined. 
 

Automated modeling (Rickel and Porter, 
1994). 

Behavior aggregation Combining system states whose distinctions are irrelevant to the 
simulation output. Temporal ordering of events may be irrelevant to the 
final simulation result. 
 

Automated modeling (Rickel and Porter, 
1994). 

Causal decomposition Dividing a model into loosely connected components, executing each 
component separately, and searching for constraints that execution of one 
component can impose on other components. Where no causal relationship 
exists, the components may be executed in parallel. 
 

Tractable simulations (Clancy and 
Kuipers, 1994), causality in model 
abstraction (Iwasaki and Simon, 1994).  
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Aggregation of cycles Combining states that reflect similar sequences and distinctions among the 
individual sequences are irrelevant to the final outcome. 
 

Aggregation in simulations (Weld, 
1986). 

Numerical 
representation 

Replacing continuous variables by categorical or nominal variables.  For 
example, combining states characterized by floating point numbers that 
round to the same integer value. 
 

Developments in genetic algorithms 
(Mitchell, 1996) and in regression trees 
(Clark and Pregibon, 1992). 

Temporal aggregation Decreasing temporal resolution. This type of abstraction reduces 
computational complexity by reducing the granularity (coarseness) of the 
time advance. This abstraction can be applied in either unit advance or 
event advance in discrete event simulations 
 

 Temporal grain size aggregation 
(Iwasaki, 1990) 

Entity aggregation Refers to the representation of a collection of “lower level” entities by a 
“higher level” entity. Entity aggregation may be performed by structure or 
by function. Aggregating units that perform common or similar functions 
creates an entity that performs a function that is the aggregate of the 
individual functions.  Aggregation by structure is accomplished by 
replacing lower level entities by higher level entities.  Behavior in such 
cases is substantially different as a result of abstraction, even if the output 
is the same. Aggregates functions of entities or subunits but leaves entities 
in place. Functions are redefined to provide a coarser list of states or 
output information from existing entities. 
 

Qualitative simulations (Fishwick and 
Luker, 1991), variable resolution 
modeling (Hillestad et al, 1992, 1993). 

Look-up tables Simplification of the input-output transformation within a model or model 
component by means of a decrease in computational effort. 
 

 

Probabilistic input  
 

Using randomly generated inputs to develop lumped models. Fishwick, 1988. 

Metamodeling  Approximating the output response surface of the model with a statistical 
regression or using heuristic data mining tools. 

Neural network-based metamodeling 
Burton (1994) 
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Recent developments in the model abstraction theory and applications include using the 
multiresolution modeling as proposed by Fishwick (1995). This type of modeling 
presumes existence and use of two or more models of different complexity for the same 
system. Davis and Bigelow (2003) indicated that models of different resolution, or detail, 
have different strengths and weaknesses. Detailed models are particularly valuable for 
representing explicitly the underlying phenomena. Successful models of this type are the 
embodiments in mathematics and/or in computer programs of the fundamental 
knowledge about the subject in question existing at the moment of the model 
development. However, the fundamental knowledge about the system under 
considerations not the only important knowledge (or even the most important knowledge) 
for the decision-making A significant part of our knowledge of the world is low-
resolution. Bigelow and Davis (2003) noted that both the insightful strategy-level 
analysis and the decision support typically require relatively simple models. The most 
fundamental reason is cognitive: decision makers need to reason about their issues and 
inject their own judgments and perspectives. They need to construct coherent stories that 
are convincing to themselves and to others. This implies abstracting, that is reducing of 
what may be a very complex problem to a relatively small number of variables or 
cognitive chunks (e.g., 3–5 rather than 10s or 100s). This also implies focusing on the 
appropriate variables and on the cause-effect relationships. Another fundamental reason 
for using simpler models is that strategy-level problems may be characterized by massive 
uncertainty in many dimensions. The appropriate way to address such problems is often 
the exploratory analysis in which one examines issues across the entire domain of 
plausible initial states. The exploratory analysis, however, is most effective when the 
model comprehensively covers the space in which the problem is considered with only 3–
12 variables. In such cases, the exploration can be comprehensive and comprehensible. In 
contrast, if one has a large model and explores by holding hundreds of variables constant 
while varying only a few (because in reality it is not possible to vary all of them), the 
results cannot be assessed confidently because the effects of varying the others are 
unknown. Model abstraction also seems to be very attractive because simple models 
require much smaller amounts of the experimental data, much less time and efforts for 
data preparation and post-processing. Analysts and end users can quickly comprehend 
simple models and their inputs and outputs. 
 
Model simplification has also been recently advocated as a powerful tool to improve the 
usefulness of complex ecological models for uncovering mechanisms of ecosystem 
functioning (Van Ness and Scheffer, 2005). Thes authors have proposed a strategy that 
includes joint exploration of the behavior of a complex model and of its simplified 
counterpart. The purpose of the simplification in this case is to gain understanding about 
causes of the patters in the complex model output. 
 
Types of models applied in various research and engineering fields are quite different. 
Therefore, not all model abstraction techniques are relevant to the particular field of 
knowledge.  For example, abstracting models of the discrete events (i.e. the event 
advance abstraction in Frantz’s classification) is not relevant to subsurface hydrology in 
its current state where the representation of flow and transport is predominantly 
continuous. The arsenal of model abstraction techniques developed in linguistics or in 
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computer science has a very limited use in subsurface hydrology because of fundamental 
differences in types of models used.  
 
The need for the model simplification in contaminant hydrology was outlined by Neuman 
and Wierenga (2003) in their comprehensive strategy of hydrologic modeling and 
uncertainty for nuclear facilities and sites. Neuman and Wierenga emphasized the 
necessity to carry out the model simplification a systematic and comprehensive manner. 
In this work, simplifications of model structure and of model parameter determination are 
considered.  Simplifications related to the numerical solution of model equations are 
outside the scope of this report. 
 
2.2 Model abstraction techniques for flow and transport models 
 
 This section present a systematic description of the model abstraction techniques applied 
in subsurface hydrology. The categories of model abstraction techniques relevant to flow 
and transport modeling are presented in Fig. 2-2. This classification is based on our 
personal experience and the extensive literature review that is given below. Although an 
effort has been made to compile a comprehensive list, the classes of techniques outlined 
in the next section are neither mutually exclusive nor mutually exhaustive. Two large 
targets of abstraction are (1) the model structure, i.e. the formal description of specific 
processes and their interactions that affect flow and transport variables, and (2) the 
parameter determination, i.e. the estimation of constant and functions serving as 
coefficients in model equations. Although model calibration is considered to be a 
mandatory procedure in flow and transport modeling applications, a preliminary 
estimation  of model parameters and their variability parameters is useful in both setting 
initial values of parameters for the model calibration and using non-calibrated model in 
pilot studies and field campaign designs. Each category of the classification in Fig. 2-2 
represents a variety of specific procedures and techniques that are identified   in 
following sections. 
 
2.2.1 Hierarchies of models 
 
A pre-defined hierarchy of models has been suggested for flow and transport in structured 
media (Altman et al., 1996). Figure 2-3 shows a schematic representation  of increasingly 
complex models that may be used to simulate preferential flow and transport in 
macroporous soils or unsaturated fractured rock. The simplest bucket-type model 
describes the accumulation of water in soil matrix and its discharge when the water 
content exceeds the field water capacity or during evaporation periods (Fig. 2-3a). The 
classical approach for simulating flow/ transport processes in vadose zones devoid of 
macropores or fractures is to use the Richards equations for variably-saturated water flow 
and the advection-dispersion equation for solute transport (Fig. 2-3b).  The simplest 
situation (Fig. 2-3c) for a fractured medium arises when the Richards and advection-
dispersion equations are still used in an equivalent continuum approach, but now with 
composite (double-hump type) hydraulic conductivity (permeability) curves of the type 
shown in Mohanty et al. (1997), rather than the classical curve for the relative 
permeability shown in Fig. 2-3b.  More involved dual-porosity type models (Fig. 2-3d) 
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Figure 2-2. Categories of model abstraction techniques relevant to flow and transport 
modeling in subsurface hydrology. 
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Figure 2-3. Hierarchy of models to simulate water flow and solute transport in structured 
soils or in unsaturated fractured rock. Modified from (Altman et al., 1996). 
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result when the medium is partitioned into fracture and matrix pore regions, with water 
and/or solutes allowed to exchange between the two liquid regions (e.g., Ventrella et al., 
2000).  Different formulations of this type are possible.  For example, one could permit 
transient variably saturated flow in the fractures only, while allowing water to exchange 
between the fracture and matrix domains.  The latter situation leads to both advective and 
diffusive exchange of solutes between the fractures and the matrix but still without 
vertical flow in the matrix (e.g., Zurmühl and Durner, 1996; Zurmühl, 1998). Dual-
permeability models (Fig. 2-3e) arise when water flow occurs in both the fracture and the 
matrix domains.  Examples are models by Pruess (1991), Gerke and van Genuchten 
(1993) and Jarvis (1999).  These models use different formulations for the exchange of 
water between the fracture and matrix regions.  In some models (e.g., Wilson et al., 1998) 
more than two domains are considered, each one having its own hydraulic properties.  
The modeling approach can be refined further by considering transient flow and/or 
transport in discrete fractures without (Fig. 2-3f) or with (Fig. 2-3g) interactions between 
the fractures and matrix.  The latter approach is based on the assumption that the flow and 
transport equations of the fracture network can be solved in a fully coupled fashion with 
the corresponding equations for the matrix (e.g., Therrien and Sudicky, 1996). 
 
Subsets of this hierarchy that have been used most often include using two region and 
one-region models of pore space (Nielsen et al., 1986). Other examples of hierarchies use 
non-equilibrium and equilibrium models for contaminant sorption and transport,as 
illustrated by Valocchi (1985). 
 
2.2.2 Delimited input domain 
 
This class of model abstraction techniques relies on the observation that some features or 
processes may be not relevant for a given class of scenarios or for a given set of model 
outputs. A reduction of the spatial dimensionality is one application of this technique. 
Two-dimensional representations can be redundant and 1D representation may suffice as 
shown by Wang et al. (2003). In another example, Guswa and Freuberg (2002) explored a 
possibility to use the 1D model to characterize solute spreading in the environment with 
low permeability lenses; they found that 1D macroscopic advective-dispersive equation 
well matched the results from the 2D model when the equivalent conductivity of a 
domain was less than the geometric mean conductivity, This example shows that one 
should expect a change in parameter values if the dimensionality is reduced.  
 
Delimiting input domain may allow rejection of the models in the hierarchy of Figure 2-2 
based upon the type of flow being encountered.  This is schematically illustrated in Fig. 
2-4 (Nimmo, 2002) for the maximum rate of preferential flow over various distances for a 
large number of field tracer experiments. The absence of saturated or near-saturated flow 
may make it possible to use the equivalent continuum models, whereas the presence of 
saturated flow may warrant the use of the dual-porosity or dual-permeability flow and 
transport models. The presence of substantial periods of unsaturated flow and isolated 
events of saturated conditions may motivate the use of different models for each of the 
two types of flow.  This use of two different models may be simpler than invoking one 
integrated model for continuous simulation of both types of flow.  Similarly, some types  
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Figure 2-4.  Maximum tracer velocity in 34 documented field experiments with variably 
saturated soils (after Nimmo, 2002, with permission).

Scale of transport (m) 
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of soil water regimes make the steady state flow assumption applicable to the solute 
transport simulations at filed scale (Destouni, 1991). 
 
The behavioral pattern of the biotic component may also allow abstraction of this type. 
Guswa et al. (2002) have studied the soil water regime in presence of plants and have 
found that the mechanistic soil water flow model can be abstracted to the simple bucket-
filling model if the plant can extract water from locally wet regions to make up for roots 
in dry portions of soil column. 
 
2.2.3 Scale change 
 
Scale is a complex concept having multiple connotations. A notion of support is 
important to characterize and relate different scales in subsurface hydrology. Support is 
the length, area, or volume for which a single value of porous media property is defined 
and no variations in this and other properties are taken into account.  Size of an individual 
sample and size of a discrete spatial element in the flow and transport model present 
typical examples of the support. The term "resolution" is used for supports defined in 
terms of length, and the term "representative elementary volume" is applied for supports 
defined as volumes. Terms "pixel size" and "grid size" are also used to define resolution. 
An area or a volume that are sampled with given support determine the extent of 
measurements. Distances between sampling locations define spacing. Blöschl and 
Sivapalan (1995) suggested using the triplet support-spacing-extent to characterize the 
scale of the hydrologic study. In practice of the vadose zone research, supports of core 
scale, soil profile, or “pedon,” scale, field scale, and watershed scale are defined 
operationally, and the increase of the linear size by about two orders of magnitude 
corresponds to the transition from one of these scales to the next, coarser one (Fig. 2-5). 
Change in spatial scale is usually reflected in the change of temporal scale as shown in 
this figure.  
 
The transition from a fine to the next, coarser scale in this sequence is referred below as 
the scale change.   
 
2.2.3.1 Scale change – upscaling 
 
This category of model abstraction recognizes the need in altering model structure when 
the spatial scale changes. Model equations, variables and parameters change.  

Specific techniques of such abstraction employ statistical properties of flow and transport 
at the fine scale to derive the coarse-scale models. Development of upscaling techniques 
is very actively researched in hydrology, and a multitude of techniques is developed 
(Govindaraju, 2002; Rubin, 2003).  Most of the upscaling techniques use the some 
assumptions about the spatial variability of flow, transport and porous media properties. 
However, no standard technique exists to date. The differences among the techniques are 
also related to the need of introducing additional, so-called constitutive relationships to 
compensate for the loss of information that occurs after upscaling (Cushman, 1990).  
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Figure 2-5. Spatial and temporal operational scales in hydrology (after Blöschl and 
Sivapalan, 1995). With permission, John Wiley & Sons, Inc. 
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Different constitutive relationships lead to different techniques. Recently it was suggested 
to carry out upscaling in the probability space (Guadagnini and Neuman, 1999). With this  

method, the effective parameters of the flow model depend on the available information 
about the porous media properties at the fine scale. 

Numerical stochastic simulations are also employed in upscaling. In this case the coarse-
scale flow and transport is estimated not from upscaled equations but directly from Monte 
Carlo simulations at fine scale. Recently, using Monte-Carlo simulations became 
instrumental in upscaling multiphase flow and transport models for unsaturated zone 
simulations (i.e., Ewing et al., 2000; Li et al., 2003). Khaleel et al. (2002) used Monte 
Carlo simulations of flow and transport to represent a heterogeneous unsaturated medium 
with its homogeneous equivalent. Simulations showed that such upscaling also requires 
introducing new constitutive relationships, such as dependences of hydraulic conductivity 
anisotropy and dispersivity on moisture content or tension. 

Upscaling may involve also the reduction of dimensionality, as demonstrated by Kumar 
(2004) for upscaling two-dimensional Richards equation to its one-dimensional coarse-
scale analog. 

To be efficient, all mentioned upscaling techniques have to use the correct statistical 
representation of rare features at the fine scale, because these features often govern the 
media behavior at the coarse scale. For example, if hydraulic conductivity is distributed 
lognormally, then five percent of fine scale representative elementary volumes (REVs) 
will conduct 95% of all flow, and relatively rare REVs will control the flow at the coarse 
scale. Macropores are rare in soils and are easy to miss during sampling, but they control 
water flow and solute transport in soil profile. 
 
The scale finer than the core/core scale is usually referred to as the pore scale. This scale 
is not of an immediate interest in engineering applications of the flow and transport 
modeling Nevertheless, an active upscaling research at this scale is being done towards 
better understanding and modeling of flow and transport at core scale with the possibility 
to extend upscaling techniques to coarser scales. One example is to combine individual 
stream tubes into a stochastic transport model (Jury, 1990). Recent developments include 
modeling solute transport under assumption that individual solute particles undergo non-
Brownian motion in a complex pore space. In this case, the classical convective-
dispersive equation becomes inapplicable, and other models need to be used. Solute 
particles in complex and/or reactive pore space may experience long waiting times before 
making a “leap” in the general direction of transport. Such individual behavior can be 
integrated using models of fractional kinetics (Benson et al., 2001) or more general 
continuous-time random walk models (Berkowitz et al, 2001). A similar approach to 
modeling of the flow in unsaturated soil is also plausible (Pachepsky et al, 2003). 
Although these methods have been mostly researched to understand transport at the core 
scale, they are increasingly applied at the coarser scales. For example, the diffusion-
limited aggregation model provided a good description of solute transport in soils with 
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the distance-dependent dispersivity (Flury and Flühler, 1995). Fractional kinetics models 
have been successfully used to simulate the MADE tracer experiment (Benson et al., 
2001). 
 
 
2.2.3.2 Scale change – aggregation 
 
Change of scale also leads to a change of the model governing equations and parameters 
with these techniques. However, unlike in upscaling, no relationship is assumed between 
model parameters   at the fine and at the coarse scales. Parameters of the coarse-scale 
model are deemed to be lumped, and field data are needed to calibrate such coarse scale 
models. An example is using a bucket-type soil water flow model (Fig. 2-3a) at the field 
scale whereas Richards equation is used at the soil profile scale (Fig. 2-3b). Soil water 
retention is parameterized with the field capacity at coarse scale and with soil water 
retention curves at the fine scale. No relationship between the coarse scale and fine scale 
parameters exists, because there is no reliable relationship between the water content at 
field capacity and soil water content at any specific values of soil water tension (Fig. 2-6).  
 
Aggregation can be also done without the change in the model equations by combining 
several soil horizons or geologic strata. In flow and transport in vadose zone, one 
common application is to replace a heterogeneous soil profile with an equivalent 
homogenous profile while retaining the Richards equation as a flow model (Zhu and 
Mohanty, 2002). In such case, flow and transport parameters are still lumped. Attempts to 
determine the effective hydraulic properties of the equivalent soil profile from the layer 
properties have shown that the effective properties depend not only on layer properties 
but also on the type of the predominant water regime (infiltration or evaporation). Many 
examples of distributed watershed modeling with various degree of sub-watershed 
aggregation were recently developed in surface hydrology. Boyle et al. (2001) showed  
that aggregation from eight to three sub-watersheds does not worsen the model 
performance whereas aggregating all sub-watersheds in one does. 
 
Aggregation should be distinguished from the model coarsening, when the support is 
increased without explicit recognition of the increasing non-homogeneity within it. In the 
latter case, no model abstraction is actually performed.  
 
2.2.4  Metamodeling 
 
This is a group of abstraction methods that use results of multiple simulation runs to 
extract the information helpful to simplify a complex model. 
 
Metamodeling literally means modeling a model. Also known as the repromodeling 
(Meisel and Collins, 1973) or the response surface modeling, the metamodeling creates a 
relatively small and simple empirical model intended to mimic the behavior of a large 
complex model, that is, to reproduce the object model’s input-output relationships. (Davis 
and Bigelow, 2003). A common way to develop a metamodel is to generate “data” from a  
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Figure 2-6. Soil field capacity and soil water retention at fixed matric potentials; CS - 
coarse sand, MS - medium sand, FS - fine sand, LFS - loamy fine sand at -5 and -10 kPa 
sol matric potentials (data from Rivers and Shipp, 1978); ○ and □ - topsoil and subsoil of 
varying texture at -33kPa (data from Haise et al., 1955).  
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number of large-model runs and then to use the statistical methods to relate the model 
input to the model output without attempting to understand the model’s internal working. 
 
Artificial neural networks (ANN) became a popular means to build metamodels because 
they are powerful approximators and, as such, are used to relate multiple input variables 
to outputs from the complex model (Hecht-Nielsen, 1990).  Recent examples of 
application of the artificial neural networks to mimic MODFLOW output in a range of 
scenarios for particular remediation sites have been recently published (Kron and 
Rosberg, 1998; Masket et al., 2000).   
 
The use of ANN requires development of a large number of training datasets covering the 
range of possible scenarios of forcing variables. Generating such datasets requires an 
extensive computing effort, but the computing with a trained ANN is several orders of 
magnitude faster than the simulation with the original model. Wang and Jamieson (2002) 
reported an example of regional wastewater planning in which, for reasons of 
computational efficiency, an artificial neural network was employed to replicate the 
process-based model in multiple evaluations of the model output during optimization 
aiming to determine both the best sites and individual discharge standards. 
 
ANN can be used to simulate not only the model output of interest, but also the results of 
any part of computations performed during a model run. Hassan and Hamed (2001) 
demonstrated the use of ANN to predict particle trajectories in a particle-tracking 
algorithm in simulation the plume migration in heterogeneous media. 
 
Using classification and regression trees (sometimes called decision trees) is another 
heuristic methodology for creating metamodels. It gains popularity because of the 
transparency of results, ability to retain only significant inputs-predictors, and possibility 
to work with categorical, or ordinal inputs. No applications of regression trees in 
subsurface flow and transport modeling have been found, although they were 
successfully used in hydraulic parameter estimation from readily available data (Rawls 
and Pachepsky, 2002). 
 
