The fuelbed: a key element of the Fuel Characteristic Classification System¹

Cynthia L. Riccardi, Roger D. Ottmar, David V. Sandberg, Anne Andreu, Ella Elman, Karen Kopper, and Jennifer Long

Abstract: Wildland fuelbed characteristics are temporally and spatially complex and can vary widely across regions. To capture this variability, we designed the Fuel Characteristic Classification System (FCCS), a national system to create fuelbeds and classify those fuelbeds for their capacity to support fire and consume fuels. This paper describes the structure of the fuelbeds internal to FCCS. Fuelbeds are considered relatively homogeneous units on the landscape, representing distinct combustion environments that determine potential fire behaviour and effects. The FCCS fuelbeds are organized into six strata: canopy, shrubs, nonwoody fuels, woody fuels, litter–lichen–moss, and ground fuels. Fuelbeds are described by several qualitative and quantitative physical and biological variables with emphasis on characteristics useful for fuels management and fire behaviour planning. The FCCS includes 216 fuelbeds that represent the major vegetation types of the United States. The FCCS fuelbeds can be used as presented or modified to create customized fuelbeds with general or site-specific data to address fire science management or research questions. This system allows resource managers to evaluate wildland fuels operations and management activities, fire hazard, and ecological and air quality impacts at small and large spatial scales. The FCCS fuelbeds represent the United States, although the system has the potential for building fuelbeds for international application.

Résumé : Les caractéristiques des couches de combustibles en milieu naturel sont complexes dans le temps et l'espace et peuvent varier énormément d'une région à l'autre. Dans le but de saisir cette variabilité, nous avons élaboré le système de classification des caractéristiques des combustibles (SCCC), un système national pour créer et classer ces couches de combustibles selon leur capacité à supporter un feu et à consumer des combustibles. Cet article décrit la structure des couches de combustibles intrinsèques au SCCC. Les couches de combustibles sont considérées comme des unités relativement homogènes dans le paysage et représentent des milieux de combustion distincts qui déterminent les effets et le comportement potentiel du feu. Les couches de combustibles du SCCC sont organisées en six strates : canopée, arbustes, combustibles non ligneux, combustibles ligneux, litière-lichens-mousses et combustibles au sol. Les couches de combustibles sont caractérisées par plusieurs variables physiques et biologiques qualitatives et quantitatives en mettant l'accent sur les caractéristiques utiles pour la gestion des combustibles et la planification du comportement du feu. Le SCCC inclut 216 couches de combustibles qui représentent les principaux types de végétation des États-Unis. Les couches de combustibles du SCCC peuvent être utilisées telles quelles ou modifiées pour créer des couches de combustibles sur mesure à partir de données générales ou spécifiques à une station pour s'attaquer à des problèmes de recherche ou de gestion en pyrologie forestière. Ce système permet aux gestionnaires d'évaluer les activités de gestion et les interventions visant les combustibles en milieu naturel, le risque d'incendie ainsi que les impacts écologiques et sur la qualité de l'air à petite ou grande échelle. Les couches de combustibles du SCCC sont représentatives des États-Unis mais le système offre la possibilité d'élaborer des couches de combustibles pour une application internationale.

[Traduit par la Rédaction]

Introduction

Fuels are often defined as the physical characteristics (e.g., loading, depth, height, and bulk density) of live and

dead biomass that contribute to wildland fire (Davis 1959). Because these characteristics affect the character, size, intensity, and duration of a fire, identifying and quantifying fuels are important in understanding fire behaviour and ef-

Received 1 September 2006. Accepted 24 July 2007. Published on the NRC Research Press Web site at cjfr.nrc.ca on 26 December 2007.

C.L. Riccardi. USDA Forest Service, 400 N. 34th Street, Suite 201, Seattle, WA 98103, USA.
R.D. Ottmar.² Pacific Wildland Fire Sciences Laboratory, US Forest Service, Pacific Northwest Research Station, 400 N. 34th Street, Suite 201, Seattle, WA 98103-8600, USA.
D.V. Sandberg. US Forest Service, Pacific Northwest Research Station, 3200 Jefferson Way, Corvallis, OR 97331, USA.

A. Andreu. University of Washington, College of Forest Resources, Box 352100, Seattle, WA 98195-2100, USA.

E. Elman. College of Forest Resources, University of Washington, Box 352100, Seattle, WA 98103, USA.

K. Kopper. North Cascades National Park Service Complex, Marblemount, WA 98267, USA.

J. Long. USDA Forest Service, 5775 US W Highway 10, Missoula, MT 59808, USA.

¹This article is one of a selection of papers published in the Special Forum on the Fuel Characteristic Classification System. ²Corresponding author (e-mail: rottmar@fs.fed.us). fects, as well as in providing information for activities such as prescribed fire, fire suppression, and fuel treatments. Furthermore, fuelbed characteristics are important aspects to consider when assessing wildlife habitat and carbon stores.

Fuel characteristics often vary widely across regions (Ottmar et al. 2007). For instance, fuel loads can range from (1) <0.6 t·ha⁻¹ for a perennial grassland in the central part of the United States with no rotten woody material or duff (organic material that includes Oe horizon and Oa horizon), to (2) 35 t·ha⁻¹ in a woodland in California with a grass and shrub understory and a litter layer, to (3) 195 t·ha⁻¹ in a mixed conifer forest with insect and disease mortality in the US Rocky Mountains with dead and down sound and rotten woody material, snags, litter and duff, and to (4) 381 t·ha⁻¹ in a black spruce (*Picea mariana* (Mill.) BSP) forest of Alaska with a deep moss and organic forest floor layer (Ottmar and Vihnanek 1998, 1999; Ottmar et al. 1998*a*, 2007; Hardy et al. 2001).

It would be prohibitively difficult to inventory all fuelbed characteristics every time a fire behaviour or effects assessment is required (Sandberg et al. 2001; Ottmar et al. 2004). Attempts have been made during the past 30 years to develop systems to construct and classify fuelbeds for loading and other characteristics with various degrees of success. These include the original and standard fire behavior fuel models (Anderson 1982; Andrews and Chase 1989; Scott and Burgan 2005), National Fire Danger Rating System fuel models (Deeming et al. 1977), Fuel Condition Class System fuelbeds (Schaaf 1996; Ottmar et al. 1998b), First Order Fire Effects Model fuelbeds (Reinhardt et al. 1997; Reinhardt and Crookston 2003); Canadian Forest Fire Danger Rating System (Hirsch 1996); Australian Fire Danger Rating System fuel models (Cheney and Sullivan 1997; Cheney et al. 1990); Photo Series (Ottmar et al. 2004); and Fuel Load Models (Keane 2005; Rollins and Frame 2006). Many of these models were designed for specific software applications or as inputs to predict specific fire behaviour and effects. Therefore, they include the fuelbed components or characteristics required by the program or model they were designed to support. Consequently, these models do not capture all fuel components required to estimate fire behaviour and fire effects (Sandberg et al. 2001; Ottmar et al. 2007).

In this paper, we describe the structure of the FCCS fuelbeds that captures the complexity and diversity of wildland fuelbeds in the United States. The fuelbed design and classification discussed here is the basis for calculation of a common set of fuel characteristics (Riccardi et al. 2007) that are used as inputs into FCCS fire potentials and fire behaviour calculations (Sandberg et al. 2007*a*, 2007*b*; Schaaf et al. 2007) and that have a variety of applications in fire and fuels management and in ecological analysis.

FCCS fuelbeds

Definition of a fuelbed

An FCCS fuelbed is defined as the measured or averaged physical characteristics of a relatively uniform unit on the landscape that represents a distinct fire environment. (Sandberg et al. 2001, 2007*b*). The fuelbed can represent

any scale or precision of interest and can be used to manage, predict, assess, or differentiate fire behaviour and effects.

Design of FCCS fuelbeds

The FCCS fuelbeds were initially designed by scientists, researchers, land managers, and other experts who participated in a series of FCCS fuelbed workshops for the boreal (Fairbanks, Alaska), tropical (Palm Coast, Florida), subtropical, dry (Phoenix, Arizona), western temperate (Welches, Oregon), subtropical (Atlanta, Georgia), and eastern temperate (Nebraska City, Nebraska) regions of the United States. The design of the fuelbed was required to account for all categories of biomass that had the potential to consume and affect fire behaviour and effects. To do this, an FCCS fuelbed is classified into six horizontal fuelbed strata that represent unique combustion environments: canopy, shrubs, nonwoody fuels, woody fuels, litter-lichen-moss, and ground fuels (Table 1 and Fig. 1). Strata are further divided into 18 fuelbed categories and 20 fuelbed subcategories. Any one or combination of these levels may or may not be present in a fuelbed (i.e., the canopy stratum may not be present in a grassland fuelbed). Similarly, variables differ among strata and categories because of differences in vegetation form. Reported values include the mode, minimum, and maximum values. The mode is the most frequently occurring value, while the minimum and maximum are the recommended limits based on the data from which the fuelbed is built. Statistical resolution of the data was necessary because it was decided that minimum, maximum, and modal fuels data were more accessible by estimation than arithmetic mean and standard errors. Each fuelbed is given a ranking (1-5) based on how much of the data came from experience (expert opinion), published literature, or other databases: 1, based on expert opinion only; 2, based on expert opinion with <35% modal data used; 3, based on expert opinion with 35%-85% modal data; 4, based on >85% modal data, with expert opinion; and 5, indicates >85% of the data for modal, minimum, and maximum values are based on literature, photo series, or other data sources. This ranking is displayed when an FCCS fuelbed is selected and viewed.

