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ABSTRACT

An advanced automatic differentiation tool for Fortran 90 software has been developed at
Oak Ridge National Laboratory. This tool, called GRESS 90, has a code-coupling feature to
propagate derivatives relative to the input of one code through a series of codes that utilize the
results of one calculation as the input in the next to determine a final result. GRESS 90 has been
applied to the resonance self-shielding codes in SCALE to produce the sensitivities of resonance
self-shielded neutron cross sections relative to the data input to the calculation for use in the
TSUNAMI sensitivity and uncertainty analysis sequences.
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1. INTRODUCTION

The Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI)
computational sequences within the SCALE [1] code package utilize first-order eigenvalue
perturbation theory to predict the response of a system keff value to changes in each constituent
group-wise cross-section-data value. A unique capability of the TSUNAMI sequences is the
calculation of the sensitivities of the problem-dependent multigroup resonance self-shielded
cross sections due to input parameters to the resonance self-shielding calculation and the
propagation of these cross-section sensitivities to the final keff sensitivities. With the release of
the SCALE ENDF/B-VI cross-section-data library in SCALE 5.1, new codes for the calculation
of problem-dependent resonance self-shielded cross sections and their derivatives have been
developed. The GRESS 90 automatic differentiation system with code coupling was developed
and implemented in these codes to produce the required sensitivity coefficients.

2. PERTURBATION THEORY WITH IMPLICIT COMPONENT

The TSUNAMI sequences of SCALE compute the sensitivity of keff to each group-wise, nuclide-
reaction specific cross-section data component using adjoint-based first-order linear perturbation
theory. One may show that the relative change in k due to a small perturbation in a macroscopic
cross section,  , of the transport operator at some point in phase space 


r can be expressed as [2]
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where  = neutron flux,
† = adjoint neutron flux,
k = keff, the largest of the eigenvalues,
A = operator that represents all of the transport equation except for the fission

term,
B = operator that represents the fission term of the transport equation,
 = problem-dependent resonance self-shielded macroscopic cross sections,



 = phase space vector, and

indicates integration over space, direction, and energy variables.

It is important to note that, in standard perturbation theory, the sensitivities of keff are produced
relative to the cross sections after the problem-dependent resonance self-shielding calculations
have been performed. This is the so-call “explicit” effect [3]. Another first-order sensitivity
introduced in thermal and intermediate spectra systems is the “implicit” effect of perturbations in
material number densities or nuclear data upon the resonance self-shielded cross sections
themselves. For example, a perturbation of the 1H density in a low-enriched uranium system will
affect the resonance escape probability in 238U. Thus, the sensitivity of keff to 1H depends not
only on the explicit effect of the 1H on the operators in Eq. (1) but also on the implicit effect of
1H on the self-shielded 238U cross sections.

The implicit portion of the sensitivity coefficient, the sensitivity of the group-wise data to the
input quantities, is defined as [4]
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where  i is some input quantity. The  i term could represent the number density of a particular
material, a certain nuclear data component, or a physical dimension of a system. If  i is a
certain cross-section data component for process y of nuclide j in energy group h expressed as
y,h

j , which is sensitive to perturbations in process x in energy group g for nuclide i expressed as
x,g

i , the complete sensitivity of keff due to the explicit and implicit contributions of x,g

i can be
defined using the chain rule for derivatives as
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3. CENTRM AND PMC

Within the SCALE code system, CENTRM and PMC are used in tandem to produce problem-
dependent resonance self-shielded multigroup cross sections. CENTRM computes continuous-
energy neutron spectra in zero- or one-dimensional systems by solving the Boltzmann Transport
Equation using a combination of pointwise and multigroup nuclear data. PMC generates
problem-dependent multigroup resonance self-shielded cross sections from an existing AMPX
multigroup cross-section library, a pointwise nuclear data library, and a pointwise neutron flux
file produced by CENTRM. The continuous-energy solution of CENTRM can accurately model
systems with multiple fuel types, overlapping resonances, and Reich-Moore resonance
representations. These codes, and the ancillary data formatting code WORKER, were released
with SCALE 5.0.

To properly implement the implicit sensitivity theory into the SCALE 5.1 code package, it was
necessary to obtain the sensitivity of the resonance self-shielded cross sections generated from
PMC to data input to the CENTRM calculation. The methodology chosen to perform these tasks
was to produce an advanced automatic differentiation tool with a code-coupling feature such that
the sensitivities generated in the CENTRM calculation could be properly reflected in the PMC
results.

