
                             
                                                                                         NUREG/CR-6865
                                      SAND2004-5794P

Parametric Evaluation of
Seismic Behavior of 
Freestanding Spent Fuel
Dry Cask Storage Systems

Sandia National Laboratories

U.S. Nuclear Regulatory Commission
Office of Nuclear Regulatory Research
Washington, DC 20555-0001



                                                                                                                   
                                                                                                                            
                                                                                                
                                                                                                                    NUREG/CR-6865
                                                                                                                    SAND2004–5794P
 

Parametric Evaluation of
Seismic Behavior of
Freestanding Spent Fuel
Dry Cask Storage Systems
Manuscript Completed: December 2004
Date Published:  February 2005

Prepared by
V.K. Luk1, B.W. Spencer 1, I.P. Lam 2
R.A. Dameron 3

1Sandia National Laboratories
Operated by Sandia Corporation for the
 U.S. Department of Energy
Albuquerque, NM 87185-0744

2Earth Mechanics, Inc
Fountain Valley, CA 92706

3David Evans and Associates, Inc.
San Diego, CA 92123

S.K. Shaukat, NRC Project Manager

Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code W6829



   ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTENTIONALLY LEFT BLANK 
 

 
 



 

   iii

 

Abstract 
One of the high priority issues for the continuous operation of nuclear power plants is how to manage and 
store spent fuel.  In recent years, dry storage of spent fuel above ground has become a de facto fuel 
“repository” solution worldwide.  Arrays of dry cask storage systems have been installed at Independent 
Spent Fuel Storage Installations (ISFSI) at many nuclear power plant sites.  Most of these storage systems 
are freestanding, leading to stability concerns in terms of potential excessive sliding displacements and 
tipping over in an earthquake event.  Sandia National Laboratories has been contracted by the Office of 
Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC) to conduct a research 
project to develop a comprehensive methodology for evaluating the nonlinear seismic behavior of these 
storage systems.  The main objective of this effort is to perform parametric analyses to characterize the 
sensitivity of the cask response to a number of important input parameters, which provides a guideline to 
the range of applicability of analysis results.  The results from these parametric analyses have been 
compiled in nomograms to facilitate the safety review of licensing applications by the staff at the Office 
of the Nuclear Material Safety and Safeguards (NMSS).  This report documents the details of analysis 
models and all parametric analysis findings.  
 
In this research effort, the cask response is investigated using the finite element method with explicit time 
integration.  The ABAQUS/Explicit code is used to analyze three-dimensional coupled models consisting 
of a freestanding cask, a concrete pad, and a soil/rock foundation interacting with frictional contact at 
interfaces.  This modeling approach allows a realistic simulation of soil-structure interaction effects and 
the nonlinear cask behavior after the onset of cask rocking or rolling motion due to applied ground 
motions.  The earthquake ground motions applied to the model are derived from actual recorded ground 
motions, fitted to conform to selected spectral shapes, and adjusted using a deconvolution procedure that 
enables the ground motion to be applied at the base of the foundation model. 
 
Prior to performing parametric analyses, the coupled finite element models were developed for three site-
specific analyses including three-module rectangular Transnuclear West module/cask, and HI-STORM 
100 casks at Hatch Nuclear Power Station and at Private Fuel Storage Facility.  The lessons learned from 
the site-specific analyses help guide performing the much broader based parametric analyses.   
 
The parametric analyses involve two cask system designs:  the horizontal rectangular module with an 
aspect ration of 0.58 defined as ½ the shorter width divided by the height of the center of gravity from the 
base and the vertical cylindrical cask with an aspect ratio of 0.56 defined as ½ the base diameter divided 
by the height of the center of gravity from the base.  The seismic behavior of these cask designs was 
investigated with three different foundation types (soft soil, stiff soil, and rock) and three coefficients of 
friction (0.20, 0.55, and 0.80) at the cask/pad interface.  Three spectral shapes (Regulatory Guide 1.60, 
NUREG/CR-0098, and NUREG/CR-6728) were selected, and for each of these spectral shapes, five 
different earthquake ground motion records were chosen.  These ground motion records were linearly 
scaled to result in surface peak ground accelerations (PGA) ranging from 0.25 to 1.25 g.  A total of 1165 
analysis cases were performed in this investigation. 
 