Based on pure statistics, metamodels undoubtedly have problems that may be either 
minor or major, depending on the context and on the statistical methods used. Davis and 
Bigelow (2003) listed (a) the failure to tell a story, that is inability of metamodels to 
provide a sensible explanation of results to a decision-maker, (b) the failure to represent 
multiple critical components; if a system failure is modeled and the system fails if any of 
several components fail, then metamodels may not simulate that, instead predicting that a 
weakness in one component can be compensated by greater strength of another, (c) non-
reliable sensitivity of metamodels, and (d) shortcomings in representing the whole input 
space; statistical metamodel may emulate base-model results reasonably well on average, 
but fails badly in what appears to be the obscure corners of the input space. Those authors 
suggest to use statistical metamodels based on the physical phenomena represented in the 
object model, knowledge of the structure of the object model, or a combination. 
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2.2.5 Discretization 
 
In some cases, using a set of discrete values of parameters instead of their continuous 
values leads to substantial simplifications. This simple but very important abstraction is 
commonly used in flow and transport modeling by employing soil and geological textural 
maps to define soil or sediment "units" that have the same hydraulic properties - even 
though the real-world hydraulic properties may gradually change from one unit to 
another. Zonation of hydraulic conductivity was found efficient when geophysical and 
hydrogeological data were combined (Hubbard et al., 2003). Automated zonation is now 
feasible (Tsai, 2003) that gives an advantage of no need in assuming a specific equation 
to simulate the dependence of parameters on the spatial coordinates. 
 
2.2.6 Scaling 
 
When the model coarsening is performed, i.e. the support is increased but no changes in 
the model structure is made, the scale-dependence in model parameters will be most 
probably encountered because the larger units of the hierarchical structures in soils or 
sediments are enclosed in the extended support volumes. This kind of scale-dependence 
has been documented for the groundwater flow (Neuman and Di Frederico, 2003). A 
similar scale-dependence can be clearly observed in variably saturated soils as shown in 
Fig. 2-7, 2-8, and 2-9.  Whereas in groundwater studies scaling of dispersivity was shown 
to obey the universal scaling law (Neuman, 1990, 1995), the scaling exponents of 
dispersivity in unsaturated soils appear to be quite variable (Fig. 2-7). The scale-related 
increase in saturated hydraulic conductivity depends on whether an aggregation of soil 
horizons has actually occurred in experiments (Fig. 2-8). Substantial differences in core-
measured and field-measured water retention (Fig. 2-9) show that the applications of the 
core scale unsaturated flow parameters at field scale require cautious consideration.  
 
Scaling relationships for the parameters of the unsaturated flow have been documented 
with the support range of about 1 to 1.5 orders of magnitude (Fig. 2-7, 2-8, and 2-9).  
They can provide useful relationships for modeling within the core-pedon range of scales 
if a model is coarsened, i.e. discretization in computations is changed without change in 
model equations. In such case, scaling provides means of using core scale measurements 
to infer parameters for increased support size 
 
2.2.7 Parameter estimation with pedotransfer functions 
 
Parameters of the water flow models in variably saturated porous media are nonlinear 
functions of matric potential or water content. These parameters are notoriously difficult 
to measure. Measurement of water and solute fluxes in unsaturated soils remains a 
research issue; no routine methods have been implemented to-date. Therefore, defining 
parameters using the inverse methods is often problematic. A substantial effort has been 
made to estimate these parameters from the data available from soil survey or borehole 
logs. The empirical functions used for such estimating are often called pedotransfer 
functions. An extensive work has been done to develop them. Proceedings of two 
International conferences (van Genuchten et al., 1992, van Genuchten et al, 1997) and the  
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Figure 2-7. Observed dependencies of the solute dispersivity on distance in unsaturated 
soils (after Pachepsky et al., 2000). With permission, SSSA. Different symbols show data 
of different authors. 
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Figure 2-8. Examples of scale-dependence in soil saturated hydraulic conductivity; ○- 
loamy sand, Ap horizon, □ - loamy sand, A2 horizon, ∆ - sandy clay loam, B1t horizon, L 
- clay loam, B1t horizon  (after Pachepsky and Rawls, 2003). With permission, Blackwell 
Publishing. 
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Figure 2-9. Relationship between field and laboratory water contents at the same soil-
water matric potential;  - samples with sand content more than 50% ,  - samples with 
the sand content less than 50%; lines show the quadratic regression ( ______ ) with 95% 
prediction interval (_  _  _). Data from the UNSODA database (Leij et al., 1996). With 
permission, SSSA. 
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 first book on this topic (Pachepsky and Rawls, 2004) provide a panorama of these fast-
developing studies. 
 
2.2.7.1 Estimating water flow parameters 
 
For water retention, one approach consists in estimating soil water contents at several soil 
water potentials with a separate regression equation for each potential. Rawls et al. (1982) 
used the US Cooperative Soil Survey Database to develop 12 regression equations to 
relate soil water contents at 12 matric potentials to sand, clay and organic matter contents 
(Table 2-3). Later, a similar set of equations has been developed to utilize the values of 
bulk density along with sand, clay and organic matter contents (Table 2-4). Other 
predictive equations developed from large databases are presented in the Appendix A. 
 
Another approach to estimate soil water retention involves estimating coefficients in 
equations that express dependence of soil water contents on soil water potential. The 
equations that are most often used are the Brooks-Corey equation (Brooks and Corey, 
1964): 
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In Eq. (2-1) and (2-2), θ is the volumetric water content, h is the capillary pressure (the 
absolute value of the matric potential), φ is the porosity, θs is the saturated water content, 
θr is the residual water content, hb is bubbling pressure, λ is pore size distribution index, 
α, m, and n are empirical shape-defining parameters. Various equations to estimate 
parameters in Eq. (2-1) and (2-2) are presented in the Appendix A. Recently, several new 
water retention equations were introduced to describe θ-on-ψ dependencies (Kosugi, 
1994; Fayer and Simmons, 1995; Perfect et al., 1996, Bird and Perrier, 2000) but they are 
lacking the pedotransfer functions. 
 
For the saturated hydraulic conductivity, Ksat , one approach is to estimate  it from soil 
basic parameters without employing data on soil water retention (i.e., Bloemen, 1980; 
Loague, 1992). Rawls et al. (1998) assembled a database of more than 1000 experiments 
in the USA and showed that both median value of Ksat and its values on 25% and 75% 
probability levels can be defined for each USDA textural class if the samples are 
preliminary separated into high porosity and low porosity groups for each of the classes. 
These results are shown in Table 2-5. Referring the median Ksat values and the 
difference between Ksat values at 25% and at 75 % probability levels to the average clay 
content of the class results in a fairly well defined relationships (Fig. 2-10). 
 
Another approach to the Ksat estimation benefits from soil pore space models as a source 
of the Ksat  equation  in which coefficients need to be estimated from soil basic properties. 
Ahuja and co-workers  (1984) introduced a generalized form of the Kozeni-Karman  
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Table 2-3. Regression equation to predict soil water content at specific matrix potential: 
θ(ψ) (cm3cm-3)= a + b*sand(%) + c*silt(%) + d*clay(%) + e*OM(%) (after Rawls et al., 
1982) 
  

Parameters of the linear regression 
ψ, kPa a b c d e 

-10 0.4118 0-0.0030 0 0.0023 0.0317 
-20 0.3121 -0.0024 0 0.0032 0.0314 
-33 0.2576 -0.0020 0 0.0036 0.0299 
-60 0.2065 -0.0016 0 0.0040 0.0275 
-100 0.0349 0 0.0014 0.0055 0.0251 
-200 0.0281 0 0.0011 0.0054 0.0200 
-400 0.0238 0 0.0008 0.0052 0.0190 
-700 0.0216 0 0.0006 0.0050 0.0167 
-1000 0.0205 0 0.0005 0.0049 0.0154 
-1500 0.0260 0 0 0.0050 0.0158 
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Table 2-4. Regression equation to predict soil water content at specific matrix 
pressure:θ(ψ) (cm3cm-3)= a + b*sand(%) + c*clay(%) + d*OM(%) + e*ρb(g cm-3) (after 
Rawls et al., 1983) 
  

Parameters of the linear regression 
ψ, kPa a b c d e 

-20 0.4180 -0.0021 0.0035 0.0232 -0.0859 
-33 0.3486 -0.0018 0.0039 0.0228 -0.0738 
-60 0.2819 -0.0014 0.0042 0.0216 -0.0612 
-100 0.2352 -0.0012 0.0043 0.0202 -0.0517 
-200 0.1837 -0.0009 0.0044 0.0181 -0.0407 
-400 0.1426 -0.0007 0.0045 0.0160 -0.0315 
-700 0.1155 -0.0005 0.0045 0.0143 -0.0253 
-1000 0.1005 -0.0004 0.0045 0.0133 -0.0218 
-1500 0.0854 -0.0004 0.0044 0.0122 -0.0182 
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Table 2-5. Saturated hydraulic conductivity (cm day-1) at three probability levels for 
USDA textural classes (from Rawls et al., 1998) 

Soils with high porosity Soils with low porosity USDA textural  
class 
 25% 50% 75%

Porosity
cm3cm-3 25% 50% 75% 

Porosity
cm3cm-3

Sand 638.4 436.8 230.4 0.44 523.2 218.4 153.6 0.39 
Fine sand 566.4 338.4 283.2 0.49 528.0 240.0 163.2 0.39 
Loamy sand 468.0 295.2 201.6 0.45 184.8 98.4 74.4 0.37 
Loamy fine sand 292.8 148.8 86.4 0.46 278.4 28.8 16.8 0.37 
Sandy loam 312.0 134.4 72.0 0.47 74.4 31.2 0.37 0.37 
Fine sandy loam 86.4 52.8 24.0 0.45 40.8 19.7 8.2 0.36 
Loam 67.2 9.4 3.8 0.47 39.6 14.9 6.7 0.39 
Silt loam 89.0 34.6 18.2 0.49 23.8 8.2 2.4 0.39 
Sandy clay loam 121.2 18.5 4.8 0.44 26.2 6.7 2.4 0.37 
Clay loam 31.4 10.1 5.3 0.48 9.1 1.7 0.5 0.40 
Silty clay loam 25.0 8.9 5.5 0.50 33.6 11.8 5.5 0.43 
Clay 14.4 4.8 2.2 0.48 16.6 4.3 0.7 0.40 
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Figure 2-10. Saturated hydraulic conductivity Ksat grouped by textural classes and bulk 
density classes; (a) median values Ksat(50%) for the groups,  (b) difference between third 
Ksat(75%) and first Ksat(25%) quartiles of the distributions within each group; data for high 
and low bulk density samples are shown by filled and hollow symbols, respectively; 

, -sand, ,  - fine sand, ,  - loamy sand, , - loamy fine sand, , - 
sandy loam, ,  - fine sandy loam, , - loam, , - silt loam, ,  - sandy 
clay loam, ,  - clay loam, ,  -silty clay loam, ,  - clay.  
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model to relate the saturated hydraulic conductivity to the effective porosity: 
n

esat BK θ=    (2-3) 
where θe is a difference between the total porosity and soil water content at -33 kPa, B 
and n are parameters which vary among different data sets (Table 2-6). 
 
Estimates of the unsaturated hydraulic conductivity are predominantly based on pore 
space models that relate unsaturated hydraulic conductivity to the saturated hydraulic 
conductivity and to geometric parameters of the pore space inferred from water retention 
data.  
 
A general form of such model has been proposed by Alexander and Skaggs (1984): 
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where S is the soil saturation, S = (θ-θr)/(θs-θr), l, γ, and δ- parameters. When water 
retention is simulated with the van Genuchten equation (2-2), this equation with γ=1 and 
α= 2 can be transformed into the van Genuchten-Mualem equation: 

( ) [ ]2/1 )1(1 mml
sat SSKK −−=    (2-5) 

 
Pedotransfer functions need to be used to estimate both Ksat  and h(θ)  in Eq. (2-5) to 
evaluate the integral and calculate the unsaturated hydraulic conductivity. 
 
Artificial neural networks (ANN) recently are useful for PTF development. The feed-
forward multiplayer ANN, the most popular type for PTF development, has built-in 
equations (Pachepsky et al., 1996) and is no different in applications than any other 
regression equation. However, coefficients of this equation are never reported, and one 
typically has to use software with hardwired ANN equations in it. Rosetta is a Windows-
based program that implements artificial neural network results published by Schaap et 
al. (1998), Schaap and Leij (1998), and Schaap and Leij (2000) and is available from 
http://www.ussl.ars.usda.gov/models/rosetta/rosetta.HTM.  The program implements five 
PTFs in so-called hierarchical approach (H1, see also Schaap et al, 2001).  This approach 
was chosen to maximize the accuracy of the PTF estimates given the particular data 
availability.  All models in Rosetta estimate saturated hydraulic conductivity and van 
Genuchten (1980) retention and unsaturated hydraulic conductivity parameters.  Through 
use of the Bootstrap Method, Rosetta is also able to estimate the uncertainty of the 
estimated hydraulic parameters.   Minasny and McBratney (2002) developed the 
Neuropack software package (http://www.usyd.edu.au/su/agric/acpa/neuropack 
/neuropack.htm).  This package differs from the previously discussed software since it is 
primarily intended to develop PTFs using neural network-based techniques with the user-
supplied.  No previously calibrated PTF is shipped with Neuropack except some sample 
data.   
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Table 2-6. Parameters of the Ahuja equation (2-3) to estimate saturated soil hydraulic 
conductivity 

Source B, 10-3 m s-1 n 
Ahuja et al., 1989 2.9 3.21 
Franzmeier, 1991 5.0 3.25 
Messing, 1989 1.5 – 9.5 1.8 – 3.0 
Timlin et al. 1996 2.1 3.29 
Rawls et al., 1992 2.8 4.0 
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In general,  ANNs provide an excellent flexibility in mapping complex 'input-output' 
dependencies (Hecht-Nielsen, 1990). The use of ANNs has, however, some 
disadvantages compared with regressions. In particular, the equations built during ANN 
training are “opaque,” and ANNs do not distinguish inputs by their significance leaving 
the responsibility to select significant inputs to the user. 
 
Estimating solute transport parameters remains a weak point of the PTF development. 
Although a progress has been made in estimating solute dispersivity for small soil cores 
(Griffioen et al., 1998; Oliver and Smettem, 2003; Minasny and Perfect, 2004), no 
methodology exists for such estimates at the pedon scale and at coarser scales. 
 
2.2.7.2. Performance of pedotransfer functions 
 
Performance of pedotransfer functions (PTF) can be evaluated in terms of their accuracy, 
reliability, and utility. In broad terms, the accuracy of a PTF can be defined as a 
correspondence between measured and estimated data for the data set from which a PTF 
has been developed. The reliability of PTF can be viewed as a correspondence between 
measured and estimated data for the data set(s) other than the one used to develop a PTF. 
Finally, the utility of PTF in modeling can be assessed in terms of the correspondence 
between measured and simulated environmental variables. 
 
PTF accuracy has been characterized using various quantitative measures, such as the 
mean error, the standard deviation of the mean error, the mean squared error, the 
determination coefficient R2, etc. With the same measure, accuracy of existing PTFs 
varies appreciably. Pachepsky et al. (1999) randomly sampled literature on PTF and 
found that soil basic parameters typically account for 80 - 90 % of the moisture content 
variance at capillary pressures of 330 and 15000 cm. The RMSE ranges from 0.02 to 0.07 
m3 m-3 at both levels of capillary pressure. The water content at 330 cm ranges from 0.04 
to 0.50 m3 m-3 and the water content at 15000 cm ranges from 0.02 to 0.35 m3 m-3 for the 
most of soils. With such ranges, the PTF RMSE between 0.02 to 0.07 m3 m-3 is sufficient 
in some cases, while in other cases it is unsatisfactory, and improvements in PTF 
accuracy are desirable. The hydraulic conductivity PTFs usually have the accuracy about 
half order of magnitude. 
 
The reliability of PTFs can be estimated by re-sampling with the data set used in the PTF 
development, or by using an independent data set. The re-sampling methods generate 
numerous artificial data from the original experimental data and evaluate statistical 
properties of interest from its observed variability over all the generated artificial datasets 
(Good, 1999). Two methods, the bootstrap (Schaap, 2004) and jackknife (Pachepsky and 
Rawls, 1999) have been used so far. The re-sampling methods do not render any 
information about the reliability of PTF if it is applied in the region other than that the 
development data set has been collected at. 
 
PTFs developed from regional databases produce quite adequate results in the regions 
with similar soil and landscape history. Water retention PTFs developed in Belgium 
(Vereecken et al., 1989) were the most accurate as compared with 13 others for the data 
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base of the Northern Germany (Tietje and Tapkenhinrichs, 1996). Water retention PTFs 
developed for the Hungarian Plain (Pachepsky et al., 1982) were applicable for the 
Caucasian Piedmont Plain (Nikolaeva et al., 1986). PTFs developed in Australia were 
more accurate for the Mississippi Delta as compared with other regional PTFs (Timlin et 
al., 1996a). It remains to be explored whether this observation holds for other cases, and 
which soil and landscape features have to be similar in two regions to assure the mutual 
reliability of the PTFs.  
 
PTFs developed from the USA database by Rawls et al (1982) appear to be more robust 
than PTFs developed from the regional databases. When the reliability of the all-USA 
PTFs has been compared with the accuracy of several other regional databases, and the 
PTFs were ranked by their reliability, the all-USA PTFs usually had one of the highest 
rankings (Tietje and Tapkenhinrich, 1993; Kern, 1995; Timlin et al., 1996b). In general, it 
is not possible to predict whether a specific PTF will be applicable at a given site or not. 
An example of an interregional comparison of PTFs is given in Fig. 2-11 where 21 PTF is 
applied to estimate water contents at 33 kPa and 1500 kPa. (Wösten et al., 2001). This 
figure illustrates various situations that are encountered in PTF reliability estimations. 
The PTF #1 has the CEC of clay fraction as an essential input. An average value of the 
CEC/clay ratio=0.5 was applied to all data to compute the data in Fig. 2-11. PTF # 3 is 
inaccurate with Oklahoma data, but it is also not particularly accurate with the data used 
for the development, R2 being only 0.58. The PTF # 5 is derived from data on 6 soils, and 
it fails when tested with the large database. Similarly The PTF # 7 is derived from data on 
only 43 soils. The PTF # 6 for the field capacity was developed with actual field data, and 
an attempt to equate the field capacity to the water content at 3 kPa was unsuccessful. 
PTFs # 2 and # 8 were derived for soils with the clay minerals that are distinctly different 
from those in Oklahoma. They tend to overestimate water retention at 15 bars; for the 
same reason PTF # 9, PTF # 13, and PTF # 19 tend to underestimate it. PTFs # 18 and 3 
developed for tropical soils do not give satisfactory predictions of field capacity, but 
seem to perform well at 1500 kPa. Using the texture only leads to unsatisfactory results at 
low water contents (PTF # 17). Overall, PTFs # 11 and # 16 are the best. 
 
The reliability of PTFs may be limited by differences in methods used to measure soil 
hydraulic properties that may have profound effect on results (Marion et al., 1994). One 
of the method-related factors affecting the PTF development is the support size as shown 
in Figures 2-7 and 2-8. Large data bases assembled from different sources to develop PTF 
often lose in their quality because of the diversity in measurement methods. There also 
may exist a limit in accuracy and reliability of PTFs caused by temporal variation of soil 
properties related to the changes in vegetation and soil management. Pachepsky et al. 
(1992) have reported 20% changes in water retention at -1 kPa and 5% changes in water 
retention at -30 kPa in soils under wheat during growing season in three different climatic 
zones. The amount of published data on temporal variations of soils hydraulic properties 
remains insufficient. The temporal component assessment may be required in PTFs to 
improve their reliability. 
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Figure 2-11. Estimating water contents at 33 kPa (○) and at 1500 kPa (●) with 21 PTFs developed in various region of the world 
Experimental data on soil water retention and soil basic properties have been extracted from the US Cooperative Soil Survey database 
for the state of Oklahoma. From (Wösten et al., 2001). With permission, Elsevier.
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The reliability of a PTF is not directly related to its utility (Pachepsky et al., 1999). The 
latter is affected by sensitivity of the model to PTF predictions, and also by the 
uncertainty in other model inputs (Leenhardt et al., 1995). When the PTF uncertainty is 
factored in the modeling effort, variation in predictions of different PTFs has to be 
considered along with uncertainty of individual PTF predictions. As the experience of 
calibrating vadose zone models accumulates, more opportunities appear to compare 
calibrated and PTF-estimated hydraulic properties (Wang et al., 2003) as well as to use 
PTF predictions as initial estimates for model calibration (Jacques et al., 2002). Using 
several different PTFs instead of predictions of a single PTF appears to be a viable option 
to explore. 
 