4. GRESS BACKGROUND INFORMATION

Because programmed equations can be differentiated analytically, sensitivities can be precisely
defined and calculated using automatic differentiation [5–9]. Furthermore, when computational
simulations are implemented as a sequence of computer codes, the automatic differentiation
approach can be extended to enable the calculation of sensitivities for the entire sequence.

In the 1980s, the Gradient Enhanced Software System (GRESS) [5,6] was developed at
Oak Ridge National Laboratory to automate the implementation of sensitivity analysis methods
into existing Fortran 77 programs. More recently, GRESS was upgraded to allow processing of
some Fortran 90 features. The new version of GRESS is named GRESS 90.

An automated code-coupling methodology implemented in GRESS 90 extends the automatic
differentiation approach to couple a sequence of computer programs. The code-coupling
procedure involves writing derivatives calculated in one code to a transfer file, along with
information identifying parameters of interest for sensitivity calculations. The next code in the
sequence reads the transfer file and initializes derivative information needed to calculate
derivatives and sensitivities with respect to parameters identified in the first code.

5. GRESS 90 FORWARD CHAINING OPTION

In a Fortran program, calculated left-hand-side variables are a function of previously defined
left-hand-side variables and data, with assignments made either through mathematical operations
or read statements. This relationship can be expressed as
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y  f y , (4)

where the symbol <= indicates a value assignment (i.e., store) operation. The components of the
column vector, y , are all the terms on the left hand side of real number replacement statements.
The column vector, f , represents the right-hand-side mathematical operations. The vector, y ,
includes both calculated results and input data. Read statements are treated in the same manner
as setting a variable equal to a constant.

In a Fortran program, a symbol cannot explicitly depend on itself. When a Fortran variable is
redefined, mathematically, it is not the same variable. In the statement X <= X + 5.0, the X on the
left and the X on the right represent two different locations in the solution vector, y .
Mathematically, the equation can be thought of as X2 = X1 + 5.0. Therefore to represent Eq. (4)
mathematically, the dependence of a variable on itself must be considered explicitly. If we
define

dy i

dy i

1, for all i, (5)

then Eq. (1) can be rewritten as

y  f y . (6)

Differentiating Eq. (3) with respect to y yields

dy
dy


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
dy
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 I , (7)

where the identity matrix, I, provides the explicit dependence of a variable on itself necessary to
make Eq. (7) meaningful. Equation (7) can be rearranged such that
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Equation (8) can be represented in a more compact form as

A Y  I , (9)

where
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Y 
dy
dy

.

Because Fortran equations are solved in a sequential fashion, Fortran variables are dependent on
previously defined variables. Therefore,

f i

y j

 0, for j ≥ i,

such that the matrix,
df
dy

, is a lower triangular matrix with zeros on and above the diagonal. This

matrix can easily be solved by application of the chain rule of calculus as each row is
determined.

The GRESS 90 forward chaining option is utilized to calculate and report sensitivities with
respect to a subset of the input data. The method used is to resolve Eq. (9) for selected columns
in the matrix, Y , by forward substitution in memory as each Fortran statement is executed. A
fully resolved column in Y represents the derivatives of every real variable with respect to the
user-selected variable or parameter associated with that column. Because selected columns in Y
are resolved by forward substitution in memory, the A matrix is never saved. At any given point
during execution, the user can retrieve the total first-order derivatives of a calculated variable
with respect to all the declared parameters. The steps used to process a code with GRESS 90 are
illustrated in Figure 1.

Figure 1. Flowchart showing the processing steps for using GRESS 90.
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6. GRESS 90 CODE COUPLING

When a model is implemented as a sequence of computer codes, the code-coupling method,
illustrated by the flowchart in Figure 2, is used to calculate derivatives with respect to input
parameters. For example, assume there are three codes named A, B, and C, respectively. As
shown in Figure 2, both A and B are independent of each other and are run first. The input to
codes A and B includes sets of parameters of interest, PA and PB, respectively. The input to code
C includes any new input parameters, PC, as well as the results from A and B, RA and RB,
respectively. The results of interest for derivative calculation, RC, are output from code C. The
independent variables of interest are the inputs PA, PB and PC.