Nomograms of median cask responses +/- one standard deviation of maximum cask top sliding 
displacements and angular rotations versus peak ground accelerations are plotted at a 5% damped 1 Hertz 
frequency (1 second period) of pseudo spectral acceleration (PSA) after compiling from the pool of 
parametric analysis results.  These nomograms may provide a meaningful and practical tool to cask 
designers and reviewers in interpreting the seismic behavior of dry cask storage systems.     
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Foreword 

The U.S. Nuclear Regulatory Commission (NRC) regulates the operation of the Nation’s 
104 nuclear power plants by establishing regulatory requirements and issuing permits and 
licenses for plant design, construction, and operation.  Many of the Nation’s existing plants have 
operated for a few decades, and the spent nuclear fuel generated by these plants must be stored in 
a manner that adequately protects the health and safety of the public and the environment.  Dry 
storage of spent fuel above ground is an accepted “repository” alternative through independent 
spent fuel storage installations (ISFSI), which the NRC licenses under Title 10, Part 72, of the 
Code of Federal Regulations (10 CFR Part 72). 
 
The Engineering Research Applications Branch in the NRC’s Office of Nuclear Regulatory 
Research contracted with Sandia National Laboratories (SNL) to investigate the seismic behavior 
of freestanding dry cask storage systems containing spent nuclear fuel.  The primary objective of 
this research is to characterize the sensitivity of cask response to an earthquake.  Toward that end, 
SNL developed analytical methods that focus on the important parameters that would affect the 
seismic behavior of dry cask storage systems.  These parameters include seismic ground motion, 
soil properties, cask design, and coefficients of friction between the cask and the concrete pad on 
which the cask is freely standing.  SNL conducted extensive analyses to determine the behavior 
of casks under a variety of conditions such as earthquakes of various intensities, and different soil 
foundations (e.g., soft soil, stiff soil, hard rock).   
 
This report provides insight into important design parameters that could affect cask stability, 
relative stability of cask geometry (shape and dimension), and the expected behavior of casks in 
terms of potential tipping and sliding under seismic conditions.  In addition, this report provides 
tools for the NRC staff to use in safety reviews of future licensing applications for dry cask 
storage systems. 
 
 
 

 
Carl J. Paperiello, Director 
Office of Nuclear Regulatory Research 
U.S. Nuclear Regulatory Commission 
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Executive Summary 

The Spent Fuel Project Office (SFPO) in the Office of the Nuclear Material Safety and Safeguards 
(NMSS) at the Nuclear Regulatory Commission (NRC) is involved in investigating technical issues 
concerning the dry storage and transportation of spent nuclear fuel.  Sandia National Laboratories (SNL) 
was contracted by the Engineering Research Applications Branch, Office of Nuclear Regulatory Research 
(RES) at the NRC for investigating the seismic behavior of dry cask storage systems (DCSS) to provide 
technical support in revising review guidelines.  The results of this research are expected to aid the NMSS 
staff in performing the safety review of licensing applications of DCSSs. 
 
Arrays of DCSSs have been installed at Independent Spent Fuel Storage Installations (ISFSI), licensed 
under 10 CFR Part 72, at many nuclear power plant sites.  Most of these storage casks are freestanding on 
a concrete pad, leading to concerns of possible tipping over and collision with neighboring casks in an 
earthquake event.  Therefore, in the safety review process of these cask systems, it is important to assess 
their dynamic response in terms of sliding displacements, rotations, and the integrity of cask internals 
under seismic loads. 
 