Several variables or analogous equivalents are present among strata. Percent cover, defined as surface area by crown projection of area covered, is used to express the relative importance of a fuelbed category within a fuelbed. Height (m) is the distance from the base to the top of a fuelbed category, whereas depth (cm) is the distance from the top downward. Live foliar moisture (%) is the water content of a live fuel expressed as a percentage of its ovendry weight. Default values represent low-end moisture conditions. Density (stems \cdot ha⁻¹) is the number per unit area. Diameter (cm) and diameter at breast height (DBH; cm) represent a modal value for the stratum, category, or subcategory rather than individual elements (i.e., tree). Where appropriate, species designations are required and must be associated with a relative cover (%), the relative amount of a fixed area covered by a species or fuelbed category. Variables specific to strata, categories, or subcategories are discussed within the context of their respective arrangement. To facilitate discussion we begin with the canopy and finish with ground fuels.

Stratum	Category	Subcategory	Variables	Affected fir potentials
Canopy	Trees	Total canopy cover	Percent cover (%)	С
1.0		Overstory, midstory,	Percent cover (%)	С, А
		and understory	Height (m)	С, А
		-	Height to live crown (m)	С, А
			Live foliar moisture content (%)	C
			Density (no. ha^{-1})	
			Diameter at breast height (DBH; cm)	
			Species and relative cover (%)	С, А
	Snags	Class 1 (foliage present),	Stem density (number ha^{-1})	С, А
	Shugs	class 1 (foliage absent),	Diameter (cm)	A
		class 2 (branches and	Height (m)	C, A
		bark present), and class 3	Species and relative cover (%)	C, A C, A
		(rotten; no branches and bark)	Species and relative cover (%)	С, А
	Ladder fuels		Туре	С, А
			Minimum height (m)	С
			Maximum height (m)	С
			Vertical continuity between the canopy and lower strata (yes/no)	С
hrub	Primary layer and		Percent cover (%)	S, A
	secondary layer		Height (m)	A
			Percent live (%)	S
			Live foliar moisture content (%)	S
			Species and relative cover (%)	S, A
			Needle drape on shrubs sufficient to affect fire behaviour (ves/no)	S, A
Jonwoody fuels	Primary layer and		Percent cover (%)	S, A
	secondary layer		Height (m)	A
			Percentage live (%)	S
			Live foliar moisture content (%)	S
			Loading (Mg ha^{-1})	S, A
				S, A S, A
Woody fuels	All woody		Species and relative cover (%) Total percent cover of all downed and dead woody fuel (%)	S, A S, A
			Depth (m)	S
	Sound wood	Loadings 0-7.5 cm diameter	Loading by size-class $(Mg ha^{-1})^a$	S, A
	Sound wood	Loadings >7.5 cm diameter	Loading by size-class (Mg ha^{-1}) ^{<i>a</i>}	S, A S, A
		Loadings >7.5 cm diameter		S, A S, A
	D (1 1	I. 1 7.5	Species and relative cover $(\%)$	
	Rotten wood	Loadings >7.5 cm	Loading by size-class (Mg·ha ⁻¹)	S, A
			Species and relative cover (%)	S, A
	Stumps	Sound	Density (no.·ha ⁻¹)	А
		Rotten	Diameter (cm)	А
		Lightered-pitchy	Height (m)	А
			Species and relative cover (%)	А
	Woody fuel accumulations	Piles	Width (m)	А
		Jackpots	Length (m)	А
		Windrows	Height (m)	А
			Density (no.·ha ⁻¹)	А
litter-lichen-moss	Litter		Arrangement (fluffy, perched, or freshly fallen) Type ^{b}	S, A S, A
			For overall litter	,
			Depth (cm)	S, A
			Percent cover (%)	S, A S, A
				э, л
			For each litter type	S, A
	Lisher		Relative cover (%)	
	Lichen		Depth (cm)	S, A
	M		Percent cover (%)	S, A
	Moss		Type (spaghnum or other moss)	S, A
			Depth (cm)	А
	Duff	Percent rotten wood	Percent cover (%) Percent rotten (%)	S, A
Ground fuels		Upper duff layer	Type ^c	А
		Crrei duit iujei	-Jr~	2 B
stound rueis		Lower duff layer	Depth (cm)	А

 Table 1 (concluded).

Stratum	Category	Subcategory	Variables	Affected fire potentials
			Percent rotten wood total duff (%)	S, A
	Squirrel middens		Depth (cm)	А
	-		Radius (m)	А
			Density (no.·ha ⁻¹)	А
	Basal accumulations		Type ^d	А
			Depth (cm)	А
			Radius (m)	А
			Percent affected (%)	

Note: S, surface fire behaviour potential; C, crown fire behaviour potential; and A, available fuel potential. "Sound wood size-classes: 0–0.6 cm, 0.7–2.5 cm, 2.6–7.5–cm, 7.6–22.9 cm, 23.0–50.8 cm, and >50.8 cm. Rotten wood size-classes: 7.6–22.9 cm, 23.0– 50.8 cm, and >50.8 cm.

Short needle pine, long needle pine, other conifer, deciduous hardwood, evergreen hardwood, palm frond, and grass.

"Upper duff types: dead litter and moss. Lower duff types: humus or muck and humic peat.

^dBark slough, branches, broadleaf deciduous, broadleaf evergreen, grass, needle litter, and palm fronds.

Canopy

The canopy stratum is the somewhat continuous coverage of branches and foliage formed collectively by crowns of adjacent trees and includes three categories: (1) trees, (2) snags, and (3) ladder fuels (Table 1 and Figs. 1 and 2). The tree category includes total canopy cover, overstory, midstory, and understory trees (Oliver and Larson 1996). Total canopy cover is the crown projection percent cover of all trees. The overstory includes the emergent, dominant and codominant trees. The understory includes seedlings, saplings, and other small trees. The midstory, if present, includes those trees below the overstory and above the understory. All trees are considered live and are generally taller than 1.37 m (exceptions are seedlings in the understory). Percent cover, height, and DBH represent values for the over-, mid-, and under-stories rather than individual trees. Height to live crown (m) is from the ground to the bottom of the live canopy. Live foliar moisture content mode, minimum, and maximum are 100%, 70%, and 300%, respectively. Density is the number of trees per unit area. Species and relative cover are included if the subcategory is present (Table 1).

Snags are standing dead trees taller than 1.37 m and include four subcategories: (1) class 1 with foliage, (2) class 1 without foliage, (3) class 2, and (4) class 3 (Maser et al. 1979). Class 1 snags have bark, branches, and tops intact, and are further distinguished by the presence or absence of foliage. Class 2 snags have shed fine branches, but retain coarse branches, and class 3 snags have extensive heartwood decay and no longer have bark or branches. Density, diameter, and height represent values for the subcategory. Species and relative cover are included if the subcategory is present (Table 1).

Ladder fuels provide vertical continuity between the surface and crown fuels. Minimum and maximum height from the ground is included for one of eight ladder fuel types (Table 1). Affirmation of pronounced vertical continuity between the surface and crown fuels provided by the ladder fuel is a choice within the system.

Shrubs and nonwoody fuels

Shrubs and nonwoody fuels may have two categories: (1) primary and (2) secondary. Shrubs are woody perennial plants that differ from trees owing to their low stature and multiple basal stems. The nonwoody fuels stratum includes herbaceous vegetation (i.e., forbs, grasses, rushes, and sedges). Percent cover and height represent values for this category. Percent live is the biomass that is alive in the category, not the percentage of individuals that are alive. Species and relative cover are included if the category is present (Table 1).

A few differences between the strata should be noted. The modes, minimums, and maximums of live foliar moisture content for shrubs and nonwoody fuels are 120%, 70%, and 300% and 75%, 70%, and 300%, respectively. Division of species into primary and secondary categories is optional. Distinction may occur because of pronounced differences in height, life form, species composition, or other defining attribute. Results from the tropical and subtropical regional workshops identified accumulated fallen needles on shrubs as an important fuel consideration. Therefore, needle drape is part of the shrub stratum and, if needle drape is sufficient to contribute to fire behaviour, it is indicated by a check mark in the shrub stratum. Loading is the mass per unit area (Mg·ha⁻¹), is in only the nonwoody stratum, and includes the biomass of the nonwoody fuels. Suggestions from all the workshops indicated few users would have shrub loading values, consequently, the value is calculated by using allometric equations and displayed in the reports (Riccardi et al. 2007).