The derivatives of results from A and B with respect to input parameters can be represented as

dRA

dPA

(10)

and

dRB

dPB

. (11)

Through application of the chain rule, the derivatives of code C with respect to input parameters
can be represented as

dRC

dP

RC

PA
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
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PC


RC
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
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
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RB


dRB

dPB


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. (12)

The results that are calculated in codes A and B and then read by C are referred to as transfer
variables. The parameters of interest from codes A and B are referred to as transfer parameters in
C. The user inserts subroutine calls in code C to identify transfer parameters and transfer
variables. When code C is executed, derivatives of floating-point variables with respect to
parameters defined in codes A, B, and C are calculated and may be reported or used for
sensitivity calculations.
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Figure 2. Flowchart illustrating the GRESS 90 code-coupling methodology.

7. CENTRMST AND PMCST

In order to accurately predict the implicit terms defined in Eq. (2) from resonance self-shielding
calculations performed using CENTRM and PMC, the GRESS 90 system was used to process
CENTRM and PMC such that the sensitivities of multigroup resonance self-shielded cross
sections output from PMC to the material number densities input to CENTRM could be
computed. The flux derivatives with respect to each nuclide are computed for each energy point
in the CENTRM solution mash, typically 50,000-70,000 points. The sensitivity versions of these
codes were named CENTRMST and PMCST. Since the material number densities are input to
CENTRMST and the CENTRMST flux solutions are input to PMCST, the newly developed
GRESS 90 code-coupling methodology was used to pass to PMCST the material number
densities as independent transfer parameters and the derivatives of the continuous-energy flux
solution as a transfer file. When the resonance self-shielding calculation begins in PMCST, the
forward chaining of derivatives continues from the values last computed in CENTRMST. The
final implicit sensitivities output by PMCST are the sensitivities of the multigroup resonance
self-shielded cross sections to the number densities input to CENTRMST. It is noted that the
CENTRMST solution terminated based on convergence of the flux solution. The convergence of
the sensitivities is not explicitly verified.
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8. IMPLEMENTATION AND TESTING

The SAMS module of SCALE implements perturbation theory to compute the explicit sensitivity
terms and processes the implicit sensitivities output by PMCST to produce the complete
sensitivity, as shown in Eq. (3). SAMS is executed as part of the TSUNAMI-1D or TSUNAMI-
3D SCALE sequences. TSUNAMI-1D utilizes the one-dimensional discrete ordinates code
XSDRNPM for its forward and adjoint flux solutions, where TSUNAMI-3D utilizes the Monte
Carlo code KENO V.a. Several sample problems were selected, and the integral sensitivity
coefficients were compared to direct perturbation sensitivity values. The direct perturbation
values were generated by running several keff calculations with varied number densities and
computing a sensitivity coefficient through central differencing.

The test problems selected for testing the accuracy of the final sensitivity coefficients were
critical experiments selected from the International Handbook of Evaluated Criticality Safety
Benchmark Experiments [10] and are identified as follows:

1. LEU-COMP-THERM-033 Case 1 - A TSUNAMI-1D spherical model of well-
moderated homogeneous mixture of U(2)F4 and paraffin.

2. HEU-MET-FAST-028 – A TSUNAMI-1D spherical model of the Flattop experiment,
which consists of a highly enriched uranium core surrounded by a natural uranium
reflector.

3. LEU-COMP-THERM-009 Case 10 – A TSUNAMI-3D model of a water-moderated
rectangular cluster of U(4.31)O2 fuel rods separated by copper plates.

The test problems were all run with the SCALE 238-group ENDF/B-VI cross section data
library. The results of the direct perturbation calculations and the explicit and complete
sensitivities computed by TSUNAMI using CENTRMST and PMCST are shown in Table I.
Note that the TSUNAMI complete sensitivity results agree quite well with the direct perturbation
results for all cases. The complete sensitivity values for LEU-COMP-THERM-009 Case 10
match the direct perturbation results within one standard deviation. The TSUNAMI explicit
sensitivities, which neglect the contributions of the implicit effect computed by CENTRMST and
PMCST, differ from the direct perturbation results by up to 19% for 238U in LEU-COMP-
THERM-033 Case 1. For the fast spectrum HEU-MET-FAST-028 system, where resonance self-
shielding is insignificant, the effect of the implicit sensitivity calculation is, as expected,
negligible.