The main objective of the research effort is to perform parametric analyses to characterize the sensitivity 
of the cask response to a number of important input parameters including cask designs, earthquake ground 
motions, soil conditions, and coefficients of friction at the cask/pad interface.  A well-defined set of 
parametric analyses has been performed to provide results in nomograms to facilitate the safety review of 
licensing applications by the NMSS staff.  This report documents the analysis methodology, the details of 
input parameters, and all parametric analysis findings.  
 
In this project, the dynamic response of a freestanding cask system is investigated using the finite element 
method with explicit time integration.  The ABAQUS/Explicit code is used to analyze three-dimensional 
coupled models consisting of a freestanding cask, a concrete pad, and a soil/rock foundation interacting 
with nonlinear friction contacts at interfaces.  This coupled modeling approach provides a realistic 
simulation for soil-structure interaction effects and nonlinear cask responses after the cask starts to rock 
or precess due to applied ground motions.  The earthquake ground motions applied to the model are 
derived from actual recorded ground motions, fitted to conform to selected spectral shapes, and adjusted 
using a deconvolution procedure that enables the ground motion to be applied at the base of the 
foundation model. 
 
Three site-specific analyses were performed using the coupled models prior to conducting the parametric 
analyses.  These site-specific analyses include the three-module rectangular Transnuclear West 
module/cask, and HI-STORM 100 casks at Hatch Nuclear Power Station and at Private Fuel Storage 
Facility.  The lessons learned from the site-specific analyses help guide performing the much broader 
based parametric analyses.  For the parametric analyses, a horizontal rectangular module and a vertical 
cylindrical cask are the two cask designs selected for investigation.  The cask designs are characterized by 
the aspect ratio that is defined as ½ the base diameter (for a cylindrical cask) or ½ the shorter width (for a 
rectangular module) divided by the height of the center of gravity from the base.  In the parametric study, 
an aspect ratio of 0.56 was used for the cylindrical cask and 0.58 for the rectangular module.   
 
The selected ground motions are governed by three spectral shapes in NUREG/CR-0098, Regulatory 
Guide 1.60, and NUREG/CR-6728, and five different earthquake ground motion records were chosen for 
each of these spectral shapes.  The five selected earthquake records for the WUS (western United States) 
sites appropriate for the NUREG/CR-0098 and the Regulatory Guide 1.60 spectral shapes are: 
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1) 1978 Iran Tabas 
2) 1999 Taiwan Chi-Chi 
3) 1992 Landers  
4) 1994 Northridge  
5) 1979 Imperial Valley  
 

Likewise, five different earthquake records for the CEUS (central and eastern United States) sites 
appropriate for the NUREG/CR-6728 spectral shape were also selected: 
 

A) 1985 Nahanni  
B) 1988 Saguenay 
C) 1979 Imperial Valley 
D) 1989 Loma Prieta 
E) 1994 Northridge 

 
These ground motion records were linearly scaled to result in surface peak ground accelerations (PGA) 
ranging from 0.25 to 1.25 g.  Furthermore, the parametric analyses involve three different foundation 
types (soft soil, stiff soil, and rock) and three coefficients of friction (0.20, 0.55, and 0.80) at the cask/pad 
interface.  In total, 1165 analysis cases were performed in the parametric evaluation. 
 
The parametric analysis results documented the maximum sliding displacements at the cask top and the 
maximum angle of cask rotation with respect to the vertical axis.  In all cases for the two cask designs 
under investigation, the DCSS is more susceptible to rolling/rocking motions with cases of high 
coefficients of friction at the cask/pad interface, and it experiences higher sliding displacements with low 
interfacial coefficients of friction.  The horizontal rectangular module is more seismically stable than the 
vertical cylindrical cask because the geometry of the rectangular module allows only rocking and sliding, 
while the cylindrical cask can exhibit rolling about the base edge in addition to rocking and sliding.  The 
cask response can be significantly higher in this rolling mode than in the rocking and sliding mode only.   
 