Woody fuels

The woody fuels stratum includes continuous and discontinuous, downed and dead woody fuel. It is divided into five categories: (1) all downed and dead woody, (2) sound wood, (3) rotten wood, (4) stumps, and (5) woody fuel accumulations. Sound and rotten wood are considered continuous fuels whereas stumps and woody fuel accumulations are discontinuous fuels.

The all woody category describes the depth and percent cover of continuous downed and dead sound and rotten fuels (Table 1). Stumps and woody fuel accumulations are not included in this category. It is important to note that depth represents the value of continuous sound and rotten downed fuels across the entire fuelbed unit and not just at smallscale locations where the fuel is present. Percent cover is linear coverage because the measurement of intercept length (intercept distance) is used to estimate cover.

Fig. 1. The Fuel Characteristic Classification System (FCCS) is separated into six fuel categories including canopy, shrubs, nonwoody, woody, litter–lichen–moss, and ground fuels.

Canopy

Nonwoody

Litter, lichen, and moss

Sound and rotten fuels data are analogous data, and thus, are combined here, but are distinct categories and are treated as such in FCCS. Loading (Mg·ha⁻¹) is reported by size-classes that correspond to timelag fuel classes most commonly used in fire behaviour modeling (Fosberg 1977). Species and relative cover are included for fuels >7.6 cm diameter (Table 1).

The stump category is divided into three subcategories:

Shrub

Woody

Ground

(1) sound, (2) rotten, and (3) lightered pitchy stumps. The latter are stumps with resin-soaked heartwood and were identified in the tropical and subtropical regional workshops as important fuel. Density is the number of stumps per unit area. Diameter and height are data for the subcategory, not for individuals. Species and relative cover are included if the subcategory is present (Table 1).

The woody fuel accumulation category contains three

Fig. 2. Example of several Fuel Characteristic Classification System (FCCS) fuelbed categories including snags, ladder fuels, stumps, piles, squirrel middens, and basal accumulation.

Snags

Stumps

Squirrel middens

subcategories: (1) jackpots, (2) piles, and (3) windrows. Jackpots are natural accumulations of woody debris, whereas piles and windrows result from management activity. Variables are width (m), length (m), height (m), and density in each subcategory (Table 1).

Litter-lichen-moss

The litter-lichen-moss stratum has three categories. Litter

Ladder fuels

Basal accumulation

is the top layer of the forest or rangeland floor and is composed of loose debris of dead sticks, branches, twigs, dead grass, and recently fallen leaves or needles, minimally altered by decomposition. It is analogous to the Oi soil horizon. Depth and percent cover of the category are augmented by the designation of a litter arrangement (Table 1). Analogous to the inclusion of species and relative cover in other strata, litter type and relative cover are in-

Criterion	Source	Required
Ecoregion	Bailey (1989)	Yes
Vegetation form	Grossman et al. (1998)	Yes
Structural class	Adapted from Oliver and Larson (1996)	No
Cover types	Eyre (1980) and Shiflet (1994)	No
Change agents		No
Natural fire regimes	www.frcc.gov	No
Fire regime condition class (FRCC)	www.frcc.gov	No

Table 2. Selection classification criteria for the Fuel Characteristic Classification System (FCCS) fuelbeds.

Table 3. Change agents of the Fuel Characteristic Classification System (FCCS) fuelbeds.

Category	Change agent
Change over time	Fire exclusion
-	Introduction of exotic species
Fuel treatments	Chipping
	Lop and scatter
	Mastication
	Pile and burn
Land use change	Ditching-draining
	Paving
Natural event	Avalanche
	Windthrow
	Flood
	Ice storm
	Insects and disease
	Landslide
No change	None
Prescribed fire	Prescribed fire
Unknown	Unknown
Vegetation treatment or harvest-thinning	Clearcut
e	Grazing
	Logging methods – equipment damage
	Pruning
	Salvage logging
	Selection cut (thin large diameter)
	Stump wooding
	Thinning (thin from below)
	Turpentining
	Residual fertilizer
	Restoration work
Wildfire	Wildfire
	Wildfire (crown)
	Wildfire (ground)

cluded, and any combination of the eight litter types (Table 1) is possible.

Lichen and moss categories include the ground lichen occurring on rocks, bare ground, or low vegetation, and the low-growing moss (bryophytes) usually occurring in moist habitats, respectively. Both categories include depth and percent cover data, with the only distinction being in the moss category containing a choice between two moss types (sphagnum moss or other moss) (Table 1).

Ground fuels

The last stratum includes duff, squirrel middens, and

basal accumulations. Duff is the partially to fully decomposed organic material between litter and mineral soil and is analogous to the Oe and Oa soil horizons. Three subcategories of data describe the duff: (1) percent cover of rotten wood in all duff layers, and depth and percent cover of the (2) upper (fermentation) and (3) lower (humic) subcategories (Table 1).

The squirrel middens category was identified at the boreal and dry region workshops as important when considering fire behavior and effects in those regions. Squirrel middens are mounds of cone scales and other cone debris accumulated over time from squirrels exacting seeds. The mounds are composed of organic matter that can burn for extended periods of time. Data include radius (m), depth, and density (Table 1).

Basal accumulations include needles, twigs, bark pieces, litter, and duff that accumulate at the base of trees. Depth, radius (m), and the percent of trees affected (%) by accumulations are defined for one of seven types of accumulations (Table 1).

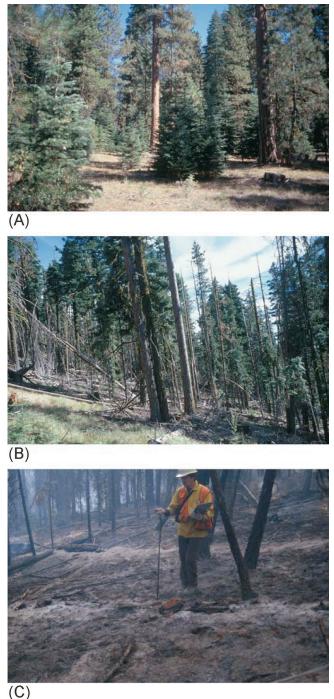
Development of FCCS fuelbeds

Experts at the six regional workshops created detailed quantitative and qualitative descriptions of fuelbeds in their regions. These data were verified and augmented with data taken from published, peer-reviewed literature, government databases (USDA Forest Service 2004), and other publications (e.g., US Forest Service research papers, general technical reports, research notes, stereo photo series for quantifying natural fuels, and photo series for quantifying forest residues), and unpublished data. A total of 216 FCCS fuelbeds³ have been developed and placed into FCCS. They represent the major vegetation types of the United States. These fuelbeds have a general or site-specific focus, usually based on the data from which the fuelbed was built. General fuelbeds tend to represent a fuelbed type across its geographic and elevation range. These fuelbeds are designed to represent the broadest vegetation composition and structure of a unit. These data were taken from as wide a geographic range as possible. Site-specific fuelbeds tend to be based on a single site, unit, or geographic area. These data are often taken from only one source such as the photo series or a specific study.

Organization and naming convention of FCCS fuelbeds

Fuelbeds are organized by seven qualitative criteria: (1) ecoregion, (2) vegetation form, (3) structural class, (4) cover type, (5) change agent, (6) natural fire regime, and (7) fire

regime condition class (Table 2). These criteria enable a user to refine their search for a fuelbed. The criteria are adapted from published (often vegetation) classification systems (Eyre 1980; Bailey 1989; Shiflet 1994; Oliver and Larson 1996), with the exception of change agents. Change agents were determined from FCCS regional workshops and include disturbances that would affect a fuelbed such as natural disturbances (e.g., insects and disease and wildfire) silvicultural and management activities (e.g., thinning and prescribed fire), and human impacts (e.g., paving) (Table 3). As fuelbeds are created for fuels impacted by change agents, the fuelbeds become unavoidably more site specific because fewer data are available for replicate treatments or disturbances. Each fuelbed contains a site description that includes additional pertinent information, (e.g., major species described in the fuelbed, geographic distribution, elevation, details of the change agent, relative age of vegetation, and management or disturbance history, including time since disturbance or management activity).


The fuelbed file naming convention contains an assigned number, the name of the most prevalent species, and an associated change agent. Fuelbeds were assigned a number between 0 and 999 as they were built. In certain cases, fuelbeds were later deleted or combined resulting in a nonsequential list of fuelbed numbers.⁴ The change agent is designated by a parenthesis in the file name.

Customizing fuelbeds

Each FCCS fuelbed can be modified so that fuels data are customized for a particular management or research objective. Using FCCS, fuelbeds may be created from photo series, fuel inventories, or other fuels data sources. The protocol for naming fuelbeds is that species occurring in the same stratum are separated by a hyphen (–), and those occurring in different strata are separated by a slash (/).⁵ Species occurring in the uppermost strata are listed first, followed successively by those in lower strata. The order of species name generally reflects decreasing levels of dominance, constancy, or indicator value. Herbaceous species are included if diagnostic. The vegetation form is at the end of the name.