2.2.7.3 Emerging pedotransfer techniques 
 
Developments in pedotransfer technologies are mostly associated with using spatially 
dense physical information related to the soil cover. Schematic of this research is shown 
in Figure 2-12. The use of topographic information is based on the hypothesis that there 
may exist some relationship between soil hydraulic properties and topographic variables 
(Pachepsky et al., 2001) because (a) the basic properties of soil are known to be related to 
landscape position, and (b) soil hydraulic properties are related to soil basic properties, 
Romano and Palladino (2002) used the terrain attributes to recalibrate PTF, and soil water 
retention exhibited strong dependence on terrain attributes in the work by Rawls and 
Pachepsky (2002) with the US National Cooperative Soil Survey data. 
 
The use of hydrogeophysical, remote sensing, and crop yields data is based on a similar 
premise. The basic data on soils affect both sensor readings and soil hydraulic properties. 
Therefore, some relationship between these dense data and hydraulic properties can be 
expected. Smettem et al. (2004) presented an example of using airborne gamma 
radiometric sensing to estimate the clay content of surface soils and using a simple 
pedotransfer function (Smettem et al. 1999) to convert this information into a spatial 
representation for the slope of the Brooks and Corey water retention function. Timlin et 
al. (2003) related the yield maps to the soil field capacity.  
 
Using dense auxiliary data in PTFs is an attempt to trade the data quality for data 
quantity. Since a dense coverage can be treated as an image, the image analysis 
techniques can be used for segmentation and classification, as well as for evaluation of 
spatial structure in soil properties. Also, the data assimilation techniques can be suited to 
combine the soil survey and sensor information (McLaughlin, 1995). PTFs developed 
with auxiliary data are probably highly site-specific and, therefore, useful for the sites  
they have been developed for. Nevertheless, the availability of sensor data can make the 
development of such PTFs a viable component of supplying parameters of the models of 
water flow in vadose zone. 
 
Since the accuracy of any PTF outside of its development dataset is essentially unknown, 
the use of an ensemble of PTFs may be considered. Existence of several models that are 
developed and tested in one region but perform relatively poorly in other regions is fairly 
common in meteorology. Justifying a selection of a single model has become an 
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Figure 2-12. Using the dense auxiliary data to infer soil hydraulic properties. 
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unsolvable problem. The multimodel ensemble prediction method was developed during 
the last decade to address this dilemma (Molteni et al, 1996). The basic idea is to use a 
weighted average of prediction obtained from all the models in hand.  Since there is no 
underlying theoretical formalism from which a probability distribution of model 
uncertainty can be estimated, some pragmatic approach must be sought. One such an 
approach relies on the fact that climate models have been developed somewhat 
independently by different research groups. An ensemble comprising such quasi-
independent models is referred to as a multi-model ensemble (Palmer et al., 2004). 
Ensemble forecasts offer a way of filtering the predictable from the unpredictable through 
averaging – the features that are consistent among ensemble members are preserved, 
while those that are inconsistent are reduced in amplitude. What is even more important, 
the ensemble itself, as a sample from possible forecast outcomes, can be used to estimate 
the forecast uncertainty and the likely structure of forecast errors (Hamill et al. 2004). 
 
Recently, the multimodel ensemble methods have begun to be used in subsurface 
hydrology. Ye et al. (2004) suggested averaging of spatial variability models in 
unsaturated fractured tuff in a situation when standard information criteria provide an 
ambiguous ranking of the models that does not justify selecting one of them and 
discarding all others. A limited testing outlined in Chapter 3 of this report suggests that 
the multimodel ensemble prediction of soil hydraulic properties is a promising technique.  
 
2.3. Model abstraction implementation 
 
2.3.1 Status of model abstraction in flow and transport modeling 
 
The status of model abstraction in flow and transport modeling has been recently 
reviewed by Neuman and Wierenga (2003) They indicate that “…a widely practiced 
approach has been to simplify complex hydrogeologic systems for modeling purposes in 
an ad hoc and subjective manner. It is generally not clear that this approach captures 
adequately all aspects of the complexity that have a significant impact on the problem 
under consideration. It is also not clear that such models have the space-time resolution 
required to render them comparable and compatible with site data. Without this, the 
models remain interesting logical constructs, however, may not be not valid 
representations of actual site conditions and may yield unreliable results.” 
 
Currently, solid justification for a model selection is rarely provided. This refers to both 
the selection of the conceptual flow and transport models, i.e. process descriptions, flow 
and transport domain discretization, forcing and initial conditions, and the selection of the 
method to estimate the hydraulic properties. Comparison of performance of two or more 
models is rarely made. Most model abstraction methods are not comprehensively tested 
for modeling of flow and transport in variably saturated soils and sediments. The 
following describes a systematic approach to the model abstraction. 
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2.3.2. Model abstraction process 
 
General requirements to the model abstraction process are objectiveness, systematic 
implementation, comprehensiveness, and efficiency (Neuman and Wierenga, 2003).  
Model abstraction (MA), as defined in this report, is not about developing models, but 
rather about modifying or replacing them. The MA process starts with an existing base 
model that can be calibrated and used in simulations. The key output of the model id 
defined that provides the necessary and sufficient information to decide on issues of 
interest. 
The base model may need abstraction for one or more of the following reasons: 

• The base model includes a complex description of processes that cannot be 
observed well and yet need to be calibrated; the calibrated values of parameters of 
those processes are very uncertain. 

• The base model propagates uncertainty in the initial distributions, parameters, and 
forcing in a manner that creates an unacceptable uncertainty of the key output.  

• The base model produces inexplicable results in terms of the key output.  
• The base model requires an unacceptable amount of resources for computations, 

data preprocessing, or data post-processing, e.g. the base model is not suitable be 
used as a part of an operational modeling system that requires real-time data 
processing. 

• The base model lacks transparency to be explicable and believable to the users of 
the key output. 

 
The model abstraction process includes the following steps. 

1. Justify the need for the model abstraction 
2. Review the context of the modeling problem 
3. Select applicable MA techniques.  
4. Determine MA directions and simplify model in each direction. 

 
The following provides additional information on each of the steps. 
 
2.3.2.1 Justify the need for model abstraction  
 
Any model simplification requires calibration of the abstracted simpler model and its 
confirmation with multiple model runs. Therefore, it is a separate modeling project that 
also demands resources, and the need in model abstraction has to be justified.  
 
The lack of transparency of the base model is the reason for abstraction that arises from 
the perception of potential users or critics of simulation results. The justification for 
abstraction in such case is outside of the modeling project per se.  The incomprehensible 
results of simulations with the base model or its unacceptable resource demand of base 
model are the reasons that essentially preclude the completion of the modeling project. 
The justification for model abstraction is simply the need to finish the project.  
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The need in abstraction may stem also from the uncertainty in calibrated parameter values 
or in simulation results. The decision to carry out the model abstraction is based on 
statistics of parameter estimates and the key output, as discussed below. 
 
2.3.2.1.1 Need in abstraction because of the limited observation ability 
 
A case study of the effect of observability on the model performance has been recently 
presented by Kekkonen and Jakeman (2001). They compared two catchment hydrologic 
models. Each model had six parameters.  Both models were calibrated with streamflow 
data. One model explicitly simulated evapotranspiration and was parameterized in this 
part, whereas another model did not contain this process as described directly. The model 
without the evapotranspiration submodel provided, in general, more accurate 
reproductions of streamflow, even on the independent dataset. This difference was more 
pronounced at drier catchments. This result was attributed to the calibration with the 
streamflow data that contained relatively little information about evapotranspiration. 
Authors concluded that the more process complexity one wanted to include in the model 
structure, the more types of data and larger information content were required to estimate 
the process parameters and to test the model performance. When only rainfall-runoff data 
were available, it was difficult to justify a substantial conceptualization of 
evapotranspiration. 
 
The model calibration gives the necessary quantitative information to decide on the 
reliability of the parameter estimates with respect to their importance for the key output. 
A parameter estimate is acceptable if either the uncertainty of this parameter is adequate 
as compared with estimates of other parameters, or it is unimportant for predictions of 
interest. A diagnostic table (Table 2-7) has been developed based upon the classification 
proposed by Hill (1998). In Table 2-7, diagnosis is based on (1) statistical characteristics 
of the parameter, and (2) the model prediction uncertainty. In this analysis, the basic 
diagnostic measures are: (1) the composite scaled sensitivity of the parameter; (2) 
coefficient of variation of the parameter; (3) the scale sensitivity of prediction; (4) 
correlation coefficients between estimated parameters, and (5) the updated correlations 
coefficients of the parameter. These statistics are directly available or can be computed 
according to Hill (1998) from the output of calculations with the available from the most 
widely used universal parameter estimation codes, such as UCODE 
(www.mines.edu/igwmc/freeware/ucode/) and PEST (www.parameter-
estimation.com/html/pest_overview.com), as well as from the inverse modeling with 
HYDRUS (Simunek et al, 1999).  The diagnostic table 2-7 suggests using the model 
abstraction where the reliability of calibrated parameters is low. Model structure 
abstraction or model parameter abstraction is suggested depending on whether the 
parameters are influential or not.  
 
In variably saturated porous media, the complexity of process description related to the 
specific parameter or to the group of parameters can preclude a reliable estimation of 
these parameters with the additional data from available sources. For example, the 
reliable estimation of parameters of the mobile-immobile zone solute transport model has 
been found impossible in some field studies (Koch and Flühler, 1993; Field and Pinsky, 
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2000). However, if some additional experiments can potentially provide the information 
to improve the parameter estimates, the decision to carry out the model abstraction should 
be postponed until the data from such experiments are available. An (exaggerated) 
example is the soil water flow model that includes preferential flow but has been  
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Table 2-7. Potential need for model abstraction from the parameter uncertainty standpoint 
based on Hill (1998) analysis. 
Importance of the parameter 
to the key output 

Reliability of the parameter estimate 

 Precision of the parameter estimate 
 Poor precision:  

large C-scaled sensitivity¶, 
large coefficient of 
variation, large confidence 
interval 

Good precision: small C- 
scaled sensitivity, small 
coefficient of variation, 
small confidence interval 

Not important: small P-
scaled sensitivity- 

Abstraction of parameter 
determination may be useful

No indications to use model 
abstraction 

Important: large P- scaled 
sensitivity 

Abstraction of the model 
structure may be useful 

No indications to use model 
abstraction 

 Uniqueness of the parameter estimate 
 Poor: the absolute values of 

C-correlation coefficients§ 
of this parameter with some 
other parameters are close 
to one 

Good: all of the C-
correlation coefficients for 
this parameter have 
absolute values less than 
0.95 

Not important: the absolute 
values of P-correlation 
coefficients* of this 
parameter with the same 
parameters as here remain 
close to one. 

Abstraction of parameter 
determination may be useful

No indications to use model 
abstraction 

Important: the absolute 
values of P-correlation 
coefficients of this 
parameter with the same 
parameters as here are low 

Abstraction of the model 
structure may be useful 

No indications to use model 
abstraction 

   
¶The C-scaled sensitivity (composite scaled sensitivity in Hill, 1998) shows the effect of 
the small increment in the parameter value on the simulation of observed values used in 
calibration. The large composite scaled sensitivity means that that the simulation of 
observed values is very sensitive to the parameter value.  
-The P-scaled sensitivity (predicted scaled sensitivity) shows the effect of the small 
increment in the parameter value on the simulated of key output. The large predicted 
scaled sensitivity means that the key output is very sensitive to the parameter value. 
§The C-correlation coefficient of two parameters is computed as the parameter correlation 
coefficient (Hill, 1998) when only simulated observations are used. Large C-correlation 
coefficient of two parameters means that they cannot be estimated independently from 
available observations, i.e. cannot be uniquely defined. 
*The P-correlation coefficient of two parameters is computed as the parameter correlation 
coefficient (Hill, 1998) when both simulated observations and the key output are used. 
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Large P-correlation coefficient means that the correlation in estimated values of 
parameters, albeit high, does not affect the key output. Small P-correlation coefficient 
means non-uniqueness of parameter determination affects the key output.  
Equations to compute the C-scaled sensitivity, the P-scaled sensitivity, the C-correlation 
coefficients, the P-correlation coefficients, the coefficients of variation of parameters, and 
the confidence intervals of parameters are provided by M. Hill (1998).  
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calibrated with the data on soil water regime observed during the period without 
substantial rainfall events. No reliable parameters for the preferential flow submodel can 
be determined in this case.  Similarly, an attempt to find a reliable value of the molecular 
diffusion coefficient from a breakthrough experiment fails if the convective transport and 
the hydrodynamic dispersion dominate the transport. For the above example with the 
preferential flow, soil water regime and concentrations of a conservative tracer can be 
monitored during large rainfall events, then the data for parameterization the preferential 
flow submodel become available. The decision on abstracting the base model depends on 
whether these data will be sufficient or not to determine the reliable parameter values. 
 
A detailed set of guidelines for effective model calibration has been developed for 
groundwater modeling (Hill, 2004). But in flow and transport modeling in variably 
saturated soils and sediments, the well-tested guidelines for calibration have not been 
developed so far. However, the general concepts of the groundwater modeling guidelines 
appear to be applicable to the models with nonlinearities encountered in unsaturated zone 
modeling. These concepts are: 
using the prior information; this  means either using the prior probability distributions 
of the sought parameter values, or using the measurements of auxiliary values that are not 
directly simulated but can be computed  from the simulation results. In the former case, 
the maximum likelihood method renders for the minimization the composite sum of the 
squared model errors and squared differences between prior and posterior parameter 
estimates (Neuman and Wierenga, 2003).  In the latter case, the composite sum to 
minimize includes the squared model errors and squared differences between measured 
and computed from simulations auxiliary values (Hill, 1998).  
using the measurement errors; this often means assigning weights to the model errors  
that are inversely proportional to the error in the data;  
 
Since the calibration problem is mathematically ill-posed, there exists a probability of 
finding a set of parameters that do not provide the global minimization of the minimized 
sum of squared differences. This probability generally increases when the data accuracy  
is lower. To mitigate this source of error, it is advised to use a preliminary scanning of the 
plausible parameter value domain as it is done in the SUFI algorithm (Abbaspour et al., 
1997; Schmied et al., 2000).  Such scanning allows one to define sub-domains in the 
parameter space where the correct set of parameters is located with the highest 
probability. 
 
The prior information about flow and transport parameters has to be obtained either from 
the measurements at similar sites or from the pedotransfer functions. It is strongly 
advised to use an ensemble of pedotransfer functions developed with different, 
sufficiently large databases (Appendix A). 
 
2.3.2.1.2 Need in abstraction because of uncertainty in key model outputs 
 
The system behavior has to be predicted under realistic forcing different from the forcing 
used in the model calibration. Monte Carlo simulations have to be set with correlations 
between parameters utilized in scenario generation. If the Gaussian distribution can be 
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used for original or transformed parameters, the method suggested by Clifton and 
Neuman (1982) should be used to produce random realizations. If the correlations 
between inputs are known, the uncertainty is substantially reduced (Meyer et al., 1997). 
Pohlman et al. (2002) modeled density-driven flow and radionuclide transport at the 
underground nuclear test site and showed that the incorporation of correlation between 
hydraulic conductivity and recharge significantly reduced the uncertainty in both travel 
time and transverse plume location. The climate data generator CLIMGEN 
(http://www.bsyse.wsu.edu/climgen) can be used to generate the weather scenarios.  
 
The uncertainty of the key output has to be quantified using probability distribution 
function to see the expected range of predictions given the uncertainty of inputs.  
If this range is unacceptable for the purposes of performance assessment, i.e. the median 
predicted value cannot be statistically significantly discerned from the critical value of 
the key output, then the model abstraction can be considered. Parameters and inputs of 
the abstracted model may be estimated with lower uncertainty, and the output may 
become more reliable. 
 
2.3.2.2 Review the context of the modeling problem 
 
The context of the modeling problem has to be reviewed to assure the objectiveness and 
the comprehensiveness of the model abstraction. It needs to be realized what details and 
features of the problem are omitted or de-emphasized when the abstraction is performed. 
 
The context of the modeling problem has been defined by Neuman and Wierenga (2003). 
They list the following issues that constitute the context: 
 

1. What is (are) the question(s) that the base and abstracted models are to address? 
The answer should consider  (a) the potential or existing problem in which 
modeling is one of the solution instruments, (b) the potential or existing causes of 
the problem, (c) the issues needing resolution, and (d) the criteria to decide on 
efficiency of the resolution. The key output has to be provided with the spatial and 
temporal scale at which it is evaluated. Acceptable accuracy and uncertainty of 
the model output have to be established from the end users. In some cases there 
are mandatory regulations on performance measures that articulate the statistics to 
use in the particular case. If there are no such regulations, then the statistics have 
to be selected and defined; it should describe simple and clear ideas about the 
correspondence between the data and simulations, e.g., how the variability of 
model errors compares with the variability in the data; do the model residuals 
have trends; is there a systematic relative or absolute error in predictions, etc. 

 
2. What kind of data is available to calibrate the base and the abstracted models and 

to test them with respect to the key output? The essential condition is to have the 
database as broad as possible. It has to include the data from public and private 
sources, cover both quantitative and qualitative (expert) information, and 
encompass both site-specific and generic information. The list of the base model 
inputs and outputs provides a convenient template for the necessary part of the 
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database. It is imperative to have statistics of all available model inputs and 
measurable model outputs, including (a) the initial distributions of water contents 
and/or matric potentials and concentrations of solutes of interest, (b) the pore 
space and surface properties including horizon or layer thickness, porosity, bulk 
density, adsorption parameters, and some cases redox conditions (c) the forcing 
that provides the boundary conditions and the source/sink terms, and (d) the 
model parameters typical for the site. The latter can be inferred from the ensemble 
of pedotransfer functions provided the basic soil survey and/or borehole log data 
are available to serve as the pedotransfer inputs. Statistics includes the type of 
statistical distribution, the median values and variability measures, the 
information about observed outliers, and the correlations between parameter 
values.  

 
3.  To make sure that the abstracted models are sound, the additional information has 

to be collected insuring that the abstracted models include descriptions of all 
essential processes of flow and transport for given site. This information may be 
of lower quality compared with the necessary part of the database. However, one 
has to be sure that some small-scale internal heterogeneities will not have a 
dominant effect on flow and/or transport at the scale of interest. It is easy to 
become right for a wrong reason without the information on possible effects of 
processes that are not included in the model. To become wrong for a right reason 
is much more responsible way in this case.  

 
2.3.2.3 Define applicable MA techniques 
 
MA can lead to simplifications via  

• the number of processes being considered explicitly, 
• process descriptions, 
• coarsening spatial and temporal support 
• the number of measurements for the reliable parameter estimation, 
• reduced computational burden, 
• data pre-processing and post-processing. 

 
The number of processes can be decreased using abstractions with hierarchies of models, 
and delimiting input space. Using the hierarchy of models entails a smaller number of 
processes accounted for in the model. Delimiting input space can be done by changing 
from two-dimensional to one-dimensional representation of flow and transport in variably 
saturated soils and sediments. Not only this procedure decreases a pre-processing time, 
demand on the initial distribution data, and a runtime, but it also excludes the need in 
defining components of transport coefficient tensors that require elaborate measurements 
to be found by calibrations. If the flow is predominantly vertical, eliminating the second 
dimension in many cases causes a relatively small change in flow and transport 
description in variably saturated soils  
 
Process descriptions can be simplified using abstractions with a hierarchy of models, 
limiting input domain, and scale change. As the complexity of the model porous media in 
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Fig. 2-2 decreases, both flow and transport can be described by simpler models. 
Upscaling can generate models for coarser scales. These models can still be applicable 
for computing the measure of the performance. At the same time, they have a parameter 
set that is much smaller and simpler. The same is true in case of applying aggregation.  
However, the coarser scale parameters are ‘lumped,’ i.e. they represent a joint effect of 
several processes and of their variation at the subgrid scale. It is usually impossible to 
relate the values of these parameters to the basic soil and landscape properties; therefore, 
the prior estimates of their values are not possible.   
 
If the scale is coarsened but the process description is not changed, one should expect the 
scale-dependence of parameters.  There typically exists a mismatch between the 
observation scale and computational grid scale; therefore an extreme caution has to be 
exercised when observations are used to render parameter values for simulations. In 
unsaturated zone modeling, the reliance on laboratory measured hydraulic properties is 
much higher than in saturated zone projects.  Coarsening of the scale typically creates 
computational grid units that are larger than the laboratory samples. In such case, scaling 
abstraction techniques have to be applied and the empirical scaling laws have to be 
established to convert the laboratory measurements to the grid-scale parameters. 
 
Model abstraction does not decrease the number of measurements needed to calibrate the 
base model. Ultimately, the performance assessment can be conducted with the aid of 
highly simplified, abstracted model, and yet the base model has to be calibrated and 
tested to assure that it is able to represent the natural complexity of the hydrological 
content, and that it can work as a starting point for abstraction. The number and type of 
measurements affect both parameter estimation and model performance evaluation. The 
measurements have to provide (a) the reliable values of parameters to which the key 
model output is sensitive, and (b) the reliable key model output.  
 