The parametric analysis results are affected by the dynamic coupling between the DCSS and the 
foundation due to the soil-structure interaction.  It has been demonstrated that directly beneath the pad, 
the ground motion at the soil surface is significantly affected by the interaction of the soil with the cask 
and pad.  At points on the surface far away from the pad, the ground motions almost duplicate the 
prescribed input ground motions.  These findings indicate that a reasonable modeling procedure has been 
developed for simulating a semi-infinite foundation using a finite model with appropriate boundary 
conditions and for performing deconvolution analyses of surface-defined ground motions by preserving 
their dynamic characteristics of amplitudes and frequency contents. 
 
A large amount of scatter was observed in the analytical responses of the freestanding casks.  This scatter 
is attributed to the fact that the cask is not anchored to the pad.  The cask response is highly sensitive to 
the phasing of the cask motion with respect to the ground motion.  Because of this scatter, it is not 
advisable to base design decisions on isolated analysis results.  Instead, these decisions should be based 
on the statistics from a large number of analyses conducted under a variety of conditions.  Regression 
analysis was employed to condense the analysis results obtained in this study into a usable form.  
Nomograms in the form of equations that describe the median response, as well as equations for 84% and 
16% (median plus and minus one standard deviation, respectively) confidence bands have been developed 
from the analysis results.  These nomograms have been developed for the peak lateral cask displacement 
magnitude relative to the pad and angular rotation of the cask for the three spectral shapes and the three 
cask/pad interfacial coefficients of friction. 
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The peak ground acceleration (PGA), or zero period spectral acceleration, is used extensively in this work 
as a parameter to describe the ground motion intensity, but this parameter is only useful when associated 
with a spectral shape.  The cask response is more sensitive to the spectral content at lower frequencies 
than to the PGA.  If the design ground motion at a specific site conforms to one of the three spectral 
shapes used in this study, the nomograms developed for that spectral shape can be used directly for 
evaluation of that design.  However, it is also desirable to develop a procedure to apply these results to 
other spectral shapes.  The results from the three spectral shapes were plotted together, and regression 
analysis was performed using a number of different parameters to describe the ground motion intensity.  
These parameters included the pseudo-spectral acceleration (PSA) at a number of frequencies and the 
peak ground velocity (PGV). 
 
It was found that the PSA at 5% damped 1 Hertz (Hz) and the PGV are both reasonable parameters to 
describe the cask response, regardless of the spectral shape.  The PGV, which is not a direct function of 
the spectral shape, is influenced by the spectral accelerations across the middle of the spectrum in the 
period range likely to be important to the cask response.  The fitting of the results was slightly better with 
the 1 Hz PSA as the ground motion parameter than with the PGV.  Because of this observation and the 
fact that the 1 Hz PSA can be directly tied to the design spectrum, it is recommended that the 1 Hz PSA 
be used as a ground motion parameter if it is desired to apply these results to other spectral shapes.  In 
conclusion, nomograms in terms of 1 Hz PSA have been provided in this report in addition to those for 
specific spectral shapes.   
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Acronyms 

 
CEUS  central and eastern United States 
CG  center of gravity  
 
DCSS  dry cask storage system 
 
Hz  Hertz 
 
ISFSI  Independent Spent Fuel Storage Installation 
 
MPC  multipoint constraint 
 
NMSS  Nuclear Materials Safety and Safeguards 
NRC  Nuclear Regulatory Commission 
 
PGA  peak ground acceleration 
PGD  peak ground displacement 
PGV  peak ground velocity 
PSA  pseudo-spectral acceleration 
 
SASSI  System for Analysis of Soil-Structure Interactions 
SFPO  Spent Fuel Project Office 
 
V/H  vertical/horizontal 
 
WUS  western United States 
 
 


	Abstract
	Forward
	Table of Contents
	Executive Summary
	Acknowledgments
	Acronyms