Discussion

The FCCS provides a comprehensive approach to describing a fuelbed that is useful across the entire scope of fire science and management and has implications for use in many other disciplines such as wildlife and carbon accounting. The FCCS is organized around the fuelbed. The fuelbed is defined as measured or averaged physical characteristics of a relatively uniform unit on the landscape that represents a distinct fire environment and is designed to account for nearly all fuels that have a potential to consume. The FCCS offers a set of FCCS fuelbeds that are designed to be modified, if necessary, to create customized fuelbeds unique to a particular area of interest or research question. These fuelbeds have been mapped across the contiguous United States at a 1 km scale and are currently being used by the US En**Fig. 3.** The Fuel Characteristic Classification System (FCCS) fuelbed can be customized to represent (A) a unit that has not been treated, (B) a unit thinned from below with fuels untreated, and (C) a unit thinned from below with fuels treated with fire.

vironmental Protection Agency to calculate and track emissions produced from wildland fire (McKenzie et al. 2007).

The FCCS provides several advantages with respect to advancing research in fuels science and management. Each variable discussed (Table 1) may be modified to (1) capture variability in fuels and (2) to create customized fuelbed(s)

⁴Appendix A, Table A1.

⁵ Appendix A, Table A1.

Table 4. (*a*) Fuelbed inputs and calculated outputs and (*b*) Fuel Characteristic Classification System (FCCS) fire potentials (index values) for example fuelbeds.

Strata	Category	Input variable		Fuelbed (natural)	Fuelbed (thinned from below)	Fuelbed (thinned from below and burned)
Canopy	Overstory	Percent cover (%)		20.0	15.0	15.0
15		Height (m)		35.1	24.4	24.4
		Height to live cro	wn (m)	10.7	3.0	3.0
		Density (trees ha-1		10.0	8.0	8.0
		Diameter at breast	height (DBH; cm)	68.6	63.5	63.5
	Midstory	Percent cover (%)		40.0	5.0	5.0
	-	Height (m)		22.9	19.8	19.8
		Height to live cro	wn (m)	9.1	3.0	3.0
		Density (trees ha-1)	36.0	4.0	4.0
		Diameter at breast	height (DBH; cm)	38.1	30.5	30.5
	Snags	Decay class 2 (tre	es·ha ^{−1})	12.0	4.0	4.0
		Decay class 3 (tre	es·ha ^{−1})	16.0	4.0	4.0
Woody		All woody depth (cm)		10.2	15.2	2.5
		Woody cover (%)		81.0	95.0	20.0
		$0.0-0.6 (t \cdot ha^{-1})$		1.1	2.2	0.9
		0.6-2.5 (t·ha ⁻¹)		3.6	6.7	1.8
		2.5-7.6 (t·ha ⁻¹)		7.4	12.6	0.4
		7.6-22.9 (t·ha ⁻¹)		9.7	13.5	2.5
		22.9-51.0 (t·ha-1)		20.0	26.9	0.4
		>51.0 (t·ha ⁻¹)		7.6	9.0	1.1
Litter-lichen-mo	SS	Litter (cm)		1.0	1.5	0.3
Ground		Upper duff (cm)		2.5	2.3	0.3
		Lower duff (cm)		2.5	2.3	0.3
(b) FCCS fire po	tentials (index va	llues).				
		Index values				
Potential type		Fuelbed (natural) Fuelbed (thinned from b		om below)	Fuelbed (thinned	from below and burned
FCCS fire potential		379	839		134	
Surface fire behaviour potential		3	8		1	
Crown fire behav		7	3		3	
Available fuel potential		9	9		4	

particular to a stand, unit, forest, state, region, or any other scale of choice. This design can be used to capture complexity and variability of fuels across time and space. For example, modification of height, percent cover, and density of trees (overstory, midstory, or understory) can be used to represent the effects of a thinning operation on fuels. Changes to the values of the percentage live and live foliar moisture in either the shrubs or nonwoody fuels can be used to represent a temporal change of season (i.e., growing versus dormant). Many possibilities exist because every variable is changeable. Extensive, detailed data within, and produced by, FCCS can be used for fuels operation and management activities, fire science, ecological analysis, and atmospheric science.

The FCCS fuelbeds are the basis for two components of FCCS, namely the calculation of physical characteristics and properties, (Riccardi et al. 2007) and FCCS fire potentials (Sandberg et al. 2007*a*; Schaaf et al. 2007). Calculation of physical characteristics (Riccardi et al. 2007) uses FCCS fuelbeds to provide inputs necessary to run current fuel consumption and emission production models. In addition, FCCS provides fuels data that can be used to enhance the

state of fire modeling to include missing fuel categories such as flash fuels, large wood debris, and litter. The comprehensive, dynamic, and flexible design of FCCS fuelbeds provides an opportunity and data for comparisons with the use of mathematical models (Rothermel 1972, 1991; Van Wagner 1977) and the packaging of these models into computer simulations (Andrews 1986; Andrews and Chase 1989; Finney 1998; Beukema et al. 1999). Furthermore, many of the fuelbed characteristics can be used in other models or systems such as the First Order Fire Effects Model (Reinhardt et al. 1997) and BlueSky (Pouliot et al. 2005).

Exactly how can a user take advantage of FCCS and its fuelbeds? As one would expect, there are a limitless number of possible fuelbeds throughout the United States with distinctly different fuelbed strata, categories, and subcategories. These fuelbed categorical differences can be critical in determining potential surface and crown fire behaviour, fuel available for consumption, and tallying total carbon stores. Furthermore, the differences will dictate potential fire effects such as smoke production and tree mortality, and demonstrate the effectiveness of fuel treatment. Consider a 200 ha Douglas-fir (*Pseudotsuga menziesii* (Mirb.) Franco

var. *menziesii*) and ponderosa pine (*Pinus ponderosa* Dougl. ex P. & C. Laws.) forest near several summer homes that is 200 years old and has been protected from fire for the past 100 years (Fig. 3). How can FCCS fuelbeds be used to outline an effective fuels treatment plan for the area? First, assume this stand will be thinned with no initial fuel treatment and later burned with a prescribed fire (Fig. 3). Table 4adisplays a partial list of the fuelbed strata, categories, and subcategories created to represent each stand based on inventoried data. Table 4b provides an FCCS fire potential for surface fire behaviour, crown fire behaviour, and available fuel for each stage of treatment (Riccardi et al. 2007; Sandberg et al. 2007*a*).

The surface fire behaviour potential increases from 3 to 8 after thinning because the remaining fuels were not treated. Crown fire potential decreases from 7 to 3 because the removal of the midstory left a large gap between the overstory crown and the remaining midstory trees. This lowered the potential of the surface flames reaching the crowns. The available fuel increased slightly with the addition of the fuels from the thinning. On the other hand, the surface fire potential decreased from 8 to 1, and available fuel potential decreased from 9 to 4 after the prescribed fire, as the surface woody fuels, litter, and duff were removed. Crown fire potential remained the same because the trees were not affected by the prescribed fire. This example shows how the FCCS fuelbed design enables a user to account for all fuelbed components by more accurately accounting for the critical fuelbed characteristics affecting fire behaviour, fire effects, and allowing improved assessment of fuel treatment effectiveness.

Because the fuelbed accounts for nearly all combustible biomass, FCCS can also be used to survey total carbon and provide the fuel input into models that estimate carbon flux into the atmosphere from wildland fires. This is important to improve our regional and global estimation of carbon emissions. For example, in 2002, the Biscuit wildfire burned over 200000 ha of forested lands in southwestern Oregon. By using methods outlined in McKenzie et al. (2007), FCCS fuelbeds were assigned to the Biscuit wildfire landscape based on remotely sensed vegetation attributes. The fuel loading for all fuelbed strata, categories, and subcategories for each fuelbed assignment was tallied and divided by 50% (standard approximation of carbon content for pools of biomass). Total carbon for the area was calculated to be 13.3 Tg. Resulting fuel loadings were then input into Consume 3.0 (Anderson et al. 2006) using fuel moisture and other environmental conditions reported at the Biscuit fire. Total carbon emitted from the fire was estimated at about 5.1 Tg.

The fuelbed design used in FCCS is robust and allows users to capture all biomass that has the potential to consume. In addition, several hundred new fuelbeds are being constructed and reviewed for specific forest-scale projects in the United States, Canada, and Mexico. As new fuelbeds are added to the system, an improved naming nomenclature may be developed. Several fuelbed input requirements, such as litter arrangement and ladder fuel type, will need improved field quantification to better differentiate between these fuelbed subcategories within the system. In addition, pictures are worth a thousand words and the FCCS will eventually accommodate photographs that represent the internal or customized fuelbeds. Finally, work is underway to adapt the fuelbeds and FCCS to metric and for worldwide application.