The performance of models can be evaluated with a variety of statistics, most of which 
normalize the variability of errors by the variability in data (Neuman and Wierenga 
2003).  High variability of the data may cause the statistic value to be relatively low not 
because the model is good but because the data are poor.  
 
It has been often assumed that spatially and temporally averaged values are less prone to 
the predictive uncertainty. This is generally true for statistically homogeneous and 
stationary systems. Spatial-temporal fields of water contents, concentrations, and soil 
water potentials usually do not conform these statistical requirements. Nevertheless, the 
change of scale may actually reduce the variability of the data because of the temporal 
persistence in differences between measurements in different locations (Grayson and 
Western, 1998). If the persistence is documented, the coarse-scale average water 
contents, for example, can be estimated with measurements of the lower density. 
 
Reducing computational burden can be achieved using any of the abstractions. Large 
runtime can be caused by either the numerical stability requirements or by the temporal 
detail in the data used to provide input or to evaluate the performance measures. Strong 
nonlinearity of the models for variably saturated water flow imposes substantial 
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limitations on the integration time step, especially for the coarse-textured soils and 
sediments.  It is always worthwhile to see whether reformulation of boundary conditions 
on the soil surface (similar to the one done by van Dam and Feddes (2000) or 
reformulations of water transport equations (similar to the one done by Pan and Wierenga 
(1995)) may improve the computation speed. Similarly, it is advisable to use look-up 
tables to avoid multiple computations of nonlinear constitutive relationships. Coding the 
independent submodels that can be executed in parallel, decreases the number of grid 
variables that participate in each iteration process present in the model. Wu et al. (2002) 
used parallel computing in simulations of unsaturated flow and transport for the Yukka 
mountain project; Englert et al. (2004) demonstrated using parallel computing to solve 
the saturated-unsaturated flow and transport problem for a large area of pesticide 
application. However, the limitations of numerical methods and the need to run multiple 
simulations may still call for model abstraction. Scale change via upscaling or 
aggregation typically results in much smaller number of grid units and usually in much 
faster simulations. The metamodeling requires fairly large number of preliminary model 
runs to generate the development and testing datasets, and may be efficient if the number 
for future runs of a neural network metamodel is substantially larger than the number of 
runs needed to develop this metamodel. 
 
Data pre- and post-processing may consume a substantial part of the resources available 
for the modeling project. Most of model abstraction techniques require changes in the 
input data used for modeling. The input data are expected to be less voluminous for 
simpler models. However, the data may also be less certain, and a larger number of 
simulation runs may be needed to account for this uncertainty. In case of abstractions 
done by scale change or changing dimensionality, a computational unit, i.e. a grid cell, 
needs to be characterized by the porous media properties and by forcing at the 
boundaries. Because of the non-linear effects of subgrid heterogeneities on flow and 
transport, such averaging is never certain, and such uncertainty has to be simulated on top 
levels of the uncertainty of initial water contents and solute concentrations, pore media 
properties, and forcing variables at the boundaries at the fine scale.  
 
In case of extremely large numbers of computational units, even the storage of simulated 
water content, matric potentials, and concentration fields may become an issue. Using 
wavelets for data compression may be needed to overcome this difficulty (Mallat, 1998, 
Neupauer and Powell, 2005). 
 
2.3.2.4 Define and execute model abstractions 
 
Model abstraction, in general, results in smaller number of independent parameters to 
measure/estimate and/or the lesser amount of computations. The particular procedure of 
MA depends on the purpose of abstraction and on the available resources.  Each 
abstraction is a separate sub-project that requires justification, planning, and milestone-
metered execution. The feasibility of a particular model abstraction can be judged on the 
basis of resources spent cumulatively on five stages of the abstracted model application, 
namely (1) pre-processing, (2) calibration, (3) simulation, (4) post-processing, and (5) 
reporting. For the specific model abstraction procedure, it is necessary to make sure that 



 

 49

the software for using the abstracted model is available, that the output of the abstracted 
model will be compatible with the available data for calibration and testing purposes, that 
the pre- and post processing tools are in place. The necessary steps are also to estimate 
the time and computational resources gain from the abstraction, as well as the personnel 
available to perform and explain the abstraction.  The abstracted models need to be 
calibrated as described in 2.3.2.1.1. Plausible scenarios described in 2.3.2.1.2 allows one 
to confirm that the abstraction has alleviated or eliminated the problem encountered with 
the base model, that it did not create any similar or new problems.  
 
A model that is the result of abstraction can be abstracted further if necessary. Such 
sequential abstraction has to be done in a systematic manner to assure the understanding 
of the role of each abstraction step in the performance of the final model. 
 
2.4 Concluding remarks 
 
Very complex models were developed as the results of advancements in understanding 
and quantifying environmental and social phenomena, as well as industrial processes.  
The complexity of models is caused, in particular, by the large number of simulated 
processes, large number of interacting entities, differences in scales at which the 
interactions occur, large number of feedbacks to simulate. Model abstraction, understood 
as model simplification, is the field of active research in a multitude of scientific and 
engineering fields. The more actively models are used in a field the more research on 
model abstraction can be found. Each research or engineering field has specific types of 
models in use, and the model simplification techniques are field-dependent. The intensive 
use of models in subsurface contaminant hydrology has resulted in development of many 
model abstraction techniques. They have been briefly summarized in previous sections.  
 
Model abstraction in contaminant hydrology has been used mostly in research. Potential 
benefits of model abstraction include improvement of understanding and communication 
of modeling results, more robust predictions, and better understanding of essential factors 
and their representation in models. This makes model abstraction an attractive 
methodology for engineering modeling applications.  The model abstraction process, as 
described in previous section, is a transparent step-by-step formalized procedure of 
justification of the use of a simplified model. It is demonstrated in the Chapter 3 of this 
report. 
 
Engineering applications of models abstraction require model calibration and uncertainty 
analysis toolboxes and appropriate user interfaces. Such toolboxes and interfaces are 
currently being developed by several agencies (Castleton et al, 2002; Fine et al., 2002). 
Availability of the software tools will greatly simplify the model abstraction use. 
 
An important feature of models abstraction is the explicit treatment of model structure 
uncertainty. The model structure, along with the data uncertainty, and scenario 
uncertainty, is known to introduce the uncertainty in modeling results.  Unlike the 
uncertainty in input data, in model parameters, and in scenarios, the effect of the model 
structure uncertainty on the uncertainty in simulation results is usually impossible to 
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quantify in statistical terms without making very strong assumptions. With model 
abstraction, a series of models with feasible structures can be built and evaluated in a 
systematic manner. Each of the models is evaluated from results of an ensemble of 
simulations by its accuracy to measurement data and by its predictions with respect to 
scenarios that have not been observed. Model abstraction is always performed in the 
uncertainty context.  
 
It is observed in diverse modeling projects that several models may have different 
structures but the same accuracy with respect to data of measurements. As it is not 
possible to decide which model is “better” or “more correct, ” the idea of using an 
ensemble of models becomes more and more accepted. Model abstraction can generate 
models of different structures in a systematic way, thus creating a model ensemble. 
 
It is expected that as the model abstraction methodology will develop, knowing about 
model abstraction and applying it to the regulated sites will be helpful for the NRC 
licensing staff. Reviewers will have a means to determine whether the models submitted 
to support licensing actions adequately represent the site, and whether the investigations 
adequately represent important features, events, and processes for the site. Managers will 
have an advisory tool to decide whether the requests for additional information are 
targeted tat sensitive site parameters and processes. On the other hand, the NRC licensees 
will have a device to determine whether a simple model that is easy to understand and 
communicate to regulators, stakeholders, and the general public can adequately represent 
their site. 
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3 MODEL ABSTRACTION CASE STUDY 
 
3.1 Introduction 
 
Selection of abstraction techniques and their combinations must take into account the 
uniqueness of the environmental system being modeled.  This relates to the concept of 
“uniqueness of place in environmental modeling” (Beven, 2002; Neuman and Wierenga, 
2003). After reviewing numerous available experimental data sets to develop a model 
abstraction test case study, we selected a humid site that is relevant to NRC 
decommissioning site reviews. 
 
The first and main objective of the test case was to understand how model abstraction can 
affect performance assessment of contaminant migration at a relatively humid site where 
transport may be affected by the presence of soil macropores and related preferential flow 
phenomena. Specifically, the test case is designed to assess the capabilities, limitations, and 
usefulness of selected model abstraction methods.  
 
3.2 Description of experiments 
 
3.2.1 Field setup 
 
The experimental field is located at Bekkevoort, Belgium. It is situated at the bottom of a 
gentle slope and is covered with a meadow. The soil is classified as Eutric Regosol (FAO, 
1975). Typically, the top 1 meter shows three soil horizons: an Ap horizon between 0 and 
25 cm, a Cl-horizon between 25 and 55 cm and a C2 horizon between 55 and 100 cm (Fig. 
3-1).  
 
A trench, 1.2 m deep and 8 m long, was dug at the field site. The site-specific soil 
description was performed along one side of the trench. The Ap horizon thickness varied 
along the trench between 8 and 15 cm depth. From a horizontal distance of 1 m from the 
side in the trench, a 30 cm thick, sandier layer was observed beneath the Ap horizon. The 
underlying Cl and C2 horizons reached depths between 75 -90 cm. Beneath the C2, a Bt 
horizon was found. Between 1.5 and 2.2 m from the side of the trench, a 10 cm thick sandy 
inclusion at a depth of 75 cm was observed. Texture analyses were done at several locations 
in the trench (Table 3-1). A study of water retention along a 30-m trench in the same soil at 
the adjacent site (Mallants et al., 1996) was performed. Values of van Genuchten 
parameters  were found from water retention measurements done at 5-cm long and 5.1-cm 
diameter cores with sand-box apparatus for capillary pressures of 1, 5, 10, 50, and 100 cm, 
and with pressure cell for capillary pressures of 200, 630, 2500, and 15,000 cm.  
 
The grass cover was removed from the experimental area. A plastic sheet covered one side 
of the trench to isolate the disturbed trench zone. The trench has been instrumented as 
shown in Fig. 3-2. Volumetric water content was measured with TDR. Sixty two-rod TDR 
probes (25 cm long, 0.5 cm rod diameter, 2.5 cm rod spacing) were installed along the 
trench of 5.5 meter at 12 locations with the 50-cm horizontal spacing at five depths of 15,  
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Figure 3-1. Soil profile at the Bekkevoort experimental site (after Jacques, 2000). With 
permission. 
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Table 3-1. Average soil texture (%) along the trench at the Bekkevoort site. 

Depth, cm No. samples >50 µm 50-20 µm 20-10 µm 10-2 µm <2 µm 
15 7 58.6 19.3 6.4 4.5 11.1 
35 8 56.7 18.9 7.8 3.2 13.3 
55 5 57.3 17.6 6.6 3.7 14.8 
75 3 49.6 21.2 7.9 4.4 17.4 
95 4 43.8 30.03 7.4 4.5 14 
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Figure 3-2. View of the instrumented trench (after Jacques, 2000). With permission. 
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Figure 3-3. Locations and numbering of TDR-probes ( ), tensiometers ( ) and 
temperature probes (•). Patterned rectangles show Ap, C1 and C2 horizons. Dashed lines 
show the average position of the horizon boundaries. Average values of clay, silt, and sand 
content are given for the probe installation depths. The numbers in pentagons show the 
numbering of locations monitored by the five-probe profiling. From (Pachepsky et al., 
2005). With permission, SSSA.
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35, 55, 75, and 95 cm  (Fig. 3-3). Pressure head was measured with tensiometers. 
Tensiometric porous cups (6 mm diameter, 25 mm long) were installed at a horizontal 
distance of 10 cm from each of the 60 TDR-probes.  
Temperature probes (6 cm long) were installed at 5 depths on distances of 1.3, 2.7 and 4.2 
m from the trench. 
 
The TDR-measurements were done with a Tectronix 1502B cable tester. The automated 
system of Heimovaara and Bouten (1990) was used to control, retrieve, store and analyze 
the measurements of the travel time of an electromagnetic wave along the TDR - and the 
soil impedance. Apparent dielectric constants were related to the water content via the site-
specific calibration curve (Jacques et al., 1999). One measurement cycle for all TDR-
probes took approximately 35 min. The porous cups were connected with water-filled 
capillary tubes to pressure transducers. These transducers were incorporated in an 
electronic circuit (SDEC France, Reignac/Indre). Automated measurements of the pressure 
transducers were controlled and stored by a Campbell CR10X datalogger and AM416 
multiplexers (Campbell Scientific Ltd, Leicestershire, UK). The datalogger and 
multiplexing system also controlled the soil temperature measurements. 
 
Passive capillary samplers (PCAPS) were installed at two 15 and 55 cm depths at the 
distance of about 5 m from the trench. As discussed by Holder et al. (1991), PCAPS are 
able to measure water and solute fluxes under both saturated and unsaturated flow 
conditions by imposing a hanging water column to the soil. After combustion at 400 °C 
during 8 h (Knutson et al., 1993), the unraveled wicks (Amatex 3/8-inch high density, no.1 
0-864KR-02) were mounted in a symmetric way on a 10 mm thick PVC plate. Each wick 
covered an area of 17 x 17 cm2. Three wick samplers were put together on one PVC plate. 
In the middle of each unit (i.e. the 17 x 17 cm2-area), a hole was drilled from where the 
wick was connected to a collection chamber through a flexible PVC tube. A nylon mesh 
was put on the top of the wick filaments to prevent the penetration of soil particles into the 
PCAPS (Fig. 3-4). For installation in the soil, an excavation of 60 cm width, 10 cm height 
and 60 cm depth was dug into the trench wall (Fig. 3-5). The top surface of the excavation 
was carefully levelled. The base plate containing three PCAPS-units was put into the 
excavation and pushed against the top by hammering wooden blocks under the PCAPS-
unit. The flexible tube and collection chambers were then placed at the bottom of the trench 
in such a way that the distance between the base plate and the bottom of the wick was 90 
cm A sampling tube connected the collection chamber with the soil surface. To collect 
water from the collection chamber, a capillary tube was put into the sampling tube, and 
suction was applied at the soil surface.  
 
Rainfall was measured and recorded near the trench at a plot with a catch area of 200 cm2. 
Cumulative rainfall was written continuously with a floated pen system on a paper (0.1 mm 
precipitation intervals) fixed on a drum, rotating with a speed of 1 cm per hour.  
 
After all devices were installed, the trench was filled. A thin layer of gravel (1 to 2 cm) was 
evenly distributed on the study area: (i) to decrease the erosive effect of the rain impact on 
the bare soil surface, (ii) to minimize the evaporation from the soil surface, and (iii) to 
decrease the growth of weed on the experimental plot.  



 57

 
 

Figure 3-4. Three passive capillary samplers on the PVC plate (after Jacques, 2000). With 
permission. 
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Figure 3-5. Installation of passive capillary samplers (after Jacques, 2000). With 
permission. 

 
. 
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Field measurements started on March 11, 1998 (day 0) and finished on March 31,1999 (day 
384). Weeds were regularly removed from the site during the summer. The tracer 
(CaCl2⋅H2O)  
was manually applied on August 28, 1998 (day 168). On an area of 8 x 2 m2, a total of 6000 
g was applied using a water depth of 0.5 cm resulting in a concentration of 75 g⋅l-1. The 
experimental area was subdivided in 16 squares of 1 m2 and solute was applied in three 
steps (2 times 1.5 liter on each square and then 1 liter on 0.5 m2). The resident solute 
concentration was calculated from TDR measurements using calibration curves for each 
soil horizon. 
 
Frequencies and types of the monitoring measurements are summarized in the Table 3-2. 
Total of 400,000 measurements were accumulated during the monitoring period. 
 
 3.2.2 Dataset overview 
 
3.2.2.1 Precipitation 
 
Fig. 3-6 shows the hourly rainfall rates and the cumulative precipitation during the 
experiment. A total rainfall amount of 109 cm was recorded during the period of the 
experiment. The average rainfall in this region is around 80 cm. The amount of rainfall was 
rather exceptional since it was the largest amount of rainfall during a 65-year period 
recorded at an official nearby weather station (Ukkel, Brusssels). In the time period of the 
experiment, the pluviograph in Ukkel had recorded 106 cm.  

 
On days 185 and 186 (13 and 14 September 1998), an extreme rainfall event occurred 
which resulted in large scale flooding in the region of the experiment. At the experimental 
site itself, no ponding was observed during the storm. However, flooding occurred at the 
foot of the hill. 
After the storm, there was one more dry period, and an almost linear increase in cumulative 
precipitation was observed beginning from the day 237.              
 
3.2.2.2 Soil water contents, capillary pressures and soil temperatures 
 
Time series of average at each depth water contents and capillary pressures are shown in 
Fig. 3-7 and Fig. 3-8. Measured average water content varied in time in a limited range 
between 0.3 and 0.4 due to the absence of water uptake by plants, limited evaporation and 
the relatively high continual rainfall during the experiment. As could be expected, the 
temporal water content variations were more pronounced in the topsoil than at larder 
depths. 
 
Averaged along the trench capillary pressures varied in time in a relatively small range 
(Fig. 3-8). The largest temporal variation was observed during the first 200 days of the 
experiment where periods of heavy rainfall alternated with long dry periods. During the last 
180 days of the experiment, the pressure heads showed a fast oscillatory behavior between 
e.g. 0 and -50 cm at the 15 cm depth and 0 and -20 cm at the 55 cm depth due to the typical 
rain pattern during the last 100 days. 
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Table 3-2. Types and frequencies of the monitoring measurements. 

Quantity Device Frequency Positions
Water content TDR-probes Every 2 hr 5 d x 12p
Resident solute concentration TDR-probes Every 2 hr 5 d x 12 p
Pressure head Tensiometers Every hr 5 d x 12 p
Temperature Temperature probes Every hr 5 d x 3 p 
Water fluxes Passive Cap. Lys Every 2-3 days 2 d x 3 p 
Solute fluxes  Passive Cap. Lys Every 2-3 days 2 d x 3 p 
Rainfall Pluviograph Continuously 1 
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Figure 3-6. Cumulative rainfall and daily precipitation during the experiment. 
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Figure 3-7. Time series of average water contents at each of the measurement depths. Solid 
lines correspond to the measured values at 50%, dotted lines at 25% and 75% probability 
levels.
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Figure 3-8. Time series of average capillary pressures at each of the measurement depths. 
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The lateral and temporal variability of soil water contents are characterized in Tables 3-3 
and 3-4. Coefficient of variation (CV) of water content in time was in the range from 0.6% 
to 8.1% (Table 3-4). Mean value of CV decreased with depth from 4.7% to 2.0%. Spatial 
variations in water content along the trench were more pronounced as compared with 
temporal variations. The CV values were in the range from 0.4% to 15.5%, which was 
wider than the range of temporal variability. Mean value of CV for space water content 
variability did not have depth-related trend. Rainfall was distributed evenly at all locations, 
and variability in soil water content has been likely a result of soil heterogeneity and 
hydraulic properties variability. 
 
Two-dimensional spatial distributions of water content for several observation days are 
shown in Fig. 3-9. There is a definite structure in the data, so that some parts of the profile 
remain consistently wet, and other parts stay relatively dry. 
 
Time series of averaged along the trench soil temperature are shown in Fig. 3-10. Values of 
temperature had a typical annual sine wave trend and were in the range between 0.4 and 
25.6C° on 25cm depth and in the range between 4.0 and 18.3C° on 95cm depth. The 
average annual temperature decreased slightly from 11.0 to 10.8C° with depth. The spatial 
variability of temperature was very small at all depths. The coefficient of variations of 
temperature had no depth-related trend and was in the range from 1% and 0 to 6%. 
 
3.2.2.3 Soil water fluxes 
 
Cumulative soil water fluxes measured with passive capillary lysimeters are shown in Fig. 
3-11. The lysimeters responded to the large precipitation events. The variability in values of 
the fluxes was substantial and grew as the experiment progressed. 
 
3.2.2.4 Laboratory data on soil water retention 
 
Parameters of the van Genuchten equation (2-2) for the samples taken along 30-m trench 
are shown in Fig. 3-12. Statistics of van Genuchten parameters are in the Table 3-5. The 
variability of the van Genuchten parameters α and n was relatively high in all three 
horizons. There was a weak correlation between saturated water contents θs and lg α. In all 
three horizons, and a moderate correlations between lg α and lg n. The same van Genuchten 
parameters determined in different horizons did not correlate. 
 