The effect of the implicit sensitivity computed with CENTRMST and PMCST is further revealed
in Fig. 3, where the energy-dependent sensitivity profiles for the sensitivity of keff to 238U total
cross section are shown for the explicit and complete sensitivity calculation. The effect of the
resonance self-shielding calculation on the resonance-energy sensitivity coefficients is clearly
visible in the difference between these two profiles.
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Table I. Comparison of sensitivity results

Test problem Nuclide Direct perturbation
sensitivity

TSUNAMI
explicit sensitivity

TSUNAMI
complete sensitivity

1H 2.2076E-01 2.5154E-01 2.2091E-01LEU-COMP-
THERM-033 Case 1 238U -2.0619E-01 -2.4509E-01 -2.0718E-01

235U in core 5.8050E-01 5.7952E-01 5.7952E-01
HEU-MET-FAST-028

238U in reflector 2.1305E-01 2.1648E-01 2.1654E-01
1H Mix 2 2.14E-01 ± 4.10E-02 2.01E-01 ± 1.46E-02 2.00E-01 ± 1.46E-02LEU-COMP-

THERM-009 Case 10 238U -6.38E-02 ± 4.10E-03 -7.07E-01 ± 3.42E-04 -6.24E-01 ± 4.31E-04

Figure 3. Energy-dependent explicit and complete sensitivity profiles for 238U
total cross section from LEU-COMP-THERM-033 Case 1.
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9. CONCLUSION

The automated GRESS 90 procedure with code coupling was successfully used to add sensitivity
capability to SCALE self-shielding programs CENTRM and PMC. Results demonstrate that the
GRESS 90 code-coupling methodology can be successfully applied to existing Fortran 90
programs to create new versions of those programs enhanced for sensitivity calculations.
Because computational simulations often involve two or more programs run in sequence, the
automated code-coupling methodology using GRESS 90 is a significant new capability for
calculating sensitivities in such simulations.

ACKNOWLEDGMENTS

The work was sponsored by the U.S. Department of Energy, Nuclear Criticality Safety Program,
Applicable Ranges of Bounding Curves and Data (AROBCAD) task.

REFERENCES

1. SCALE: A Modular Code System for Performing Standardized Computer Analyses for
Licensing Evaluation, ORNL/TM-2005/39, Version 5.1, Vols. I–III, Oak Ridge National
Laboratory, Oak Ridge, TN, USA (November 2006). Available from Radiation Safety
Information Computational Center at Oak Ridge National Laboratory as CCC-732.

2. C. R. Weisbin et al., Application of FORSS Sensitivity and Uncertainty Methodology to Fast
Reactor Benchmark Analysis, ORNL/TM-5563, Union Carbide Corp., Oak Ridge National
Laboratory, Oak Ridge, TN, USA (1976).

3. M. L. Williams, B. L. Broadhead, and C. V. Parks, “Eigenvalue Sensitivity Theory for
Resonance-Shielded Cross Sections,” Nucl. Sci. Eng., 138, pp. 177–191 (2001).

4. B. T. Rearden, “Perturbation Theory Eigenvalue Sensitivity Analysis with Monte Carlo
Techniques,” Nucl. Sci. Eng., 146, pp. 367–382 (2004).

5. C. Bischof, A. Carle, and A. Mauer, “Adifor 2.0: Automatic Differentiation of Fortran 77
Programs,” IEEE Computational Science & Engineering, 3(3), p. 18 (1996).

6. K. Kubota, “PADRE2—Fortran Precompiler for Automatic Differentiation and Estimates of
Rounding Error,” in Computational Differentiation: Techniques, Applications, and Tools,
SIAM, Philadelphia, PA, USA, pp. 367–374 (1996).

7. R. Giering and T. Kaminski, “Applying TAF to Generate Efficient Derivative Code of
Fortran 77-95 Programs,” PAMM, 2(1), pp. 54–57 (2003).

8. J. E. Horwedel, “GRESS, A Preprocessor for Sensitivity Analysis of Fortran Programs,” in
Automatic Differentiation of Algorithms: Theory, Implementation, and Application,
A. Griewank, Ed., SIAM, Philadelphia, PA, USA, pp. 243–250 (1991).

9. J. E. Horwedel, GRESS Version 2.0 User’s Manual, ORNL/TM-11951, Oak Ridge National
Laboratory, Oak Ridge, TN, USA (November 1991).

10. International Handbook of Evaluated Criticality Safety Benchmark Experiments, Nuclear
Energy Agency Nuclear Science Committee of the Organization for Economic Co-operation
and Development, NEA/NSC/DOC(95)03, Paris (2005).