Acknowledgements

The authors thank the Joint Fire Science Program, National Fire Plan, US Forest Service Pacific Northwest Region, and the Pacific Northwest Research Station for financial support. We greatly appreciate all of the past and present members of the Fire and Environmental Research Applications (FERA) team for their contributions to FCCS. We especially thank Paul Campbell, Paige Eagle, Rabi Lahiri, and Susan J. Prichard. Comments by Matthew Dickinson, Mark Finney, Mike Hilbruner, Ruddy Mell, Elizabeth Reinhardt, and Jon Regelbrugge greatly improved the manuscript. We also thank Ellen Eberhardt for her assistance in editing and formatting the manuscript. This paper is dedicated to the memory of Geoffrey H. Cushon.

References

- Anderson, H.E. 1982. Aids to determining fuel models for estimating fire behavior. USDA For. Serv. Gen. Tech. Rep. GTR-INT-122.
- Anderson, G., Ottmar, R., and Prichard, S. 2006. Consume 3.0. [software]. Dated 10.22.2006a [online]. USDA, Forest Service, Pacific Northwest Research Station, Portland, Ore. Available from www.fs.fed.us/pnw/fera/research/smoke/consume/index. shtml [4 June 2007].
- Andrews, P.L. 1986. BEHAVE: fire behavior prediction and fuel modeling system—BURN subsystem. Part 1. USDA For. Serv. Gen. Tech. Rep. INT-194.
- Andrews, P.L., and Chase, C.H. 1989. BEHAVE: fire behavior prediction and fuel modeling system—BURN subsystem. Part 2. USDA For. Serv. Gen. Tech. Rep. INT-260.
- Bailey, R.G. 1989. Explanatory supplement to ecoregions map of the continents. Environ. Conserv. 16: 307–309.
- Beukema, S.J., Reinhardt, E.D., Kurz, W.A., and Crookston, N.L. 1999. An overview of the Fire and Fuels Extension of the Forest Vegetation Simulator [online]. Available from jfsp.nifc.gov/ conferenceproc/Mo-10Beukema.pdf [accessed 7 June 2006]. p. 6.
- Cheney, N.P., Wilson, A.A.G., and McCaw, L. 1990. Development of an Australian fire danger rating system. RIRDC Project No. CSF-35A Rep.
- Cheney, P., and Sullivan, A. 1997. Grassfires: fuel, weather and fire behavior. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Collingwood, Australia.
- Davis, K.P. 1959. Forest fire: control and use. McGraw-Hill, New York.
- Deeming, J.E., Burgan, R.E., and Cohen, J.D. 1977. The national firedanger rating system. USDA For. Serv. Gen. Tech. Rep. INT-39.
- Eyre, F.H. 1980. Forest cover types of the United States and Canada. Society of American Foresters, Washington, D.C.
- Finney, M.A. 1998. FARSITE: Fire Area Simulator Model development and evaluation. USDA For. Serv. Res. Pap. RMRS-RP-4.
- Fosberg, M.A. 1977. Forecasting the 10-hour timelag fuel moisture. USDA For. Serv. Res. Paper RM-187.
- Grossman, D.H., Faber-Langendoen, D., Weakley, A.S., Anderson, M., Bourgeron, P., Crawford, R., Goodin, K., Landaal, S., Metzler, K., Patterson, K.D., Pyne, M., Reid, M., and Sneddon, L. 1998. International classification of ecological communities: terrestrial vegetation of the United States. Vol. 1. The National Vegetation Classification System: development, status, and applications. The Nature Conservancy, Arlington, Virginia.
- Hardy, C.C., Ottmar, R.D., Peterson, J.L., Core, J.E., and Seamon,

P. (*Editors*). 2001. Smoke management guide for prescribed and wildland fire 2001 edition. National Wildfire Coordinating Group, Fire Use Working Team, Boise, Idaho.

- Hirsch, K.J. 1996. Canadian forest fire behavior prediction (FBP) system: user's guide. Natural Resources Canada, Canadian Forest Service Resource, Northern Forestry Centre Special Report 7. Edmonton, Alberta.
- Keane, R. 2005. Fuel loading models. USDA Forest Service, Rocky Mountain Research Station, Fire Lab, Missoula, Mont. Available from www.landfire.gov/Products_12.html [accessed 24 April 2006].
- Maser, C., Anderson, R.G., Cromack, K.J., Williams, J.T., and Martin, R.E. 1979. Dead and down woody material. *In* Wildlife habitat in managed forests of the Blue Mountains of Oregon and Washington. Wildlife Management Institute and US Department of Interior, Bureau of Land Management, Washington, D.C. pp. 78–95.
- McKenzie, D.M., Andreu, A.G., Norheim, R.A., Bayard, A.R., Kopper, K.E., and Elman, E. 2007. Mapping fuels at multiple scales: landscape application of the Fuel Characteristic Classification System. Can. J. For. Res. **37**. This issue.
- Oliver, C.D., and Larson, B.C. 1996. Forest stand dynamics. John Wiley & Sons, Inc., New York.
- Ottmar, R.D., and Vihnanek, R.E. 1998. Stereo photo series for quantifying natural fuels. Vol. II. Black spruce and white spruce types in Alaska. PMS 831. National Wildfire Coordinating Group. National Interagency Fire Center, Boise, Idaho.
- Ottmar, R.D., and Vihnanek, R.E. 1999. Stereo photo series for quantifying natural fuels. Vol. V. Midwest red and white pine, northern tallgrass prairie, and mixed oak types in the Central and Lake States. PMS 834. National Wildfire Coordinating Group, National Interagency Fire Center, Boise, Idaho.
- Ottmar, R.D., Vihnanek, R.E., and Wright, C.S. 1998a. Stereo photo series for quantifying natural fuels. Vol. I. mixed-conifer with mortality, western juniper, sagebrush, and grassland types in the interior Pacific Northwest. PMS 830. National Wildfire Coordinating Group, National Interagency Fire Center, Boise, Idaho.
- Ottmar, R.D., Alvarado, E., and Hessburg, P.F. 1998b. Linking recent historical and current forest vegetation patterns to smoke and crown fires in the interior Columbia River basin. *In* Proceedings 13th Fire and Forest Meteorology Conference, 27–31 October 1996, Lorne, Australia. pp. 523–533.
- Ottmar, R.D., Sandberg, D.V., Riccardi, C.L., and Prichard, S.J. 2007. An overview of the Fuel Characteristic Classification System (FCCS)—Quantifying, classifying, and creating fuelbeds for resource planning Can. J. For. Res. **37**. This issue.
- Ottmar, R.D., Vihnanek, R.E., Wright, C.S., and Olson, D.L. 2004. Stereo photo series for quantifying natural fuels. Vol. VII. Oregon white oak, California deciduous oak, and mixed-conifer with shrub types in the Western United States. PMS 839. National Wildland Coordinating Group. National Interagency Fire Center, Boise, Idaho.
- Pouliot, G., Pierce, T., Benjey, W., O'Neill, S.M., and Ferguson, S.A. 2005. Wildfire emission modeling: integrating BlueSky and SMOKE [online]. Available from www.epa.gov/ttn/chief/ conference/ei14/session12/pouliot.pdf [accessed 24 April 2006].

- Reinhardt, E.D., and Crookston, N.L. 2003. The fire and fuels extension to the forest vegetation simulator. USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-116.
- Reinhardt, E.D., Keane, R.E., and Brown, J.K. 1997. First order fire effects model: FOFEM 4.0. User's guide. USDA For. Serv. Gen. Tech. Rep. INT-GTR-344.
- Riccardi, C.L., Prichard, S.J., Sandberg, D.V., and Ottmar, R.D. 2007. Quantifying physical characteristics of wildland fuels using the Fuel Characteristic Classification System. Can. J. For. Res. 37. This issue.
- Rollins, M.G., and Frame, C.K. (*Technical editors*). 2006. The LANDFIRE Prototype Project: nationally consistent and locally relevant geospatial data for wildland fire management. USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-175.
- Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. USDA For. Serv. Res. Pap. INT-115.
- Rothermel, R.C. 1991. Predicting behavior and size of crown fires in the Northern Rocky Mountains. USDA For. Serv. Res. Pap. INT-438.
- Sandberg, D.V., Ottmar, R.D., and Cushon, G.H. 2001. Characterizing fuels in the 21st century. Int. J. Wildland Fire, 10: 381–387. doi:10.1071/WF01036.
- Sandberg, D.V., Riccardi, C.L., and Schaaf, M.D. 2007a. Fire potential rating for wildland fuelbeds using the Fuel Characteristic Classification System. Can. J. For. Res. 37. This issue.
- Sandberg, D.V., Riccardi, C.L., and Schaaf, M.D. 2007b. Reformulation of Rothermel's wildland fire behaviour model for heterogeneous fuelbeds. Can. J. For. Res. 37. This issue.
- Schaaf, M.D. 1996. Development of the fire emissions tradeoff model (FETM) and application to the Grande Ronde River Basin, Oregon. CH₂M Hill Contract Report 52-82FT-03-2. CH₂M Hill Co., Portland, Ore.
- Schaaf, M.D., Sandberg, D.V., and Riccardi, C.L. 2007. A conceptual model of crown fire potential based on the reformulated Rothermel wildland fire behaviour model. Can. J. For. Res. **37**. This issue.
- Scott, J.H., and Burgan, R.E. 2005. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model. USDA For. Serv. Gen. Tech. Rep. RMRS-GTR-153.
- Shiflet, T.N. 1994. Rangeland cover types of the United States. Society for Range Management, Denver, Colo.
- USDA Forest Service. 2004. National Forest Inventory and Analysis Database [online]. Available from ncrs2.fs.fed.us/4801/fiadb/ index.htm.
- Van Wagner, C.E. 1977. Conditions for the start and spread of crown fire. Can. J. For. Res. 7: 23–34.