3.3 The base model and the need in model abstraction 

 
The base model was the single continuum model of variably saturated porous media 
simulated with the Richards equation. The software to solve the Richards equation and to 
estimate its parameters was the HYDRUS-1D (Simunek et al., 1998). HYDRUS-1D is one
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Table 3-3. Coefficients of variation (%) of soil water contents in time. 
Depth Coefficients of variation 

15 cm 35 cm 55 cm 75 cm 95 cm 
Min over all probes at a given depth 2.7 1.4 0.7 0.6 1.2 
Max over all probes at a given depth 8.1 5.5 3.1 4.6 2.8 
Mean over all probes at a given depth 4.7 3 2 2.2 2 

 
 

 
 
 

Table 3-4. Coefficients of variation (%) of soil water content along the trench 
Depth Coefficients of variation 

15 cm 35 cm 55 cm 75 cm 95 cm 
Min over all observation times 3.6 3.6 0.4 1.1 2.2 
Max over all observation times 11.6 11.2 7.4 9.5 15.5 
Mean over all observation times 7.2 6.2 4.3 5.4 7.5 

 



 66

Figure 3-9.  Consecutive images of two-dimensional distributions of soil moisture contents; days from the beginning of the experiment 
are shown.
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Figure 3-10. Time series of soil temperature. Solid lines correspond to the average 
measured values, dotted lines correspond to minimum and maximum values at each depth. 
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Figure 3-11. Cumulative rainfall and soil water fluxes measured with passive capillary 
lysimeters (PCAPS) at two depths. 



 69

0.00

0.02

0.04

0.06

0.08

0.10
θ s

0.30

0.35

0.40

0.45

0.50

0.55

α

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

0 10 20 30

n

1.0

1.5

2.0

2.5

3.0

3.5

Distance along the trench (m)

0 10 20 30 0 5 10 15 20 25 30 35

Ap C1 C2

 
Figure 3-12. Van Genuchten parameters derived from water retention of samples taken 
from three soil horizons along the 30-m trench.
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Table 3-5. Statistics of van Genuchten parameters of water retention in samples along the 
30-m trench 
 

  θr,Ap θr,C1 θr,C2 θs,Ap θs,C1 θs,C2 lg αAp lg αC1 lg αC2 lg nAp lg nC1 lg nC2

Min 0.000 0.000 0.000 0.348 0.330 0.379 -2.966 -2.947 -2.865 0.141 0.103 0.148
Average 0.040 0.015 0.044 0.411 0.363 0.431 -2.201 -1.951 -2.466 0.236 0.143 0.249

Max 0.083 0.075 0.101 0.484 0.424 0.502 -1.845 -1.536 -2.113 0.552 0.374 0.424
Coefficient 
of  variation 

(%) 57.7 135.1 53.8 7.2 5.2 7.7 11.0 13.2 9.7 41.0 34.8 29.9 
 Correlation coefficients significant at 0.05 significance level 

θr,Ap 1.000 - - - 0.268 - -0.332 0.349 - 0.678 - - 
θr,C1  1.000 - - - -0.383 - -0.338 - - 0.851 0.254
θr,C2   1.000 - - - -0.381 - -0.684 - - 0.834
θs,Ap    1.000 - - 0.430 - - - - - 
θs,C1     1.000 - - 0.558 - - - - 
θs,C2      1.000 - - 0.444 0.376 -0.285 -0.329

lg αAp       1.000 - - -0.453 - -0.313
lg αC1        1.000 - 0.282 -0.630 -0.333
lg αC2         1.000 - - -0.899
lg nAp          1.000 - - 
lg nC1           1.000 0.340
lg nC2            1.000
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of the most widely used codes for unsaturated flow and solute transport modeling that uses 
the finite element method to solve the Richards equation. It has options for nonisothermal 
liquid and vapor flow and heat transport. Constitutive relationships include van Genuchten 
and Brooks and Corey water retention functions. Information on soil texture can be used 
along with pedotransfer functions to determine water retention and hydraulic conductivity 
parameters. The code includes inverse modeling capabilities for estimating hydraulic and 
transport parameters. The upper boundary condition includes standard constant pressure 
and constant flux conditions in addition to meteorological forcing. Options for the lower 
boundary condition include unit gradient and seepage face (Scanlon, 2004).  
 
The HYDRUS-1D code was applied to simulate the dataset presented in the sections 3.2.2.1 
and 3.2.2.2 (Jacques et al., 2002). These authors calibrated the model using three different 
measurement sets in the inverse optimization: the water content data averaged by depth for 
each depth θ(t,z); the pressure head data averaged by depth for each depth ψ(t,z); the hourly 
rainfall rates that are smaller than 0.5 cm h-1 q(t,0). The upper boundary condition was 
defined by hourly rainfall rates. The evaporation was assumed to be negligible during the 
experiment due to the presence of a thin layer of gravel of soil surface. The lower boundary 
condition was defined as a zero pressure head gradient, i.e. free drainage. The initial 
condition was determined by linear interpolation of the measured pressure heads between 
the five depths at day 0.  
Two approaches were used for the estimation of the soil hydraulic parameters. First, 
parameters were estimated using time series of observations for a specific depth assuming a 
homogeneous soil profile. Parameters were interpreted as effective parameters 
representative for an equivalent homogeneous porous medium between the soil surface and 
a particular depth. The objective function included three data sets: q(t,0), θ(t,z) and ψ(t,z) 
for the particular depth. Three parameters (θs,α and n) of the van Genuchten equation (2-2) 
and two parameters (Ksat and l) of Genuchten-Mualem equation (2-5) were estimated for 
each of five observation depths. Second, a layered soil profile with different parameters for 
each layer was assumed. The objective function included eleven data sets: q(t,0) and data 
sets θ(t,z) and ψ(t,z) for five depths. Twenty soil hydraulic parameters were estimated 
within single optimization. Data from passive capillary lysimeters were used neither in 
calibration nor in the model performance assessment. 
 
The calibrated model reproduced the time series of soil water contents very well. Simulated 
pressure heads decreased less compared to observations at all depths during the dry period 
in the summer (day 140-160) and were significantly overpredicted at depth of 35 cm 
between days 150 and 200 during the wet period (see Jacques et al., 2002 for details). The 
total simulated cumulative infiltration was only from 50.2 to 83.8% of the total amount of 
rain (Fig. 3-13). The largest discrepancy was obtained during the heavy rainfall on day 185, 
and smaller differences during moderate rainfall conditions (e.g. days 100 and 150, and 250 
and 350). The model predicted substantial runoff. However, no runoff or ponding were 
observed in the field. 
This inexplicable result indicated the need for the model abstraction. 
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Figure 3-13. Measured cumulative rainfall and simulated cumulative actual infiltration for 
the different objective functions (Jacques et al., 2002). Φ1, Φ2, Φ3, Φ4 and Φ5 denote to the 
parameter optimization at depths of 15, 35, 55, 75 and 95 of homogeneous soil profile; Φall 
denotes to the multi-layered soil profile optimization. 
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3.4 Review of the model abstraction context 
 
Model abstraction starts with defining purpose and resources. As discussed in the Chapter  
2.3.2.2, the main directions of the context review are: 

(1) What is (are) the question(s) that the base and abstracted models are to address? What is the 
key output of the model that quantifies those questions? How the results of abstractions will 
be evaluated? 

(2)  What kind of data is available to calibrate the base and the abstracted models and to test 
them with respect to the key output? 

(3) What is the additional information that has to be collected to make sure that the 
abstracted models include descriptions of essential processes of flow and transport for 
given site. 

 
3.4.1 The key output 
 
The NRC staff review of performance assessments of nuclear facilities, e.g., 
decommissioning of the facilities, management of low-level and high-level radioactive 
waste disposal sites, frequently involves the review of models of water flow and solute 
transport in soils. Because water flow is the essential driver of the contaminant transport in 
subsurface, an accurate prediction of water fluxes is the precondition of correct estimating 
transport of contaminants. Therefore, the soil water fluxes were selected as the key output 
of the base and abstracted model. 
 
Inspection of the soil water fluxes measured at depths of 15 and 55 cm with PCAPS 
revealed gaps in measurements and equipment malfunctioning. Soil water fluxes 
measurements started 40 days after the beginning of water content and pressure head 
measurements. Time interval between measurements varied from 1 to 8 days. The 
measured cumulative fluxes after rainfall event on the day 185 were greater then the 
cumulative rainfall and the slopes of cumulative fluxes curves were steeper then that for 
rainfall that indicated malfunctioning of PCAPS. For those reasons not all data were used, 
but three wetting-drying periods were selected as shown in Fig. 3-14. Cumulative soil water 
fluxes for those periods were used as three values of the key output. 
 
3.4.2 Statistics to evaluate model abstractions 
 
The F-test was used to estimate accuracy of flux simulation for each MA technique. The 
test compares model error with the variation in the experimental data (Whitmore, 1991). 
The sum of squares due to lack of fit was used to characterize the model error: 

∑
=

−=
K

j
jjj xynLOFIT

1

2)(    (3.1) 

where nj is the number of replicates at each depth and time, xj is the simulated flux for each 
depth and time, K is the total number of measurement points ( K = [number of depth] x 
[number of time periods]), jy  is the mean of the measurement at each depth and time: 
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Figure 3-14. Wetting-drying periods selected to compute the cumulative water flux as the 
key output of the base and abstracted models. 
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∑
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where yij is the measured flux for each depth and time. 
 
The sum of squares of the error was used to characterize variability of the measured data:  
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The F-statistics is computed as: 

SSE
LOFITF =     (3.4) 

The number of degrees of freedom in the LOFIT is K, and in the SSE is N-K, where N is the 
total number of measurements including all replications. 
 
Each abstracted model was tested to assess the propagation of the variability in parameters 
through the model and the resultant variability in the key output and in simulated water 
contents. The variability in parameters was inferred either form the inverse modeling 
results or from the ensemble of pedotransfer functions as described below.. Probability 
distribution functions of the root mean-square error in water contents and the probability 
distribution functions of the key output were used to document and compare the error 
propagation.  
 
3.4.3 Available data and their uncertainty 
 
The purpose of the data review is to establish model calibration dataset having reliable 
statistics of all model inputs and outputs. 
 
3.4.3.1 Averaging water contents 
  
Inspection of time series of water content and pressure head revealed oscillatory behavior 
that apparently had diurnal periodicity. The data analysis presented in the Appendix B 
showed that that the oscillations of recorded capillary pressures and soil water contents 
were related to the temperature on/near soil surface. That could be attributed to the 
unknown response of the electronic equipment on the surface to the diurnal daily 
oscillations. To eliminate temperature effect of measurement devices, daily time series of 
water content and pressure head were averaged for each day of the observation period.  The 
temporal time scale of observations became equal to one day. 
 
3.4.3.2 Temporal persistence in soil water contents 
 
The water content data were incomplete due to malfunctioning of the measurement devices. 
When removed from soil, all probes were still intact, and were subsequently used in other 
laboratory or field experiments. The malfunctioning was apparently caused by the 
connections and switch boxes in the automated measurement system that would stop 
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working properly resulting in missing data for the rest of the experiment for a given probe. 
Averaging data from the remaining probes at a given depth could be an option if no 
persistent difference had existed between TDR-measured water content in different 
locations.  However, the data inspection showed that, when all probes worked, some probes 
at a given depth consistently showed water contents below average whereas others show 
water contents above the average. Fig. 3-15 shows measurements made when all probes at 
the 15-cm depth have worked. The graphs for the individual probes are clearly shifted 
relative to each other along the water content axis. This demonstrates the temporal 
persistence in water contents at different locations. Similar graphs were obtained for other 
depths (data not shown). 
 
Because of the temporal persistence, the malfunctioning of probes with consistently lower 
than average values would lead to averaging only data from the remaining probes that had 
water contents consistently higher than the true average. This averaging would lead to 
overestimation of the average water content at the depth of interest.  In contrary, the 
malfunctioning of probes with consistently higher than average values would lead to the 
underestimating the average. 
 
The correction for the temporal persistence (Pachepsky et al., 2005) was applied to the data 
as described in the Appendix C to estimate layer-averaged water contents. This correction 
also led to the five-fold decrease in the uncertainty of the estimates of layer-averaged water 
contents because, in case of persistence, the individual probe readings are not independent. 
The depth-averaged water contents with the standard errors based on the persistence were 
used in calibrations.  
 
3.4.3.3 Surface evaporation 
 
The calibration of the base model in (Jacques et al., 2002) was based on the assumption that 
the surface evaporation was absent during the experiment. To evaluate the uncertainty 
related to this assumption, we used the data from locations where the monitoring was 
continuous at all observation depths. The cumulative change in water storage in soil profile 
was computed for those locations. Results in Fig. 3-16 show that distinct periods of water 
loss (“dry periods”) and water accumulation (“wet periods”) can be defined for all 
locations. Inspection of capillary pressure and water content data during dry periods 
showed that: 

(a) capillary pressure gradient at depths 65 cm and 85 cm was between zero and 
one (Fig. 3-17); positive value of pressure gradient indicated downward 
water flux from those layers with infiltration, 

(b) water content decreased and pressure head increased continuously at all 
depths (Fig. 3-18) 

(c) water content increased linearly with depth in deep parts of soil profile (Fig. 
3-19).  

We used these data to estimate the matrix unsaturated hydraulic conductivity in the deep 
part of the profile in the C2 soil horizon. We assumed that (a) no preferential flow occurred  
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Figure 3-15. Time series of TDR-measured water contents at the depth of 15 cm (a-d) and 
precipitation (e) during the period when all probes worked at this depth. Probe numbers top 
to bottom (a) 2, 3, 1, (b) 5, 6, 4, (c) 7, 8, 9, (d) 11, 12, 10; probe numbering is shown in 
Figure 3-3.
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Figure 3-16. Cumulative change in soil water storage in several locations along the trench.  Location numbering is given in the Fig. 3-3.
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Figure 3-17. Capillary pressure gradient during a drying period in the location 10
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Figure 3-18. Daily average water content and pressure head time series at the location 10. 
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Figure 3-19. Water contents in soil profiles for several days of a drying period. 
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Figure 3-20. Estimated unsaturated hydraulic conductivity of soil matrix below 60 cm. 



 83

during the drying period, (b) the dependence of the unsaturated hydraulic conductivity on 
water content could be assumed the same within the depth range from 65 to 85 cm, (c) the 
linear interpolation was applicable to water contents. The procedure to estimate unsaturated 
hydraulic conductivity is given in the Appendix D. It is based on the combining the mass 
conservation equation and Darcy-Buckingham law and using the one-day time step. The 
estimated dependence of the unsaturated hydraulic conductivity on volumetric water 
content is shown in Fig. 3-20. This dependence was then used to compute the daily water 
flux from the soil profile at the depth of 105 cm as shown in the Appendix D. 
 
Being able to compute the matrix flux at the bottom of the soil profile and changes in water 
storage of the soil profile, we could estimate evaporative losses during dry periods from the 
water mass balance. Estimated daily evaporation for five dry periods is shown in Fig. 3-21. 
The variability between dry periods is less than the variability within dry periods. The 
Kruskal-Wallis rank sum test did not indicate (p-value = 0.924) difference in mean daily 
evaporation values between dry periods, and ANOVA did not select the period as a 
influential factor at 0.05 probability level. The probability distribution function of estimated 
evaporation is given in Fig. 3-22.  The values of daily evaporation were 0.29 mm, 0.86 mm 
and 1.51 mm at probability levels 25%, 50% and 75%, respectively. About 10% of the 
estimates are negative; this should be attributed to the error propagation, measurement 
noise, and a large time step. 
 
3.4.4 Additional information to ensure sound abstraction 
 
The purpose of collecting the additional information is to ensure that the abstracted models 
includes descriptions of all essential processes of flow and transport for given site. 
Although this additional information may be of lower quality compared with the necessary 
part of the database, it may show that some small-scale internal heterogeneities may have a 
dominant effect on the flow. 
 
 3.4.4.1 Evidence of the macropore flow 
 
The presence of the macropore flow was one of the hypothetical reasons why the base 
model in HYDRUS-1D failed to simulate infiltration after intensive rainfall (Jacques et al. 
2002). We analyzed the field water retention data and used the estimates of the surface 
evaporation from the section 3.3.2.3 to see whether the macropore flow might be present. 
 
Fig. 3-23 shows field water retention at the 15-cm depth for the drying period from day 140 
to day 190. The drying retention curves except curves at locations 110 and 310 have a 
horizontal segments at high saturations. At those segments, water content decreases and 
capillary pressure remains approximately constant as soil dries. The capillary pressure 
measured with the tensiometer reflects soil water potential in soil matrix. The decrease in 
soil water contents reflects the loss of soil water in macropores outside soil matrix. This 
loss occurs because both evaporation and redistribution. When the macropore water is lost, 
evaporation begins to draw water from soil matrix. This affects the tensiometer readings, 
and capillary pressure begins to rise simultaneously with the decrease of soil water 
contents. The schematic of such soil drying is shown in Fig. 3-24. This type of drying  
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Figure 3-21. Estimated daily evaporation for dry periods during the experiment.  
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Figure 3-22. Probability distribution function of estimated daily evaporation. 
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Figure 3-23. Relationships between pressure head and water content at the 15-cm depth 
between 140 and 190 day from the beginning of the experiment. Location numbering is 
given in the Fig. 3-3. 
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Figure 3-24. Drying water retention curve of a soil with macroporosity. 
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Figure 3-25. Cumulative water fluxes computed with constant evaporation of 0.86 mm day.
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indicates the well-developed macroporosity. Therefore, soil at the site has necessary pore 
structure to exhibit the fast water flow in macropores in close-to-saturation conditions if 
case macropores have a good connectivity. Pore structure of the soil under study may serve 
as a conduit for the preferential flow which is, by definition, the non-uniform downward 
flow is substantially larger than the estimated matrix flow. It develops predominantly 
during the intermediate and wet periods and generally follows the pattern of precipitation. 
 
The estimates of water balance, hydraulic conductivity, and surface evaporation are not 
necessarily accurate. Several strong, albeit plausible, assumptions have been made to obtain 
them. However, those estimates show that the substantial macropore flow in the soil could 
develop during intensive rainfall events. Macropores present small scale-heterogeneities in 
pore space that can substantially affect flow and transport in variably saturated subsurface. 
The abstracted models should include the ability to simulate macropore flow.  
 
3.3.5 Recalibration of the base model 
 
The Richards single continuum model was recalibrated using (a) water contents corrected 
for daily oscillations and temporal persistence (Sections 3.4.3.1 and 3.4.3.2) and (b) the 
estimated evaporation rate as boundary condition to see whether the inexplicable behavior 
of the model will disappear. Soil profile was subdivided into five layers 0-25, 25-45, 45-65, 
65-85, and 85-105 cm. Four parameters θr, θs, α, n of the van Genuchten equation (2-2) and 
two parameters Ks, l of the Genuchten-Mualem equation (2-4) were estimated for each 
layer fitting the HYDRUS-1D to the corrected averaged water content. The initial estimates 
of the parameters were found using data on soil texture (Table 3-1) and the Rosetta 
software included in the HYDRUS-1D model. The total 30 parameters were estimated 
during the model calibration.  
 
Calibration resulted in the relatively high accuracy (Fig. 3-26) of water contents. The 
RMSE (root-mean-square error) was 0.0058 cm3cm-3, the determination coefficient of the 
linear regression ‘observed vs. simulated’ water contents was R2 = 0.834. Calibrated 
parameters along with their standard errors and linear tolerance intervals are shown in 
Table 3-6. Parameter θr is found with the lowest accuracy because it affects the water 
retention at high capillary pressures whereas the observed capillary pressures were very low 
(Fig. 3-8). In contrary, values of θs are very reliable. Parameters α and n are defined reliably 
only in the top layer. In all other layers, the tolerance intervals are very wide but the 
estimates themselves are acceptable. As indicated by Hill (1998), this suggests that the data 
in deep layers are insufficient for conclusive evaluation. And indeed, soil in top layer 
experiences some drying (Fig. 3-26), and therefore simulations are sensitive to the retention 
curve shape parameters α and n. In deeper layers, no substantial drying occurs, and the 
retention curve shape parameters α and n cannot be found reliably because all experimental 
points are located very close to the wet end. The same is true for the parameters of the 
hydraulic conductivity curve Ksat and l. 
 