Appendix A

Appendix starts on the following page.

Fuelbed identification No.	Fuelbed name	Change agent
Alaska		
85	Black spruce/lichen forest	None
86	Black spruce/feather moss forest	None
87	Black spruce/feather moss forest	None
88	Black spruce/sphagnum moss forest	None
89	Black spruce/sheathed cottongrass woodland	None
91	White spruce/prickly rose forest	None
92	Aspen – paper birch – white spruce – black spruce forest	None
93	Paper birch – trembling aspen forest	None
94	Balsam poplar – trembling aspen forest	None
95 97	Willow – alder shrubland	None
	Cottongrass grassland	None
98 99	Marsh Labrador tea-lingonberry tundra shrubland Bluejoint reedgrass grassland	None None
100	Altai fescue grassland	None
101	White spruce forest	None
101	White spruce forest	Insects and disease
102	White spruce – paper birch forest	None
104	White spruce – paper birch forest	Insects and disease
105	Paper birch – trembling aspen – white spruce forest	None
Hawaii		
71	Ohia/Florida hopbush–kupaoa forest	None
72	Ohia/uluhe forest	None
73	Koa/pukiawe forest	None
74	Mamani – naio savanna	None
75	Slash pine / New Caledonia pine forest	Introduction of exotic species
76	Slash pine/molassesgrass forest	Introduction of exotic species
77	Eucalyptus plantation forest	Introduction of exotic species
78 79	Florida hopbush–Mauna Loa beggarticks shrubland Pili grass–broomsedge bluestem grassland	None Grazing, introduction of exotic species
80	Fountain grass grassland	Introduction of exotic species
81	Columbia bluestem / pukiawe grassland	Introduction of exotic species
82	White leadtree / guineagrass shrubland	Introduction of exotic species
83	Molassesgrass grassland	Introduction of exotic species
84	Ohia/broomsedge bluestem savanna	Introduction of exotic species
260	Ohia/uluhe forest	Wildfire
261	Pili grass-broomsedge bluestem grassland	Wildfire
262	Molassesgrass grassland	Wildfire
263	Ohia/broomsedge bluestem savanna	Wildfire
Northeast		
106	Red spruce – balsam fir forest	Insects and disease
107	Pitch pine/scrub oak forest	Fire exclusion; none
109	Eastern white pine – northern red oak – red maple forest	Fire exclusion; none
110	American beech – yellow birch – sugar maple forest	Selection cut
124	Pitch pine – oak forest	None
125 138	Oak – hickory – pine – eastern hemlock forest Red pine – white pine forest	None Fire exclusion
138	Jack pine/black spruce forest	Fire exclusion
140	Trembling aspen – paper birch forest	None
142	Jack pine forest	None
147	Jack pine savanna	None
148	Jack pine forest	Wildfire
152	Red pine – white pine forest	Windthrow
152	Red spruce – balsam fir forest	None
243	Pitch pine/scrub oak shrubland	Wildfire

Table A1 (continued).

Fuelbed identification No.	Fuelbed name	Change agent
267	American beech-yellow birch-sugar maple-red spruce forest	None
274	American beech – sugar maple forest	None
279	Black spruce – northern white-cedar – larch forest	None
287	Eastern white pine-eastern hemlock forest	None
Pacific Northwest		
l	Black cottonwood-Douglas-fir-quaking aspen riparian forest	None
2	Western hemlock-western redcedar-Douglas-fir forest	None
3	Douglas-fir forest	Thinning
ŀ	Douglas-fir / Ceanothus forest	Prescribed fire; clearcut
5	Douglas-fir – white fir forest	Fire exclusion
)	Oregon white oak – Douglas-fir forest	Selection cut
1	Douglas-fir-sugar pine-tanoak forest	Fire exclusion
8	Western hemlock-Douglas-fir-western redcedar/vine maple forest	None
)	Douglas-fir-western hemlock-western redcedar/vine maple forest	Clearcut
0	Western hemlock – Douglas-fir – Sitka spruce forest	None
.1	Douglas-fir/western hemlock-Sitka spruce forest	Clearcut
.3	Mountain hemlock-Pacific silver fir forest	Wildfire
8	Douglas-fir/oceanspray forest	Prescribed fire
24	Pacific ponderosa pine – Douglas-fir forest	Fire exclusion; grazing
88	Douglas-fir – madrone / tanoak forest	Fire exclusion
39	Sugar pine – Douglas-fir – oak forest	None
-1	Fescue – wheatgrass grassland	Fire exclusion; grazing
52	Douglas-fir – Pacific ponderosa pine / oceanspray forest	Fire exclusion
3	Pacific ponderosa pine forest	Fire exclusion; insects and disease
54	Douglas-fir – white fir – interior ponderosa pine forest	Fire exclusion
52	Vaccinium – heather shrublands	Wildfire
53	Showy sedge – alpine black sedge grassland	None
208	Grand fir – Douglas-fir forest	Fire exclusion
212	Pacific ponderosa pine forest	Selection cut
215	Douglas-fir – madrone / tanoak forest	Wildfire
221	Wheatgrass – ryegrass grassland	Prescribed fire; restoration work
235	Idaho fescue – bluebunch wheatgrass grassland	Wildfire
237	Vaccinium – heather shrublands	None
238	Pacific silver fir – mountain hemlock forest	None
239	Douglas-fir – sugar pine – tanoak forest	Wildfire
	nd central United States	
21	Lodgepole pine forest	Wildfire
22	Lodgepole pine forest	None
23	Lodgepole pine forest	Insects and disease
26	Interior ponderosa pine – limber pine forest	Fire exclusion
28	Ponderosa pine savanna	None; wildfire
42 56	Trembling aspen/Engelmann spruce forest Sagebrush shrubland	Fire exclusion Fire exclusion; grazing; introduction exotic species
57	Wheatgrass – cheatgrass grassland	Grazing; introduction of exotic specie
58	Western juniper/sagebrush savanna	Prescribed fire
9	Subalpine fir – Engelmann spruce – Douglas-fir – lodgepole pine forest	None
50	Sagebrush shrubland	Prescribed fire
51	Whitebark pine / subalpine fir forest	Insects and disease
6	Bluebunch wheatgrass – bluegrass grassland	None
67	Interior ponderosa pine – Douglas-fir forest	Fire exclusion
59	Western juniper / sagebrush – bitterbrush shrubland	Fire exclusion
70	Subalpine fir – lodgepole pine – whitebark pine – Engelmann spruce forest	Fire exclusion
0	White oak – northern red oak forest	None
43	Trembling aspen – paper birch – white spruce – balsam fir forest	None
154	Bur oak savanna	Fire exclusion

Table A1 (continued).

_

Fuelbed identification No.	Fuelbed name	Change agent
210	Pinyon-juniper woodland	Fire exclusion; grazing
213	Wheatgrass - cheatgrass grassland	Introduction of exotic species; prescribed fire
224	Trembling aspen forest	Fire exclusion
225	Trembling aspen forest	Prescribed fire
228	Interior ponderosa pine – limber pine forest	Prescribed fire
265	Balsam fir-white spruce-mixed hardwoods forest	None
266	Sugar maple – basswood forest	None
268	American beech – yellow birch – sugar maple – eastern hemlock forest	None
284	Green ash – American elm – silver maple – cottonwood forest	Insects and disease; none
286	Interior ponderosa pine – limber pine forest	Fire exclusion
Sierra Nevada		
12	Red fir-mountain hemlock-lodgepole pine-white pine forest	None
4	Black oak woodland	None
15	Jeffrey pine-red fir-white fir/greenleaf manzanita-snowbrush forest	Fire exclusion; selection cut
.6	Jeffrey pine – ponderosa pine – Douglas-fir – black oak forest	Fire exclusion
.7	Red fir forest	Fire exclusion
9	White fir – giant sequoia – sugar pine forest	Fire exclusion
20	Western juniper/mountain mahogany woodland	Fire exclusion
36	Live oak – blue oak woodland	Fire exclusion; grazing
57	Ponderosa pine – Jeffrey pine forest	Fire exclusion; grazing
4	Scrub oak – chaparral shrubland	None
16	Chamise chaparral shrubland	None
17	Redwood – tanoak forest	Fire exclusion
18	Douglas-fir – tanoak – madrone – California bay forest	None
51	Coastal sage shrubland	None
55	Purple tussockgrass – California oatgrass grassland	
214	Giant sequoia – white fir – sugar pine forest	Fire exclusion; grazing Prescribed fire
Southeast	Grant sequora – write in – sugar price forest	Tresended me
114	Virginia pine-pitch pine-shortleaf pine forest	Fire exclusion
114	Rhododendron – blueberry – mountain laurel shrubland	None
120	Oak – pine / mountain laurel forest	Fire exclusion
120		
	Oak – pine / mountain laurel forest	Insects and disease
23	White oak – northern red oak – black oak – hickory forest	Fire exclusion
29	Green ash – American elm forest	Insects and disease
31	Bluestem – indiangrass – switchgrass grassland	Prescribed fire
.33	Tall fescue – foxtail – purple bluestem grassland	Introduction of exotic species
34	White oak – northern red oak – hickory forest	Clearcut
.35	Eastern redcedar – oak/bluestem savanna	None
.56	Slash pine plantation forest	Thinning
57	Loblolly pine – shortleaf pine – mixed hardwoods forest	None
58	Loblolly pine-shortleaf pine-mixed hardwoods forest	Insects and disease
161	Loblolly pine-slash pine forest	None
162	Loblolly pine-slash pine forest	Thinning
64	Sand pine forest	None
65	Longleaf pine/three-awned grass-pitcher plant savanna	Prescribed fire
66	Longleaf pine/three-awned grass-pitcher plant savanna	Fire exclusion
68	Little gallberry-fetterbush shrubland	None
70	Pond pine/little gallberry-Fetterbush shrubland	None
73	Live oak/sea oats savanna	None
174	Live oak-sabal palm forest	None
75	Smooth cordgrass – black needlerush grassland	None
76	Smooth cordgrass – black needlerush grassland	Introduction of exotic species
178	Loblolly pine – shortleaf pine forest	Clearcut
80	Red maple $-$ oak $-$ hickory $-$ sweetgum forest	Selection cut
	the maple out metory sweetBull lorest	Selection out

Table A1 (continued).

Fuelbed identification No.	Fuelbed name	Change agent
182	Longleaf pine-slash pine/saw palmetto-gallberry forest	Fire exclusion
183	Loblolly pine – shortleaf pine forest	Thinning
184	Longleaf pine/turkey oak forest	Fire exclusion
185	Longleaf pine/turkey oak forest	Prescribed fire
186	Turkey oak – bluejack oak forest	Fire exclusion
187	Longleaf pine/yaupon forest	Thinning
188	Sand pine – oak forest	None
189	Sand pine – oak forest	Insects and disease
190	Slash pine - longleaf pine / gallberry forest	Fire exclusion
191	Longleaf pine-slash pine/gallberry forest	Prescribed fire
196	Loblolly pine/bluestem forest	Clearcut
203	Sawgrass-Muhlenbergia grassland	None
240	Saw palmetto/three-awned grass shrubland	Fire exclusion; clearcut
241	Longleaf pine – loblolly pine forest	Windthrow
242	Longleaf pine-loblolly pine forest	Prescribed fire
264	Post oak-blackjack oak forest	Fire exclusion, grazing
269	Sugar maple – yellow poplar – American beech – oak forest	None
270	Red spruce – Fraser fir/rhododendron forest	Insects and disease; windthrow
272	Red mangrove – black mangrove forest	None
275	Chestnut oak – white oak – red oak forest	Fire exclusion
276	Oak – pine – magnolia forest	Fire exclusion
280	Bluestem – gulf cordgrass grassland	Fire exclusion
281	Shortleaf pine – post oak – black oak forest	Fire exclusion
282	Loblolly pine forest	None
283	Willow oak – laurel oak – water oak forest	None
288	Bald-cypress – water tupelo forest	None
289	Pond-cypress/Muhlenbergia – Sawgrass savanna	None
291	Longleaf pine – slash pine / saw palmetto forest	Fire exclusion
Southwest		
25	Pinyon – juniper forest	Fire exclusion; grazing
27	Ponderosa pine-two-needle pinyon-Utah juniper forest	Fire exclusion
29	Interior ponderosa pine-Engelmann spruce-Douglas-fir forest	Selection cut
30	Turbinella oak-mountain mahogany shrubland	None
32	Ponderosa pine/pinyon pine-juniper forest	Fire exclusion; grazing
33	Gambel oak/sagebrush shrubland	Wildfire
34	Interior Douglas-fir-interior ponderosa pine/Gambel oak forest	Fire exclusion
40	Tobosa – Grama grassland	Grazing; introduction of exotic specie
43	Arizona white oak – gray oak – Emory oak woodland	Fire exclusion; grazing
45	Pine-oak forest	Fire exclusion; grazing
49	Creosote bush shrubland	Fire exclusion; grazing
55	Western juniper/sagebrush savanna	Fire exclusion
211	Interior ponderosa pine forest	Fire exclusion
216	Gambel oak – bigtooth maple forest	Fire exclusion
217	Gambel oak-bigtooth maple forest	Prescribed fire
218	Gambel oak/sagebrush shrubland	Fire exclusion
219	Ponderosa pine – white fir / trembling aspen forest	Fire exclusion
220	Ponderosa pine – white fir / trembling aspen forest	Prescribed fire
222	Interior ponderosa pine forest	Prescribed fire
223	Douglas-fir – white fir – interior ponderosa pine forest	Wildfire
226	White fir – Gambel oak forest	Fire exclusion
227	White fir forest	Prescribed fire
	Ponderosa pine/juniper forest	Prescribed fire
229		Prescribed fire
	Pinvon – juniper forest	
230	Pinyon – juniper forest Gambel oak – juniper – ponderosa pine forest	
229 230 231 232	Pinyon – juniper forest Gambel oak – juniper – ponderosa pine forest Mesquite savanna	Fire exclusion; grazing Fire exclusion; grazing

Table A1 (concluded).

Fuelbed identification No.	Fuelbed name	Change agent
234	Sagebrush shrubland	Prescribed fire
236	Tobosa–Grama grassland	None
273	Engelmann spruce-Douglas-fir-white fir-interior ponderosa pine forest	Fire exclusion

Note: Fuelbeds are not sequential and there are some gaps.

Table A2. Common and scientific names of species used to name fuelbeds in the Fuel Characteristic Classification System.

Common name	Scientific Name
Alderleaf mountain mahogany	Cercocarpus montanus Raf.
Black alpinesedge	Carex nigricans C.A. Mey.
Altai fescue	Festuca altaica Trin.
American beech	Fagus grandifolia Ehrh.
American elm	Ulmus americana L.
Arizona white oak	Quercus arizonica Sarg.
Aspen	Populus
Bald-cypress	Taxodium distichum (L.) L. Rich.
Balsam fir	Abies balsamea (L.) Mill.
Balsam poplar	Populus balsamifera L.
Basswood	Tilia americana L.
Big sagebrush	Artemisia tridentata Nutt.
Bigtooth maple	Acer grandidentatum Nutt.
Antelope bitterbrush	Purshia tridentata (Pursh) DC.
Black cottonwood	Populus balsamifera ssp. trichocarpa (Torr. & Gray ex Hook.) Brayshaw
Black mangrove	Avicennia germinans (L.) L.
Black needlerush	Juncus roemerianus Scheele
Black oak	Quercus velutina Lam.
Black spruce	Picea mariana (Mill.) BSP
Blackjack oak	Quercus marilandica (L.) Muenchh.
Blue oak	Quercus douglasii Hook. & Arn.
Blueberry	Vaccinium L. spp.
Bluebunch wheatgrass	Pseudoroegneria spicata (Pursh) Á. Löve
Kentucky bluegrass	Poa pratensis L.
Bluejack oak	Quercus incana Bartr.
Bluejoint reedgrass	Calamagrostis canadensis (Michx.) Beauv.
Big bluestem	Andropogon gerardii Vitman
Broomsedge bluestem	Andropogon virginicus L.
Bur oak	Quercus macrocarpa Michx.
California bay	Umbellularia californica (Hook. & Arn.) Nutt.
California black oak	Quercus kelloggii Newberry
California live oak	Quercus agrifolia Née
California oatgrass	Danthonia californica Boland.
Ceanothus	Ceanothus L.
Chamise	Adenostoma fasciculatum Hook. & Arn.
Cheatgrass	Bromus tectorum L.
Chestnut oak	Quercus prinus L.
Coastal sage	Artemisia californica Less.
Colombian bluestem	Schizachyrium condensatum (Kunth) Nees
Cottongrass	Eriophorum vaginatum L.
Eastern cottonwood	Populus deltoides Bartr. ex Marsh.
Creosote bush	Larrea tridentata (Sessé & Moc. ex DC.) Cov.
Curl-leaf mountain mahogany	Cercocarpus ledifolius Nutt.
Douglas-fir	Pseudotsuga menziesii (Mirb) Franco var. menziesii
Eastern hemlock	Tsuga canadensis (L.) Carrière
Eastern redcedar	Juniperus virginiana L.
Eastern white pine	Pinus strobus L.