Although the calibration results were satisfactory (Fig. 3-26), simulated soil water fluxes 
were still substantially different from measured (Fig. 3-27). The F-statistic of 5.92 
computed according Eq. (3-4) was above the critical value of 2.5. The Richards single  
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Figure 3-26. Time series of the depth-averaged water contents; ○ – measured, ― simulated 
with the calibrated Richards medium model. 
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Table 3-6. Calibrated van Genuchten (Eq. 2-2) and van Genuchten-Mualem (Eq.2-5) 
parameters of the Richards medium model (HYDRUS-1D) 
 

Variable θr θs α n Ksat l 

 cm3cm-3 cm3cm-3 cm-1  cm day-1  
0-25 cm 

Estimate 0.005 0.363 0.0011 1.8 0.066 0.01 
Std. error 0.22 0.001 0.0004 0.189 0.006 0.83 
Lower 95% -0.427 0.361 0.0003 1.43 0.054 -1.63 
Upper 95% 0.437 0.365 0.0019 2.17 0.078 1.64 

25-45 cm 
Estimate 0.086 0.362 0.00184 1.267 50 0.5 
Std. error 1.409 0.008 0.004 1.136 409.61 36.4 
Lower 95% -2.678 0.347 -0.0061 -0.961 -753.34 -70.88 
Upper 95% 2.85 0.377 0.0098 3.495 853.34 71.88 

45-65 cm 
Estimate 0.154 0.367 0.00123 1.527 0.207 5 
Std. error 1.15 0.004 0.00438 1.35 0.3 54.4 
Lower 95% -2.102 0.359 -0.0074 -1.12 -0.381 -101.7 
Upper 95% 2.41 0.375 0.00982 4.174 0.795 111.7 

65-85 cm 
Estimate 0.108 0.388 0.00133 1.492 0.167 0.5 
Std. error 1.443 0.008 0.00426 1.441 0.329 24.87 
Lower 95% -2.722 0.372 -0.007 -1.334 -0.478 -48.28 
Upper 95% 2.938 0.404 0.00969 4.318 0.812 49.28 

85-105 cm 
Estimate 0.01 0.386 0.00155 1.199 4.159 18.4 
Std. error 0.453 0.004 0.00161 0.197 7.646 31.5 
Lower 95% -0.878 0.378 -0.0016 0.812 -10.836 -43.5 
Upper 95% 0.898 0.394 0.0047 1.586 19.154 80.3 
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Figure 3-27. Soil water fluxes simulated with calibrated Richards medium model; error bars 
show one standard deviation 
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continuum model predicted either water accumulation at the soil surface or simulated 
substantial surface runoff during large storm events. As a result, simulated water fluxes 
through soil were much less than measured with passive capillary lysimeters or estimated 
from water balance. points are located very close to the wet end. The same is true for the 
parameters of the hydraulic conductivity curve Ksat and l. 
 
Although the calibration results were satisfactory (Fig. 3-26), simulated soil water fluxes 
were still substantially different from measured (Fig. 3-27). The F-statistic of 5.92 
computed according Eq. (3-4) was above the critical value of 2.5. The Richards single 
continuum model predicted either water accumulation at the soil surface or simulated 
substantial surface runoff during large storm events. As a result, simulated water fluxes 
through soil were much less than measured with passive capillary lysimeters or estimated 
from water balance.  
 
Overall, the base model failed to simulate the key output when fitted to spatially and 
temporally corrected data using corrected boundary conditions. Therefore, the need in 
model abstraction persisted.  
 
 3.5 Selection and application of model abstraction techniques 
 
 3.5.1 Model abstraction design 
 
The review of model abstraction techniques listed in Chapter 2 showed that the following 
four categories of the techniques are applicable to this case study: (a) the abstraction with a 
hierarchy of models, (b) the abstraction with scale change (aggregation); (b) the abstraction 
of parameter determination with pedotransfer functions, and (d) the abstraction with 
metamodeling. The operational scale was not changed, and no data were available to 
perform discretization or scaling in parameter determination. Therefore, other categories of 
abstraction were not used. 
 
The design of the model abstraction process is shown in Fig. 3-28. Eight abstractions were 
performed. The base model is shown as the model 0 in Fig. 3-28. The model 1 is the result 
of model hierarchy abstraction, the model 2 is the result of the abstraction with scale 
change (aggregation); the model 3 is the result of the abstraction of parameter 
determination with pedotransfer functions, the model 4 is the result of the abstraction with 
metamodeling. Another four models are built as a result of the sequential abstraction as 
discussed below. 
 
Model abstraction experiments were performed in the uncertainty context. Fifty simulations 
were done for each abstracted model. The random input was generated according to the 
statistical distributions of parameter values. Details of the Monte Carlo simulations are 
given in following subsections. 
 
3.5.2 Abstraction with a hierarchy of models: using water budget 
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The hierarchy in Fig. 2-2 suggests using water budget model as a simplification of the 
single continuum, or Richards medium, model. The water budget model MWBUS (Model 
of Water Budget of Unsaturated Soil) has been used in this work. Detailed description of 
the model is in the Appendix E. The model is based on the model AQUA (Guber et al., 
1995). The model is conceptually similar to the model MEPAS (Whelan et al, 1996). The 
difference is that MWBUS does not assume the steady-state flow and includes the depth-
dependent loss of water for evaporation and/or transport to upper layers as proposed by 
Suleiman and Ritchie (2003). The model has the ability to simulate macropore flow as 
required in Section 3.3.4.1. The MWBUS is used in models 1, 5, 7, and 8 shown in Fig. 3-
28. 
 
The MWBUS was calibrated on corrected averaged water content using rainfall and 
estimated evaporation rate as upper boundary condition. The estimated parameters were 
saturated water content θs and field capacity θfc for five layers, and parameters of the 
evaporation equation (E4) a, b, and τ0. The values of saturated hydraulic conductivity were 
assigned at 50% probability according to soil texture and porosity (Table 2-5) and were not  
changed during optimization. Thus, the total number of estimated parameters was equal to 
13. The version of Marquardt algorithm (van Genuchten, 1981) was used in the calibration.  
 
Results of the MWBUS calibration are shown in Fig. 3-29 and 3-30. As compared with the 
Richards medium model, the accuracy of the water content simulation with the calibrated 
MWBUS was worse (compare Fig. 3-29 and Fig. 3-30), the RMSE was 0.00719 cm3cm-3 
and the determination coefficient of the linear regression ‘observed vs. simulated’ water 
contents was R2=0.740. However, the correspondence between MWBUS-simulated and 
measured soil water fluxes was satisfactory (Fig. 3-28). The F-statistic value was below the 
critical value (Fig. 3-31). Calibrated parameters of the MWBUS model and their statistics 
are given in Table 3-7. The MWBUS parameters are much more reliable compared with the 
parameters of the Richards model. 
  
The abstraction from the Richards model to the water budget model not only provided a 
reasonable estimation of the soil water fluxes as the key output, but also served as a “sanity 
check” giving a clear indication that the Richards medium model was optimized in the 
wrong domain of its parameter space.  
 
3.5.3 Abstraction with the scale change: profile aggregation 
 
The layered soil profile was replaced with homogeneous one in this abstraction (model 2 in 
Fig. 3-28). The HYDRUS-1D was calibrated with averaged water content corrected as 
described in Sections 3.3.2.1 and 3.3.2.2. Four parameters θr, θs, α, n of the van Genuchten 
equation (2-2) and two parameters Ks, l of the Genuchten-Mualem equation (2-4) were 
estimated for the whole soil profile fitting the HYDRUS-1D model. The total number of 
estimated parameters was equal to 6. Results of the calibration are shown in Fig. 3-32. 
Replacing the layered profile with homogeneous profile has more effect on errors in water 
contents than on errors in flux computations (compare Fig 3-29 with 3-32, and Fig. 3-30 
with Fig. 3-33). Water fluxes were not simulated correctly after this abstraction. The F-
statistic computed according Eq. 3-4 was above the critical value (Fig. 3-31). 



 94

 
Figure 3-28. Design of the model abstraction application in this work. The Richards media 
was simulated with the HYDRUS-1D software; the water budget model was MWBUS. 

S
ca

le
 c

ha
ng

e 
-a

gg
re

ga
tio

n

La
ye

re
d 

   
   

 H
om

og
en

eo
us

Abstraction of the model structure

Richards 
medium

Water 
budget

Abstr
actio

n of p
aramete

r

dete
rm

ina
tio

n

Calibratio
n0 1

2 7

5

6 8

3

4

S
ca

le
 c

ha
ng

e 
-a

gg
re

ga
tio

n

La
ye

re
d 

   
   

 H
om

og
en

eo
us

Abstraction of the model structure

Richards 
medium

Water 
budget

Abstr
actio

n of p
aramete

r

dete
rm

ina
tio

n

Calibratio
n0 1

2 7

5

6 8

3

4



 95

  
 
 
 

 
Figure 3-29. Time series of the depth-averaged water contents; ○ – measured, ― simulated 
with the calibrated MWBUS model. 
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Figure 3-30. Soil water fluxes simulated with calibrated HYDRUS-1D and the MWBUS 
models; error bars show one standard deviation  
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Figure 3-31. F-statistics of soil water flux simulations with different abstraction techniques 
for depths of 15 and 55 cm.; ¶ - the evaluated F-value is less than the critical F-value at 95% 
probability; model numbering in brackets is the same as in Fig. 3-28. The critical value of 
F-statistics is 2.5. 
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Table 3-7. Calibrated parameters of the water budget model (MWBUS) 

Variable θs θfc Ksat θr¶ 
 cm3cm-3 cm3cm-3 cm day-1 cm3cm-3 

Layered soil profile  
0-25 cm 

Estimate 0.432 0.353 133.9 0.09 
Std. error 0 0.000 0  
Lower 95% 0.432 0.353 133.9  
Upper 95% 0.432 0.354 133.9  

25-45 cm 
Estimate 0.384 0.348 133.9 0.101 
Std. error 0 0.000 0  
Lower 95% 0.384 0.347 133.9  
Upper 95% 0.384 0.349 133.9  

45-65 cm 
Estimate 0.388 0.360 133.9 0.108 
Std. error 0 0.000 0  
Lower 95% 0.388 0.359 133.9  
Upper 95% 0.388 0.361 133.9  

65-85 cm 
Value 0.388 0.374 14.9 0.123 
Std. error 0 0.000 0  
Lower 95% 0.388 0.374 14.9  
Upper 95% 0.388 0.375 14.9  

85-105 cm 
Estimate 0.388 0.370 14.9 0.109 
Std. error 0 0.001 0  
Lower 95% 0.388 0.368 14.9  
Upper 95% 0.388 0.371 14.9  

Homogeneous soil profile 
Variable k0 a b  

 day day cm-1   
Estimate 109.7 0.602 1.579  
Std. error 3.2 0.023 0.012  
Lower 95% 103.3 0.557 1.555  
Upper 95% 116.0 0.646 1.603  

¶Was estimated from pedotransfer function Rosetta in HYDRUS-1D 
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3.5.4 Abstraction of parameter determination: using an ensemble of pedotransfer 
functions 
 

This abstraction corresponds to the model 3 in Fig. 3-28.  Calibration was replaced 
with using pedotransfer functions for both water retention and hydraulic conductivity. 
Results of application of 21 pedotransfer functions given in the Appendix A and the Rosetta 
software are shown in Fig. 3-34. None of the PTFs provide a good approximation of the 
field water retention, although the field variability makes questionable any attempt of PTF-
based predictions, just because no data on PTF inputs collocated with the measurement 
points have been available. Nevertheless, the ensemble of pedotransfer functions creates an 
envelope that encompasses the range of field water retention data. Similar results were 
obtained at other depths (data not shown). 
 
The Monte Carlo simulations were performed with HYDRUS-1D model using each 
pedotransfer function from the Appendix 1 and the Rosetta pedotransfer function to 
estimate water retention.  Table 3-8 indicates whether Brooks-Corey equation (2-1) or van 
Genuchten equation (2-2) was used in simulations with a specific pedotransfer function.  
The median values of lognormal distributions of Ksat shown in Table 2-5 and in Fig. 2-10 
were used from loam and silt loam texture classes at depths ranges 0 to 65 cm and 65 to 
105 cm, respectively. Results of water content simulations are shown in Fig. 3-35. The 
accuracy of those simulations in terms of water contents was low. There has obviously been 
a mismatch between the simulated initial distributions of pressure heads and the actual 
ones, and the first period of simulations was characterized by the substantial loss of water 
through the bottom of the profile. However, the accuracy of soil water fluxes estimates in 
simulations with pedotransfer functions was satisfactory (Fig. 3-36). The F-statistic value 
was below the critical value (Fig. 3-31). These results show that the Richards media model 
is, in principle, capable of correct prediction of soil water fluxes in this case study provided 
realistic parameter estimates are used. 
 
3.5.5 Sequential model abstractions 
 
 
Models 5, 6, and 7 in Fig. 3-28 represent application of two model abstraction techniques.  
The purpose of such sequential application is to find out whether additional gains can be 
obtained without the loss in accuracy.  
 
Model 5 in Fig. 3-28 represents using pedotransfer functions with soil water budget model. 
The Monte Carlo simulations were performed with the MWBUS model using each 
pedotransfer function from the Appendix 1 and the Rosetta pedotransfer function to 
estimate water retention. Water retention was estimated using average soil texture for depth 
15 and 35 cm for topsoil, and 55, 75, 95 cm for subsoil. The Monte Carlo simulations 
required a decision on how to estimate field capacity from such data. Although there is no  
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Figure 3-32. Time series of transect-average water contents: symbol – measured, red lines – 
calibrated the HYDRUS-1D model, blue lines - calibrated the WMBUS model for 
homogeneous soil profile. 

15 cm

0.30

0.32

0.34

0.36

0.38

0.40

35 cm

0.30

0.32

0.34

0.36

55 cm

W
at

er
 c

on
te

nt
 (c

m
3 .
cm

-3
)

0.34

0.35

0.36

0.37

75 cm

0.34

0.36

0.38

95 cm

Time (day)

100 150 200 250 300 350 400 450
0.32

0.34

0.36

0.38

Measured
HYDRUS-1D
MWBUS



 101

 
Figure 3-33. Cumulative water fluxes simulated with calibrated HYDRUS-1D and 
MWBUS models for homogeneous soil profile; error bars show one standard deviation. 
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Figure 3-34. Comparison of field water retention (symbols) at the depth of 15 cm with 
water retention estimated using 21 pedotransfer functions listed in the Appendix A and the 
Rosetta software. 
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Table 3-8. PTF used to run HYDRUS 1D with Brooks-Corey (BC) and Van Genuchten 
(VG) water retention equations  

# Authors  Clay Silt Sand BD¶ OM§ topsoil 
1 Campbell & Shiozawa (1992) BC + - + + - - 
2 Rawls & Brakensiek (1989) BC + - + + - - 
3 Saxton et al. (1986) BC + - + - - - 
4 Oosterveldt & Chang (1980) BC + - + - - - 
5 Williams et al. (1992) BC + - + - + - 
6 Williams et al. (1992) BC + - + + - - 
7 Baumer (1992) VG + - + + + - 
8 Bruand et al. (1994) VG + - - - - - 
9 Canarache (1993) VG + - - + - - 
10 Gupta & Larson (1979) VG + + + + + - 
11 Hall et al. (1977) VG + + + + - - 
12 Mayr & Jarvis (1999) VG + + + + + - 
13 Pachepsky et al. (1982) VG + - + + - - 
14 Petersen et al. (1968)  VG + - - - - - 
15 Rajkai & Varallyay (1992) VG + - + + + - 
16 Rawls et al. (1982) VG + + + + - - 
17 Rawls et al. (1992) VG + + + + + - 
18 Verekeen et al. (1989) VG + - + + + - 
19 Tomasella & Hodnett (1998) VG + + - - - - 
20 Wosten et al. (1999)   VG + + + - - + 
21 Wosten et al. (1999)   VG + + + + + + 
22 Rosetta VG + + + + - - 
¶Average bulk density values were taken from Mallants et al. (1996) as 1.426, 1.544, and 
1.526 g cm-3 in the depth ranges 0 to 25 cm, 25 to 55 cm and 55 to 105 cm, respectively 
 
§Organic matter content was set at 2% in the 0-25 cm topsoil, and 0.5% in subsoil. 
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Figure 3-35. Time series of transect-average water contents: symbol – measured, red lines - 
simulated with the HYDRUS-1D, blue lines - simulated with the WMBUS model; water 
retention data and median hydraulic conductivity estimated with pedotransfer functions; the 
solid line corresponds to the median value of simulated water contents for each day, dashed 
lines correspond to the simulated daily values at 25% and 75% probability levels. 
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Figure 3-36. Soil water fluxes simulated with HYDRUS-1D and MWBUS models; water 
retention data and median hydraulic conductivity estimated with pedotransfer functions for 
layered soil profile; error bars show one standard deviation. 
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unique capillary pressure value to estimate field capacity from ‘water content-capillary 
pressure’ dependencies (see section 2.2 and Fig. 2-6), two often-suggested values of soil 
water potential for such estimate are 100 cm and 330 cm. We used the laboratory water 
retention data to select the capillary suction corresponding to the field capacity. The 
distributions of water content at both capillary pressures were constructed by random 
sampling the distributions of van Genuchten parameters shown in Fig. 3-12, and the soil 
water was simulated with both distributions. The root-mean-square errors with water 
contents at capillary pressure of 100 cm as field capacity values were about two times less 
than the errors with water contents at capillary pressure of 330 cm (data not shown). 
Therefore, to perform the MWBUS model with parameters estimated using PTF (Table 3-
8), the values of θfc were evaluated at pressure head of 100 cm.  Parameters of the 
evaporation model for the MWBUS were taken from the calibration as described in 3.5.2 
Simulations were run for each function with the median values of lognormal distributions 
of Ksat shown in Table 2-5 and in Fig. 2-10 that were used from loam and silt loam texture 
classes at depths ranges 0 to 65 cm and 65 to 105 cm, respectively. Results of water content 
simulations are shown in Fig. 3-35. The accuracy of those simulations was low. There has 
obviously been a mismatch between water field capacity estimated with PTF and the actual 
ones. The first period of simulations was characterized by the substantial loss of water 
through the bottom of the profile. However, the accuracy of soil water fluxes estimates in 
simulations with pedotransfer functions was satisfactory (Fig. 3-36). 
 
Model 6 in Fig. 3-28 represents using pedotransfer functions after the aggregation of the 
soil profile is performed. Soil texture was different for topsoil and subsoil in the soil profile 
(Fig. 3-3). Pedotransfer functions require the soil textural composition as the input. 
Therefore two cases were considered separately: homogeneous soil profile with topsoil 
hydraulic properties, homogeneous soil profile with subsoil hydraulic properties.  
 
Results of simulations are shown in Fig. 3-37 and 3-38. Simulated water content and water 
fluxes were similar to those, obtained for layered soil profile (Fig. 3-35 and 3-36). The 
Richards media model underestimated water content at all depths. The accuracy of flux 
predictions was acceptable. The F-statistic computed for water fluxes was below the critical 
value (Fig. 3-31). Replacing topsoil hydraulic parameters with subsoil parameters did not 
result in noticeable changes in water content and flux values for both models (data not 
shown). That might be due to variability in water retention caused by different PTF is 
greater than that caused by changes in soil texture for particular soil profile.  
 
Overall, the model abstraction with scale change (aggregation) resulted in deterioration of 
the accuracy of soil water content simulations with both HYDRUS-1D and MWBUS 
models. Soil water fluxes, however, were simulated well on both abstraction steps. 
 
Model 7 in Fig. 3-28 represents the sequential use of hierarchy of models and aggregation. 
The MWBUS has the single homogeneous layer and is calibrated for this case. Calibrated 
parameter values and their statistics are shown in Table 3-7. The tolerance intervals are 
narrow, parameter values are robust. Two parameters - saturated water content θs and field 
capacity θfc, - and parameters of the evaporation equation (E4) a, b, and τ0 were estimated 
fitting the MWBUS model. The values of saturated hydraulic conductivity were assigned at  
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Figure 3-37. Time series of transect-average water contents: symbol – measured, red lines - 
simulated with the HYDRUS-1D, blue lines - simulated with the WMBUS model for 
homogeneous soil profile; water retention data and median hydraulic conductivity 
estimated with pedotransfer functions for topsoil; the solid line corresponds to the median 
value of simulated water contents for each day, dashed lines correspond to the simulated 
daily values at 25% and 75% probability levels.
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Figure 3-38. Soil water fluxes simulated with HYDRUS-1D and the MWBUS model; water 
retention data and median hydraulic conductivity estimated with pedotransfer functions for 
topsoil profile; error bars show one standard deviation. 
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Figure 3-39. Soil water fluxes simulated with calibrated HYDRUS-1D and the MWBUS 
model for the homogeneous soil profile; error bars show one standard deviation.
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50% probability according to soil texture and porosity (Table 2-4) and were not changed 
during the MWBUS optimization. Thus, the total number of estimated parameters was 
equal to 5. 
 
Results of the calibration are shown in Fig. 3-32 and 3-33. Replacing the layered profile 
with homogeneous profile has more effect on errors in water contents than on errors in flux 
computations (see Fig. 3-29 and 3-30). The MWBUS model simulated water content 
qualitatively less adequately compared to the MWBUS. The values of water content 
simulated with the MWBUS did not changed in time at depths 55, 75 and 95 cm and were 
equal to field capacity. However, the MWBUS model simulated water fluxes more 
accurately compared to the HYDRUS-1D model when calibrated for homogeneous soil 
profile (Fig. 3-39). 
 
Model 8 in Fig. 3-28 represents the sequential application of three abstraction steps: 
hierarchy of models, aggregation and pedotransfer functions. This ultimate simplification 
leads to further deterioration of the accuracy in water content estimates (Fig. 3-37). 
However, soil water fluxes are estimated reasonable well (Fig. 3-38). 
 
3.5.6 Abstraction with metamodeling 

 
This type of MA should be used when a large number of model runs may be required for 
the performance assessment (see Section 2.2.4). We developed an example to show the 
feasibility of applying an artificial neural network (ANN) to mimic the model behavior in 
predicting soil water fluxes with meteorological inputs defined at daily, weekly and ten-day 
time scales. The design of this work is shown in Fig. 3-40. It includes generating probable 
weather patterns, running the models in the Monte Carlo simulation mode, dividing the data 
into development and testing subsets, training the neural net to mimic the model output on 
the development data subset, and testing the net on the testing data subset. 
We used the feed-forward ANN as described by Pachepsky et al. (1996). Climatic 
parameters of Albany, NY were used to generate 300 daily precipitation and evaporation 
sequences for the April-September period.  The sequences were randomly divided into 150 
sequences for training and 150 sequences for testing. Feedforward networks were 
developed using the MATLAB Neural Network toolbox.  The minimum number of the 
hidden neurons was found experimentally to provide the best accuracy with testing dataset. 
ANN inputs were daily average precipitation and evaporation, or weekly average 
precipitation and evaporation. Accordingly, ANN outputs were daily soil water fluxes or 
weekly soil water fluxes.   
 
Results are shown in Fig. 3-41 – 3-44. ANN related inputs and outputs of the models well. 
The determinations coefficients of regressions ‘ANN monthly vs. simulated monthly’ 
ranged from 0.899 to 0.944 when daily inputs and outputs were used with the MWBUS 
model (Fig. 3-41). There was a marked increase in accuracy of monthly fluxes predictions 
when weekly input and output were used; the determination coefficients were between 
0.959 and 0.971 (Fig. 3-42). There was an opposite trend with the HYDRUS-1D output. 
The accuracy was higher with the daily input and outputs were used; values of R2 were in 
the range between 0.990 and 0.994 (Fig. 3-43). With weekly inputs and outputs, the 
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Figure 3-40. Schematics of the neural network application to abstract simulation models. 
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 Figure 3-41.Estimated with the artificial neural network and simulated monthly soil water 
fluxes at the depth of 105 cm. Model – MWBUS, artificial neural network input – daily 
average flux, ANN output – daily average flux, the total number of hidden neurons – 20. 
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Figure 3-42.Estimated with the artificial neural network and simulated monthly soil water 
fluxes at the depth of 105 cm. Model – MWBUS, artificial neural network input – daily 
average flux, ANN output – daily average flux, the total number of hidden neurons – 12. 
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Figure 3-43. Estimated with the artificial neural network and simulated monthly soil water 
fluxes at the depth of 105 cm. Model – HYDRUS-1D, artificial neural network input – 
daily average flux, artificial neural network output – daily average flux, the total number of 
hidden neurons – 20. 
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 Figure 3-44. Estimated with the neural network and simulated monthly soil water fluxes at 
the depth of 105 cm. Model – HYDRUS-1D, ANN input – weekly average flux, ANN 
output – weekly average flux, number of hidden neurons – 12. 
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accuracy slightly decreased, and more scatter could be seen in the 1:1 diagrams of 
simulated versus ANN fluxes (Fig. 3-44). Values of values of R2 were in the range between 
0.976 and 0.985 in this case. 
 
Overall, the feedforward neural networks demonstrated an excellent ability to mimic the 
simulations of soil water fluxes in bare soil under humid climatic conditions. 
 
3.5.7 Pedotransfer-estimated vs. laboratory-measured water retention 
 
Application of pedotransfer functions is often suggested only when measurements of 
hydraulic properties are not available or are not feasible. Field measurements of soil water 
retention were available in this case study. Additional simulations were made to estimate 
the loss of accuracy caused by supplanting PTF-estimated water retention instead of the 
measured one. 
 
The Monte Carlo simulation was performed for the HYDRUS-1D model with van 
Genuchten parameters shown in Fig. 3-12 and parameters estimated with PTF (Table 3-8). 
No correlations between parameters shown in the Table 3-5 were used at this time. The 
empirical distribution functions were sampled randomly 50 times. The median values of 
lognormal distributions of Ksat (Table 2-5) were used from loam and silt loam texture 
classes at depths ranges 0 to 65 cm and 65 to 105 cm, respectively.  
 
The comparison of the statistical distributions of the root-mean-square errors obtained in 
simulations with laboratory data and with pedotransfer functions showed that the accuracy 
of simulations with PTF was better than with laboratory data (Fig. 3-45). In terms of 
uncertainty no difference between simulation with laboratory and PTF were obtained, and 
slight less uncertainty or more narrow range of RMSE for water content simulation was 
obtained in case of layered soil profile. 
 
The Monte-Carlo simulations with the MWBUS model were performed using water 
contents at capillary pressure of 100 cm as the field capacity values. The probability 
distributions of the MWBUS model root-mean-square errors from simulations with 
laboratory data and with PTF functions showed that the accuracy of simulations with 
laboratory data was better than with PTF (Fig. 3-45). Water content simulation results were 
also less uncertain with the laboratory measured water retention than with use PTF.  
 
The probability distributions were similar for layered and homogeneous soil profile with 
PTF estimated water retention. For laboratory measured water retention more accurate but 
less uncertain results were obtained for the homogeneous than for layered soil profile. 
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Figure 3-45. Probability distribution of the root-mean square error (RMSE) of water 
content from Monte Carlo simulations for the HYDRUS-1D and the MWBUS models with 
two sources of soil hydraulic properties and two representations of soil profile.
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3.6 Summary and conclusion 
 
The case study elucidated the model abstraction efficiency in modeling water flow in 
variably saturated subsurface. The intensive monitoring per se did not warrant the adequate 
performance of the base model which was the Richards single continuum model. The need 
in model abstraction was justified by the fact that the calibrated base model predicted 
substantial runoff whereas no runoff was observed at the site during the monitoring period. 
The base model produced inexplicable results in terms of the key output. 
 
The review of modeling context helped to improve knowledge about boundary fluxes that 
have not been measured. In particular, the review of the modeling context revealed that (a) 
soil water contents across the trench demonstrated strong temporal persistence, and (b) a 
substantial preferential flow should occur in soil. The persistence was used to estimate soil 
bottom flux from water content measurements, and the preferential flow estimates were 
used to assess evaporation from soil surface.  
 
Four classes of applicable model abstraction techniques were selected. Model structure 
abstraction was achieved using the hierarchy of model, aggregation, and metamodeling. 
The hierarchy of models included the Richards single continuum medium and a simple soil 
water budget model. Aggregation was done by replacing the layered soil profile with the 
homogeneous profile. Metamodeling was done with the artificial neural network that used 
daily and weekly precipitation as input to estimate monthly cumulative soil water fluxes. 
An ensemble of 22 pedotransfer functions was used in model abstraction of parameter 
determination. HYDRUS1-D, MWBUS, and MATLAB software packages were used to 
calibrate the abstracted models and to run Monte Carlo simulations to evaluate the 
uncertainty in calibrated model outputs. 
 
The abstraction with the hierarchy of models was useful. The simple soil water budget 
model was less accurate in predictions of soil water content compared with the Richards 
model. However, unlike the more complex Richards model, this simple soil water budget 
model correctly predicted the absence of runoff and measured cumulative soil water fluxes. 
The prediction of runoff was an artifact of the Richards model calibration in absence of 
measured boundary fluxes. This abstracted model appeared to be instrumental in both 
explaining behavior of the complex model and in predicting the key output, i.e. soil water 
fluxes.  
 
The abstraction with aggregation was not useful in this case. The Richards model was less 
accurate with respect to soil water contents and continued to generate large simulated 
runoff when a homogeneous soil layer was introduced. 
 
The abstraction of parameter determination with pedotransfer functions was useful. It 
showed that the Richards model with parameters in correct ranges is able to correctly 
simulate soil water fluxes. The ensemble of pedotransfer functions represented field water 
retention better than data from laboratory soil water retention measurements. Soil water 
content predictions with the Richards model were more accurate with the ensemble of 
pedotransfer functions than with laboratory data.  
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The neural network metamodel was extremely accurate in estimating cumulative soil water 
fluxes. It was also five orders of magnitude faster than the numerical algorithm coded in 
HYDRUS-1D. However, the HYDRUS-1D runtime was adequate for the Monte Carlo 
simulations to evaluate model abstraction in the uncertainty context. 
 
In general, the model abstraction process was successful in this case study. Model 
abstraction explained the strange behavior of the complex model, and provided the correct 
description of the system behavior and plausible parameter ranges.  
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Appendix A. Pedotransfer functions to estimate soil water retention 
 
Most of equations presented below were developed from large (>200) samples databases. 
Symbols w and θ denote volumetric (cm3cm-3) and gravimetric (cm3 g-1) water contents, 
respectively, subscripts indicate the capillary pressure in cm, clay, and sand denote 
percentages of textural fractions according the USDA textural classification, OM is the 
organic matter content, %, OC is the organic carbon content, ρb is the bulk density g cm-3, 
other symbols are defined as they appear. 
 
A.1. Equations developed to estimate soil water content at fixed soil water potentials 
 
Baumer (1992) used the US National Soil Survey database to relate gravimetric water 
contents at capillary pressures of 15000 cm and 330 cm with the equations: 
w15000=0.01*ρb*(0.71+0.45*OM+0.336*clay+0.117*clay*(CA3/2)+0.004*clay*SAR) (A1) 
w330=0.01*ρb*(15.84+0.746*OM+2.2025*CA2-     (A2) 
0.137*sand+0.743*w15000)       if clay > 10% 
w330=0.01*ρb*(15.84+0.746*OM+0.02*CA2

*clay2-     (A3) 
0.137*sand+0.743*w15000)  if clay ≤ 10% 
where CA is the clay activity, SAR is the sodium adsorption ratio. 
 
Bruand et al. (1994) estimated volumetric water contents at capillary pressures of 15000 
cm and 330 cm as  
θ15000 =  (0.008+0.00367*clay)/(0.471+0.00411*clay)    (A4) 
θ330 = (0.043+0.004*clay)/(0.471+0.00411*clay)     (A5) 
 
Canarache (1993) applied regression analysis to the Romanian national database and 
obtained predictive equations:  
θ15000=0.01*ρb*(0.2805*clay+0.0009615*clay2)     (A6) 
θ330=0.01*ρb*(2.65+1.105*clay-0.01896*clay2+0.0001678*clay3+15.12*ρb-6.745*ρb

2- 
        0.1975*clay*ρb)         (A7) 
 
Gupta and Larson (1979) used a subset of the US National Cooperative Survey database 
to derive equations for estimating volumetric water contents at capillary pressures of 
15000 cm and 330 cm as  
θ330=0.003075*sand+0.005886*silt+0.008039*clay+0.002208*OM-0.1434*ρb (A8) 

θ15000=-0.000059*sand+0.001142*silt+0.005766*clay+0.00228*OM+0.02671*ρb (A9) 
 

Hall et al. (1977) analyzed a subset of British Soil Survey data and arrived to the 
equations 
θ330=0.01*(20.81+0.45*clay+0.13*silt-5.95*ρb)     (A10) 
θ15000=0.01*(1.48+0.84*clay-0.0055*clay2)      (A11) 
 
Petersen et al. (1968) worked with the Pennsylvania soil database. Their equations are: 
θ330=0.01*(11.83+0.96*clay-0.008*(clay)2)                (A12) 
θ15000=0.01*(1.74+0.76*clay –0.005(clay)2)                 (A13) 
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Rajkai and Varallyay (1992) analyzed the Hungarian national database: 
θ330=0.01*(38.62-0.00479*sand-0.0019*(sand/silt)2)                           (A14) 
θ15000=0.01*(1.39+0.36*clay +0.22*OM2)                (A15) 
We used clay content instead of unavailable fine fraction content in Eq. (A14). 
 
Tomasella and Hodnett (1998) have been working with Brazilian soils and came up with 
the equations: 
θ330=0.01*(4.046+0.426*silt+0.404*clay)                (A16) 
θ15000=0.01*(0.91+0.150*silt+0.396*clay)                 (A17) 
 
A.1.2 Equations developed to estimate Brooks-Corey parameters 
 
Rawls and Brakensiek (1989) developed the following equations to estimate the Brooks-
Corey parameters in Eq. (1) 
hb =exp[5.340+0.185*clay-2.484*φ -0.002*clay2-0.044*sandφ +0.001*sand2

*φ 2-
0.009*clay2

*φ 2 -0.00001*sand2
*clay+0.009*clay2

*sand-0.0007*sand2
*φ 

0.000005*clay2
*sand-0.500*φ 2*clay]                (A18) 

λ=exp[-0.784+0.018*sand-1.062*φ -0.00005*sand2-0.003*clay2+1.111*φ 2-0.031*sand*φ 
+0.0003*sand2

*φ 2-0.006*clay2
*φ 2-0.000002*sand2

*clay+0.008*clay2
*φ 

-0.007*φ 2*clay]                  (A19) 
θr=-0.018+0.0009*sand+0.005*clay+0.029*φ -0.0002*clay2-0.001*sand*φ - 
0.0002*clay2

*φ 2+0.0003*clay2
*φ -0.002*φ 2*clay              (A20) 

 
Campbell and Shiozava (1992) set the value of the residual water content in Eq. (1) equal 
to zero and transformed this equation to  

( ) b
sehh −= θθ /                               (A21) 

where he is “air entry potential”. The parameters in (1), estimated from two data sets for 
British soils, were found to be 

ges

ges

hb

dh

σ2.020

05.0 2/1

+−=

−= −

                  (A22) 

where the value of hes corresponds the air entry potential at a standard bulk density, ρb of 
1.3 g cm-3. The proposed adjustment for bulk density is 

( ) b
bese hh 67.03.1/ρ=                    (A23) 

The geometric mean diameter ds and geometric standard deviation are given by 
dg=exp(-0.025- 0.0363silt – 0.0688clay)                 (A24) 
σg=exp(0.133silt +0.477clay  - ln2dg)1/2 

 
Saxton et al. (1986) also set the value of the residual water content in Eq. (1) equal to 
zero and transformed this equation to  
h = Aθ B                     (A25) 
where 
A=100*exp(-4.396-0.0715*clay-0.000488*sand2-0.00004285*sand2

*clay)             (A26) 
B=-3.140-0.00222*clay2-0.00003484*sand2

*clay                (A27) 
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Oosterveldt & Chang (1980) transformed Eq. (1) with θr=0 to the form 
θ = 0.01*ρb* (35.367+0.644*clay-0.251*sand-0.045*D) *h -0.190              (A28) 
where D is the mean depth of sample in centimeters. 
 
Williams et al. (1992) transformed Eq. (1) with θr=0 to the logarithmic form 
lnθ =A+Blnh                     (A29) 
and applied it to the Australian database. Pedotransfer equations depended on the 
availability of data on basic properties. Equations  
A=2.57+0.238*ln(clay)-0.000192*sand2-0.0137*sand- 
0.0926*ln(OM)+0.0412*OM                  (A30) 
B=-0.403+0.0871*ln(clay)-0.00077*sand                (A31) 
were suggested for cases when the data on organic matter are available, and equations  
A=1.839+0.257*ln(clay)+0.381*2-0.0001*sand2               (A32) 
B=-0.303+0.093*ln(ρb)+0.0565*ln(clay)-0.00003*sand2              (A33) 
were developed or cases when no information about the organic matter content was 
available. 
 
Mayr and Jarvis (1999) set θr=0 and porosity φ equal to the saturated water θs in the 
Brooks-Corey equation, and combined this equation in the dry range of soil water 
retention curve  

i
/1                  )/( θθθθ <= − b

s ah                            (A34) 
with a parabolic equation in the wet range: 

i22

2

        
)/(

)/1(
θθ

θθ
θθθ

θθ ≥
−

−= − b
si

sis
s a

h
                  (A35) 

The water content θi and the equivalent pressure head hi at the matching point are given 
by: 

b
b s

i 21
2
+

=
θθ                      (A36) 

b

i b
bah

−

⎟
⎠
⎞

⎜
⎝
⎛
+

=
21

2                      (A37) 

Pedotransfer functions developed from a Scandinavian dataset were:  
log(a)=-4.9840297533+0.0509226283*sand+0.1575152771*silt+0.1240901644*ρb 

-0.1640033143*OC-0.0021767278*silt2+0.0000143822*silt3+0.0008040715*clay2 

+0.0044067117*OC2)                               (A38) 
log(1/b)=-0.8466880654-0.0046806123*sand+0.0092463819*silt-0.4542769707*ρb 

-0.0497915563*OC+0.0003294687*sand2 
0.000001689056*sand3+0.0011225373*OC2                                      (A39) 

θs = 0.2345971971+0.0046614221*sand+0.0088163314*silt+0.0064338641*clay-
0.3028160229*ρb  +1.79762*102

*sand2-3.134631*102
*silt2                                    (A40) 

 
A.1.3 Equations developed to estimate Brooks-Corey parameters 
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Wösten et al. (1999) analyzed the all-Europe database and derived pedotransfer functions 
to estimate van Genuchten parameters in the Eq. (2): 
θs = 0.7919 + 0.001691*clay - 0.29619*ρb - 0.000001491*silt2 + 0.0000821*OM2 + 
0.02427/clay  + 0.01113/silt + 0.01472*ln(silt) - 0.0000733*OM*clay - 0.000619*ρb*clay - 
0.001183*ρb*OM - 0.0001664*topsoil*silt                                       (A41) 
α =exp[-14.96 + 0.03135*clay + 0.0351*silt + 0.646*OM +15.29*ρb - 0.192*topsoil - 
4.671*ρb

2  - 0.000781*clay2 - 0.00687*OM2 + 0.0449/OM + 0.0663*ln(silt) + 
0.1482*ln(OM) - 0.04546*ρb *silt - 0.4852*ρb*OM +  
0.00673*topsoil*clay]                                                      (A42) 
n =1.+exp[-25.23 - 0.02195*clay + 0.0074*silt - 0.1940*OM + 45.5*ρb - 7.24*ρb

2 + 
0.0003658*clay2  + 0.002885*OM2 -12.81/*ρb - 0.1524/silt - 0.01958/OM - 0.2876*ln(silt) 
- 0.0709*ln(OM) -44.6*ln(ρb) - 0.02264*ρb*clay + 0.0896*ρb*OM +  
0.00718*topsoil*clay                                                      (A43) 
where topsoil is an ordinal variable having the value of 1 or of 0. Parameter m in Eq. (1) 
was computed as 1-1/n. 
 
These authors have also estimated average values of van Genuchten parameters by the 
FAO textural classes. Those values are shown in Table A1 and the FAO textural classes 
are delimited in Fig. A1. 
 
Vereecken et al. (1989) used the Belgian dataset to develop the following pedotransfer 
functions for van Genuchten equation with m=1:  
θs = 0.81 – 0.283*ρb + 0.001*clay                                                    (A44) 
θr = 0.015 + 0.005*clay  + 0.014*OC                                                    (A45) 
α= exp(-2.486 + 0.025*sand – 0.351*clay)                                          (A46) 
n=0.81 – 0.283*ρb + 0.001*clay                                                    (A47) 
 
 
Pachepsky et al. (1982) applied van Genuchten equation with m=1 and θr = 0 to the 
Hungarian national database and found regression equations: 
θs = 0.01*(-56.4*ρb + 0.00205*clay2 + 123.79)                                       (A48) 
n = 0.336*ρb - 0.053                                         (A49) 
α= 10-0.04701*ρb*clay + 1.513*ρb – 0.417                                           (A50) 
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Table A1. Tabulated parameters of van Genuchten equation by FAO textural classes 
(Wösten et al., 1999) 

 FAO textural 
class 

θr θs α n 

Topsoils Coarse 0.025 0.403 0.0383 1.3774 
 Medium 0.010 0.439 0.0314 1.1804 
 Medium fine 0.010 0.430 0.0083 1.2539 
 Fine 0.010 0.520 0.0367 1.1012 
 Very fine 0.010 0.614 0.0265 1.1033 

Subsoils Coarse 0.025 0.366 0.0430 1.5206 
 Medium 0.010 0.392 0.0249 1.1689 
 Medium fine 0.010 0.412 0.0082 1.2179 
 Fine 0.010 0.481 0.0198 1.0861 
 Very fine 0.010 0.538 0.0168 1.0730 
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Figure A1. Textural classification systems according to (a) USDA (Soil Survey Staff, 1951) and (b) as defined by the FAO Soil Map 
of Europe (European Soil Bureau, 1998). USDA classes: S, sand, lS, loamy sand, sL, sandy loam, scL, sandy clay loam, sC, sandy 
clay, L, loam, cL, clay loam, C, clay, siL, silt loam, sicL, silty clay loam, siC, silty clay, Si, silt; FAO classes, C, coarse, M, medium, 
MF, medium fine, F, fine, VF, very fine. 
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Appendix B. Diurnal oscillations in water content and capillary 
pressure data 

 
Inspection of time series of water content and pressure head revealed oscillatory behavior 
that apparently had diurnal periodicity. An example of such behavior is shown in Fig. B1 
for the 10-day period between day 80 and day 90 from the beginning of the experiment at 
location “10“. Both pressure head and water content (Fig. B1.a and Fig. B1.b) oscillated 
synchronously at all depths. Temperature time series at different depths had sine wave 
shape.  The amplitude decreased and a phase had been shifted with depth (Fig. B1.c). Our 
first hypothesis was that the oscillations of water contents and capillary pressures at each 
depth could be related to temperature at this depth. To test this hypothesis, capillary 
pressure and temperature time series were subjected to spectral Fourier analysis with the 
STATISTICA software (StatSoft,  1999). Values of periods were equal to 24 hour for all 
pressure head time series (Fig. B2.a), and for soil temperature time series at depth 15 cm 
and 35 cm (Fig. B2.b). However, temperature time series at depths below 35 cm did not 
have the 24-hour period. Therefore, local oscillations of temperature could not be useful 
in explaining oscillations of capillary pressure and water contents at depths larger than 35 
cm. The original hypothesis should be rejected. 
 