Common name	Scientific Name
Emory oak	Quercus emoryi Torr.
Engelmann spruce	Picea engelmannii Parry ex Engelm.
Eucalyptus	Eucalyptus spp. L'Hér.
Feather moss	Hylocomium splendens (Hedw.) Schimp. in B.S.G.
Fetterbush	Lyonia lucida (Lam.) K. Koch
Florida hopbush	Dodonaea viscosa (L.) Jacq.
Crimson Fountain grass	Pennisetum setaceum (Forssk.) Chiov.
Foxtail	Setaria Beauv. spp.
Fraser fir	Abies fraseri (Pursh) Poir.
Gallberry	<i>Ilex glabra</i> (L.) Gray
Gambel oak	Quercus gambelii Nutt.
Giant sequoia	Sequoiadendron giganteum (Lindl.) Buchh.
Grama	Bouteloua Lag. spp.
Grand fir	Abies grandis (Dougl. ex D. Don)
Gray oak	Quercus grisea Liebm.
Green ash	Fraxinus pennsylvanica Marsh.
Greenleaf manzanita	Arctostaphylos patula Greene
Guineagrass	Urochloa maxima (Jacq.) R, Webster
Gulf cordgrass	Spartina spartinae (Trin.) Merr. ex A.S. Hitchc.
Heather	Cassiope mertensiana (Bong.) G. Don
Hickory	Carya Nutt. spp.
Idaho fescue	Festuca idahoensis Elmer
Indiangrass	Sorghastrum nutans (L.) Nash
Interior Douglas-fir	Pseudotsuga menziesii var. glauca (Beissn.) Franco
Interior ponderosa pine	Pinus ponderosa Dougl. ex P. & C. Laws.
Jack pine	Pinus banksiana Lamb.
Jeffrey pine	Pinus jeffreyi Grev. & Balf.
Koa	Acacia koa Gray
Kupaoa	Dubautia ciliolata (DC.) Keck
Larch	Larix laricina (Du Roi) K. Koch
Laurel oak	Quercus laurifolia Michx.
Lichen	Cladonia spp.
Limber pine	Pinus flexilis James
Lingonberry	Vaccinium vitis-idaea L.
Live oak	Quercus virginiana P. Mill.
Loblolly pine	Pinus taeda L.
Lodgepole pine	Pinus contorta Dougl. ex Loud. var latifolia Engelm.
Longleaf pine	Pinus palustris P. Mill.
Pacific madrone	Arbutus menziesii Pursh
Southern magnolia	Magnolia grandiflora L.
Mamani	Sophora chrysophylla (Salisb.) Seem.
Marsh Labrador tea	Ledum palustre ssp. decumbens (Ait.) Hultén
Mauna Loa beggarticks	Bidens menziesii (Gray) Sherff
Honey mesquite	Prosopis glandulosa Torr.
Mixed hardwoods	Various species
Molassesgrass	Melinis minutiflora Beauv.
Mountain alder	Alnus viridis ssp. crispa (Ait.) Turrill
Mountain hemlock	Tsuga mertensiana (Bong.) Carrière
Mountain laurel	Kalmia latifolia L.
Muhlenbergia	Muhlenbergia filipes M.A. Curtis
Naio	Myoporum sandwicense (A. DC.) Gray
New Caledonia pine	Araucaria columnaris (Forster) Hook.
Northern red oak	Quercus rubra L.
Northern white-cedar	Thuja occidentalis L.
Oak	Quercus L. spp.
Oceanspray	Holodiscus discolor (Pursh) Maxim.
Ohia	Metrosideros polymorpha Gaud.

Table A2 (continued).	
-----------------------	--

01	-1	H.
24	1	

Common name	Scientific Name
Oregon white oak	Quercus garryana Dougl. ex Hook.
Pacific ponderosa pine	Pinus ponderosa P. & C. Laws. var. ponderosa
Pacific silver fir	Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes
Paper birch	Betula papyrifera Marsh.
Pili grass	Heteropogon contortus (L.) Beauv. ex Roemer & J.A. Schultes
Pine	Pinus L. spp.
Pinyon	Pinus edulis Engelm.
Pinyon pine	Pinus edulis Engelm.
Pitch pine	Pinus rigida Mill.
Pitcherplant	Sarracenia L. spp.
Pond pine	Pinus serotina Michx.
Pond-cypress	Taxodium ascendens Brongn.
Ponderosa pine	Pinus ponderosa Dougl. ex P. & C. Laws.
Post oak	Quercus stellata Wangenh.
Prickly rose	Rosa acicularis Lindl.
Pukiawe	Styphelia tameiameiae (Cham. & Schlecht.) F. Muell.
Purple bluestem	Andropogon glaucopsis Ell.
Purple tussockgrass	Nassella pulchra (A.S. Hitchc.) Barkworth
Quaking aspen Red fir	Populus tremuloides Michx.
	Abies magnifica A. Murr. Rhizophora mangle L.
Red mangrove	Acer rubrum L.
Red maple Red pine	<i>Acer rubrum</i> L. <i>Pinus resinosa</i> Ait.
Red spruce	Picea rubens Sarg.
Redwood	Sequoia sempervirens (Lamb. ex D. Don) Endl.
Rhododendron	Rhododendron L. spp.
Rocky Mountain juniper	Juniperus scopulorum Sarg.
Ryegrass	Leymus cinereus (Scribn. & Merr.) ex Á. Löve
Sabal palm	Sabal palmetto (Walt.) Lodd. ex J.A. & J.H. Schultes
Sagebrush	Artemisia L. spp.
Sand pine	Pinus clausa (Chapman ex Engelm.) Vasey ex Sarg.
Saw palmetto	Serenoa repens (Bartr.) Small
Sawgrass	Cladium mariscus ssp. jamaicense (Crantz) K kenth.
Scrub oak	Quercus berberidifolia Liebm.
Scrub oaks	Quercus L. spp.
Sea oats	Uniola paniculata L.
Shortleaf pine	Pinus echinata P. Mill.
Showy sedge	Carex spectabilis Dewey
Silver maple	Acer saccharinum L.
Sitka spruce	Picea sitchensis (Bong.) Carriére
Slash pine	Pinus elliottii Engelm.
Smooth cordgrass	Spartina alterniflora Loisel.
Snowbrush	Ceanothus velutinus Dougl. ex Hook.
Sphagnum moss	Sphagnum L. spp.
Subalpine fir	Abies lasiocarpa (Hook.) Nutt. Acer saccharum Marsh.
Sugar maple Sugar pine	Acer saccharum Marsh. Pinus lambertiana Dougl.
	-
Sweetgum Switchgrass	Liquidambar styraciflua L. Panicum virgatum L.
Tall fescue	Lolium arundinaceum (Schreb.) S.J. Darbyshire
Tanoak	Lithocarpus densiflorus (Hook. & Arn.) Rehd.
Three-awned grass	Aristida L. spp.
Tobosa	Hilaria mutica (Buckl.) Benth.
Trembling aspen	Populus tremuloides
Turbinella oak	Quercus turbinella Greene
Turkey oak	Quercus laevis Walt.
Two-needle pinyon	Pinus edulis
* •	

Common name	Scientific Name
Uluhe	Dicranopteris emarginata (T. Moore) W.J. Robins.
Utah juniper	Juniperus osteosperma (Torr.) Little
Vaccinium	Vaccinium L. spp.
Vine maple	Acer circinatum Pursh
Virginia pine	Pinus virginiana P. Mill.
Water oak	Quercus nigra L.
Water tupelo	Nyssa aquatica L.
Western hemlock	Tsuga heterophylla (Raf.) Sarg.
Western juniper	Juniperus occidentalis Sarg.
Western redcedar	Thuja plicata Donn ex D. Don
Western white pine	Pinus monticola Dougl. ex D. Don
Wheatgrass	Pseudoroegneria spicata (Pursh) Á. Löve
White fir	Abies concolor (Gord. & Glend.)
White leadtree	Leucaena leucocephala (Lam.) de Wit
White oak	Quercus alba L.
White spruce	Picea glauca (Moench) Voss
Whitebark pine	Pinus albicaulis Engelm.
Willow	Salix L. spp.
Willow oak	Quercus phellos L.
Yaupon	Ilex vomitoria Ait.
Yellow birch	Betula alleghaniensis Britt.
Yellow poplar	Liriodendron tulipifera L.

Table A2 (concluded).