The second hypothesis was that the surface temperature was the factor causing 
oscillations. To test this hypothesis, the time of the daily temperature maximum at each 
depth was plotted against time (Figure B3). The time when the linear regression line 
‘Phase shift – depth” crossed the depth axis, i.e. the regression intercept, was not 
significantly different from the time at which maximum capillary pressure was reached at 
all depths. A similar result was obtained for water contents (data not shown). This means 
that the oscillations of recorded capillary pressures and soil water contents were related to 
the temperature on/near soil surface. That could be attributed to the unknown response of 
the electronic equipment on the surface to the diurnal daily oscillations. To eliminate 
temperature effect of measurement devices, daily time series of water content and 
pressure head were averaged for whole observation period.  The temporal time scale of 
observations became equal to one day. 
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 Figure B1. Time series of capillary pressures (a), water content (b) and soil temperature 
at different depths before (symbols) and after (lines) daily averaging at the location 10 
cm. 
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 Figure B2. Periodograms for capillary pressure (a) and temperature (b) time series at 
different depths. 
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Figure B3. Time of the maximum temperature (∆) and maximum pressure head at 15 cm 
(o) and at 35 cm ( ) depth at the location “10 cm”. 
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Appendix C. Using temporal persistence to estimate depth-averaged 
water contents with missing data 

 
C.1 Introduction 
 
When a field or a small watershed is repeatedly surveyed for soil water content, sites 
often can be spotted where soil is consistently wetter or consistently dryer than average 
across the study area. Existence of such sites is important for soil management. It is also 
important for selection of sites to infer the area-average soil water content to use at 
coarser scale characterization and simulation, i.e. to compare with remote sensing data or 
establishing field- or catchment-wide antecedent moisture conditions for runoff 
simulations (Grayson and Western, 1998). The phenomenon has been called time 
stability, temporal stability, or temporal persistence in spatial patterns of soil water 
content or in soil water contents. Temporal persistence of water contents at the same 
depth was documented by Vachaud et al. (1985), Kachanoski and de Jong (1988), Zhang 
and Berndtsson (1988), Goovaerts and Chiang (1993),  Reichardt et al. (1993), and 
Ferreyra et al. (2002) across areas of various extents.   
 
Relatively less is known about temporal persistence of water content at various depths. 
Comegna and Basile (1994) found a time-stable spatial structure for the water content in 
the top 90 cm of the soil profile. Cassel et al. (2000) observed greater temporal 
persistence of water content in deep soil layers than in shallow layers under a wheat crop. 
This effect could be attributed to the impact of crop root water uptake. Hupet and 
Vanclooster (2002) showed a substantial effect of vegetation on spatial and temporal 
structure in profile soil water distributions. Martinez-Fernandez and Ceballos (2003) did 
not observe any specific pattern of stability with respect to depth. 
 
Our interest to the temporal persistence in soil water content in soil profile arose from the 
fact that some of TDR probes positioned along soil transect at five depths with 50-cm 
spacing eventually began to malfunction. Averaging data from the remaining probes at a 
given depth could be an option if no persistent difference had existed between TDR-
measured water content in different locations. However such persistence clearly 
manifested itself in our dataset  (see, e.g., Fig. 24). Because of that, the malfunctioning of 
probes with consistently lower than average values would lead to averaging only data 
from the remaining probes that had water contents consistently higher than the true 
average. This averaging would lead to overestimation of the average water content at the 
depth of interest. In contrary, the malfunctioning of probes with consistently  higher than 
average values would lead to averaging only data from the remaining probes that had 
water contents consistently lower than the true average, and the average water contents 
would be underestimated. 
 
To use the collected data in model calibration and evaluation, we had to propose a 
technique to utilize this persistence to remedy the effect of probe malfunctioning on the 
estimates of the average water content in the layer. 
 
C.2 Temporal persistence in soil water contents 
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To quantify the persistence, we used an approach similar to the one proposed by Vachaud 
et al. (1985). The relative water contents βij for each sampling location i at the same 
depth for the measurement time j were computed as: 

β
θ
θij

ij

j

=            (C1) 

where θij is the water content measured in location i at the jth measurement time, and 
θ j is the average water content at the jth measurement time at the depth of interest: 

θ θj ij
i

N

N
=

=
∑1

1

          (C2) 

where N is the total number of probes at a given depth (N=12 in our case). 
 
Statistics of values β  for all probes are shown in Table C1. Of the total 60 probes, 49 
probes had the values of βij  that were larger or less than 1 in more than 95% of cases. 
This demonstrates that temporal persistence exists in soil profile, and some probes 
consistently show water contents below average whereas others show water contents 
above the average. Substantial temporal linear trends in the β   values with coefficients 
of determination R2 larger than 0.3 were detected for four probes at the 15-cm depth, and 
were absent at all other depths. 
 
To test the dependence of the temporal stability on depth, we used values of the standard 
deviations sβi of the βij values. The larger this standard deviation the less temporal 
stability is observed for the probe i. Inspection of the dependence of  sβi   on depth showed 
that there was a weak inverse relationship (data not shown). The R2 value of the linear 
regression of depth vs. of sβi  was 0.202 and differed statistically significantly from zero 
(p=0.001). 
 
C.3 Correcting the average water content for the persistence  
 
Assume that K probes of total N are working at one depth. The average water content 
over working probes at this depth for the sampling time j is 
$θ θj ij

i

K

K
=

=
∑1

1

          (C3) 

The true average water content is 

θ θ θj ij ij
i K

N

i

K

N
= +

⎛
⎝
⎜

⎞
⎠
⎟

= +=
∑∑1

11

        (C4) 

where the first term in parentheses includes data from measurements, and the second 
includes unknown values that would come from malfunctioning probes should they work. 
The idea of the technique is to replace the unknown values with their estimates. The 
estimation consists in replacing the actual value of β ij with the average value of β ij over 

the period when all probes had worked, iβ  

ijij βθθ ≈           (C5) 
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where i denotes a number of malfunctioning probe (i = K+1, K+2, .., N). Values of iβ  are 
given in Table C1. 
Substituting θ ij  from Eq. (C5) into Eq. (C4) and using Eq. (C3), one has 

⎟
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⎞
⎜
⎝

⎛
+≈ ∑

+=

N

Ki
ijjj K

N 1

ˆ1 βθθθ         (C6) 

Rearranging Eq. (C6) leads to 

∑
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The sum of iβ  values is always equal to N because ∑
∑

=

= ===
N

i j

j
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θ
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θ

θ
β  for any j. 

Therefore the denominator in the equation (C7) is equal to ∑
=

K

i
i

1
β . This leads to the 

following equation to estimate θ j by correcting jθ
)

: 

∑
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ˆ
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θ
θ           (C8) 

Only measured values are included in this equation. 
To test the correction technique based on Eq. (C8), we performed simulation 

experiments. We used all hourly measurements over the period when all 12 probes 
worked at the 15-cm depth. First, we computed values of iβ  and values θ j . The latter 
were dubbed ‘true average water contents.’ Then we randomly removed several probes 
for each sampling time and estimated the average water content using two methods: (a)  
the average water content over remaining probes assumed to be working in simulations 
(i.e.,  $θ j  according Eq. (C3) ) , and (b) the corrected value of the average water content 
according to Eq. (C8). We removed up to eight probes in the experiment I (Fig. C1a and 
C1b), up to four probes in the experiment II (Fig. C1c and C1d), and one or two probes in 
the experiment III. As expected, as less probes are removed, the average water content 
over working probes is a better estimate of the true average (Fig. C1a, C1c, and C1e). 
Correction according to Eq. (C8) consistently gave much better estimate of the true 
average θ j  than the average over working probes $θ j . The improvement with Eq. (C8) 
depended on the total number of working probes. The smaller the number of working 
probes the more efficient was the correction. 
 
When the correction with Eq. (C8) was applied to actual measured water contents during 
the whole observation period of 360 days, it made substantial changes in some of 
estimated layer-average water contents. Maximum values for the corrections of the 
average layer-average water contents were 0.016, 0.013, 0.008, 0.014 and 0.014 v/v at the 
depths of 15 cm, 35 cm, 55 cm, 75 cm, and 95 cm, respectively. Ranges of observed 
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layer-average water contents $θ j  at the same depths were 0.089, 0.062,0.037, 0.046, and 
0.040 v/v, respectively. The corrections were relatively more important at larger depths 
because of narrower ranges of observed water contents. 
 
C.4 Discussion 
 
The temporal persistence in water regimes was well-expressed at all five studied depths 
(Fig. 24 and Table C1). Texture, organic matter contents, soil structure, and the number 
of channels formed by roots, worms and other organisms were mentioned as leading 
static factors that affect spatial variations of soil water contents (Reynolds, 1970). 
Vachaud et al. (1985) related the variability of soil water contents and persistence in soil 
water content distributions to the variations in soil texture. These considerations could be 
pertinent to this work, although we do not have direct data to pinpoint the specific source 
of the persistence. In our research area, a study of water retention along a 30-m trench in 
the same soil at the adjacent site (Mallants et al., 1996) showed substantial small-scale 
variability. Data on saturated volumetric water content θs from this work are shown in 
Fig. 22. Values of θs were measured at 5-cm long and 5.1-cm diameter cores, i.e. at the 
scale comparable with the scale of TDR measurements. The variability of saturated water 
contents is comparable with variability in measured water content, indicating that the 
variations in water contents measured with TDR are realistic. We hypothesized that 
differences in soil structure can be responsible for those variations. The dependence of 
water retention on size of soil aggregates has been demonstrated in several studies, i.e. 
Wittmuss and Mazurak (1958), Tamboli et al. (1964) Amemiya (1965), Chang (1968), 
and Guber et al. (2002). Such dependence can cause differences in water contents at the 
same depth if soil matric potentials do not vary much across locations at this depth. This 
might contribute to the temporal persistence in water contents that we observed. 
 
The proposed approach relies on the temporal persistence. Alternatively, one could try to 
estimate data for the malfunctioning probes using an interpolation technique, for example 
using kriging as suggested in spatiotemporal geostatistics (Christakos, 2000). We made 
an attempt to apply it, and found unsatisfactory results for probes positioned close to the 
corners of the spatiotemporal domain. 
 
The proposed correction techniques worked reasonably well, mostly because the 
probability distribution functions of relative water contents were narrow, and the average 
relative water content was a good approximation for the whole distribution. The wider the 
distribution the less persistence is observed, and the less useful the proposed correction 
can be. Temporal trends in values of relative water contents make their distributions 
wider. Significant temporal trends were observed only for four probes at the 15-cm depth. 
This corresponds to the conclusion of Cassel et al. (2000) about higher persistence in 
deeper horizons. These authors attributed such dependence on depth to the root activity. 
Plant roots were not active in this work. The weakest time persistence at the shallowest 
observation depth in this work seemed to be more in line with results of Zhang and 
Berndtsson (1988) and Hupet and Vanclooster (2002) who had documented weaker 
temporal persistence during dry periods compared with wet ones. 
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Temporal persistence provides an opportunity to decrease the uncertainty of estimates of 
spatially averaged water contents. Indeed, if probe readings at a given depth are thought 
to be independent random values at any measurement time, the differences between those 
readings will be incorporated in the standard deviation of the average water content at 
this depth. However, in case of persistence, the individual probe readings are not 
independent. Therefore, only the variability of relative water contents has to be included 
in the estimate of the variability of the average soil water content. The variability of 
relative water contents is much smaller than variability of individual probe readings. 
Consequently, much smaller values of the standard deviation of the average water content 
should be expected. One effect of that is an improvement in accuracy of soil water 
balance computed using average soil water contents at several depths, because the 
average water contents will be less uncertain (will have smaller variability estimates) if 
temporal persistence in soil water content distributions is present and taken into account. 
Another advantage of establishing the temporal persistence in soil water content 
distributions is allowing removal some of the probes and having their measurements 
reconstructed from remaining probes. The temporal persistence means a temporal 
stability of spatial variability in soil water contents that may be useful in estimating 
uncertainty of measurements with small number of probes. Correct treatments of those 
topics are outside of the scope of this note, but they seem to be important to be explored. 
 
In summary, the temporal persistence of water content patterns in soil profiles has been 
observed at a small scale. A correction using temporal persistence has been suggested 
that can be important in estimating layer-averaged water contents and their uncertainty in 
case of temporary malfunctioning equipment.  
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Figure C1. Simulated effect of the correction for temporal persistence on the relationship 
between actual and estimated layer-average water contents at the depth 15 cm; a, b – 
from 1 to 8 probes removed, c, d – from 1 to 4 probes removed, e, f – from one to two 
probes removed; a, b, c – average water content over remaining probes before the 
correction application, d, e, f - average water content over remaining probes after the 
correction application. Values of R2 are the determination coefficients, and values of the 
RSMD are the root-mean square differences of the linear regression actual vs. estimated 
average water contents. 
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Table C1. Statistics of individual TDR probes 
 
i  1* 2* 3 4* 5* 6* 7* 8 9* 10* 11* 12* 
dnd 131 0 198 2 8 0 0 0 0 90 132 61 

iβ  0.93 1.04 1.02 0.85 1.06 0.94 1.06 0.95 0.95 1.04 1.09 1.07 
CVi, % 2.0 1.2 1.2 1.1 1.2 1.9 1.6 2.7 1.9 1.1 1.4 2.1 
             
i  13 14 15* 16* 17 18* 19* 20* 21* 22* 23* 24* 
dnd 114 0 273 0 0 0 0 0 0 93 212 61 

iβ  1.01 1.00 1.03 0.96 0.99 1.03 0.89 0.95 0.95 1.04 1.07 1.07 
CVi, % 1.1 0.9 1.3 0.8 0.7 0.7 1.1 0.8 1.1 0.6 0.6 0.8 
             
i  25* 26 27* 28* 29* 30 31 32* 33 34* 35 36* 
dnd 0 301 212 0 0 0 0 116 2 2 127 129 

iβ  0.93 0.99 0.96 0.95 1.02 1.00 1.02 1.02 1.01 1.02 1.01 1.07 
CVi, % 0.9 1.0 0.5 0.7 0.7 0.7 1.5 0.8 0.9 0.8 2.0 0.8 
             
i  37* 38 39* 40* 41* 42* 43 44* 45 46* 47* 48* 
dnd 0 284 0 0 0 0 0 166 109 0 60 178 

iβ  0.93 1.01 0.97 0.90 1.05 1.02 1.01 1.07 1.01 1.03 1.07 0.93 
CVi, % 1.3 0.6 0.6 0.6 0.6 0.6 0.8 2.4 0.6 0.6 0.8 1.2 
             
i  49* 50* 51* 52* 53 54* 55* 56* 57 58 59* 60* 
dnd 0 254 0 0 0 0 0 42 41 1 62 130 

iβ  1.03 1.05 1.02 1.02 1.00 1.05 0.84 1.02 1.01 1.00 1.02 0.96 
CVi, % 0.8 1.3 0.7 0.6 0.7 0.9 1.3 0.8 0.8 0.7 0.6 0.9 
 
 
Probe number i according Fig. 1, dnd = the total number of days with no data, iβ = mean 
ratio of the probe “i” water contents to the depth-average water contents, CVi =coefficient 
of variation of the ratios of the probe “i” water content to the depth-average water 
contents. Values iβ  CVi  were computed from hourly data. Probes marked with the 
asterisk showed water contents that were different from the depth-average water contents 
in more than 95% of cases. 
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Appendix D. Estimating matric unsaturated hydraulic conductivity in 
deep soil layers 

 
We assumed that (a) no preferential flow occurred during the drying period, (b) the 
dependence of the unsaturated hydraulic conductivity on water content could be assumed 
the same within the depth range from 65 to 85 cm, (c) the linear interpolation was 
applicable to water contents. A simple mass balance computational scheme shown in Fig. 
D1 was used.  
 
The Darcy-Buckingham law and the mass conservation equations were used to calculate 
interlayer water fluxes. Darcy equations were written for interlayer flux at depths 65 cm 
and 85 cm as 
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where q is interlayer water flux, cm day-1; Kw is unsaturated hydraulic conductivity, cm 
day-1;  h is the capillary pressure, cm,  subscripts indicate depths.  
 
The mass conservation in the soil layer 55-75 cm is: 
∆θ75⋅20 = ∆t(q65-q85),          (D2) 
where ∆θ75⋅20 is daily water storage change at 20 cm layer; ∆t is time interval equal to 1 
day.  
 
Combining equation (1) and (2), one obtains: 
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Unsaturated hydraulic conductivity values k65 and k85 are unknown variables in the 
equation (D3).  
 
We assumed the Averianov’s relationship between Kw and water content θ for depth of 
65 cm and 85 cm: 
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where Ksat is the saturated hydraulic conductivity; θs, θr are the saturated water content 
and the and residual water content, respectively; n is exponent. The residual water 
content was set at to 0.001 cm3cm-3. 
 
Coefficients k65 and k85 in equation (3) refer to interlayer water content at 65cm and 85 
cm depths, and water contents were linearly interpolated to those depths.   
 
Equation (D3) was fitted to the water storage changes at layer 65-85 cm shown in Fig. 28. 
Fitted curve described observed data adequately. The root mean square error of fitting 
was equal 0.0346 cm, whereas standard deviation of measured water storage changes was 
equal 0.0355 cm. Estimated values of parameters were Ksat = 0.024 cm⋅day-1, θs = 0.36 
cm3cm-3, and n = 14.3.  
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This function was used for calculation of water flux at the depth of 105 cm as: 
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Figure D1. Water flow scheme to estimate the matric unsaturated hydraulic conductivity. 
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Appendix E. MWBUS: one-dimensional soil water flow model 
 
The MWBUS (model of water balance of unsaturated soils) model has been developed to 
provide a simple and robust description of water flow in layered soils with the daily time step. 
The model functioning is pictured in Fig. E1. 
 
Soil is divided in layers of thickness ∆zi, i=1,2,…, M. A downward water flow from a layer “i”can 
occur if water content θi exceeds the value of water field capacity θFC,I of this layer. The value of 
flux qi from the ith soil layer is calculated as: 
qi = min(q1,q2) 
q1= qi-1 +(θi - θFC,i)∆zi/∆t          (E1) 
q2 = min(Ksat,i, Ksat,i+1) 
where qi-1 is the incoming water flux to ith  layer, Ksat,i is the saturated hydraulic conductivity of  
ith layer, ∆t is the time interval set to one day. 
 
The value of flux q0 is calculated from the rainfall rate R as: 
q0 = min(R, Ksat,1)          (E2) 
Fluxes qi, I=1,2,…,M are calculated recursively top-to-bottom. Fluxes may be corrected beginning 
from any internal layer to account for complete saturation of the layer.  
 
The layer water contents θi decrease due to evaporation and/or loss to the upward flow. The 
exponential equation describes the decrease in θ with time (Suleiman & Ritchie, 2003): 
θi= θr,i +(θi,initial - θr,i)exp(-t/ τ)        (E3) 
where τ is the resistance parameter, θr,i is the residual water content. The daily change in water 
content is 

τ
θθ

θ iri
i

,−
−=∆  

 
The value of τ increases with the depth z. Suleiman and Ritchie (2003) have found that a  
power function gives a good fit to relationships between τ and z for several soils and 
evaporation scenarios: 
τ = τ 0 + azb           (E4) 
where τ 0 is the value of resitance parameter at depth z=0, a and b are parameters of the 
evaporation model. 
 
The simulated daily evaporation rate E is: 
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The number of soil layers n subject to evaporation is adjusted to make the value of E equal  to 
the evaporation in the model input. An adjustment over those layers is made to provide the 
exact equality. 
 
The set of the MWBUS model parameters includes the saturation water contents θs,i, the field 
capacity values θFC,i,  the residual water content values θr,i,  and the saturated hydraulic 
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conductivity values Ksat,I for each layer, and the parameter of evaporation/upward loss 
submodel τ0, a, and b. 
 
 

 
Figure E1. Schematic of the modeling soil water flow with the MWBUS model; a- infiltration 
regime, a downward water flow from a layer to the layer below occurs if the layer water content 
exceeds the field capacity of this layer; b – evaporation regime; layers lose water exponentially in 
time; the characteristic time of the water loss increases with the depth. 
 

a ba b
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