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ABSTRACT 
 

Certain reactor transients cause a reduction in moderator temperature, and hence, increased 
attenuation of neutrons and decreased response of excore detectors.  This decreased detector 
response is of concern due to the credit assumed for detector-initiated reactor trip to terminate the 
transient.  Explicit modeling of this phenomenon presents the analyst with a difficult problem due 
to the dense and optically thick neutron absorption media, given the constraint that precise 
response characteristics must be known in order to account for this phenomenon.  The solution in 
this study was judged to be the use of Monte Carlo techniques coupled with robust variance 
reduction to accelerate problem convergence.  A fresh discussion on the motivation for variance 
reduction is included, followed by separate accounts of manual and automated applications of 
variance reduction techniques.  Finally, the results of both manual and automated variance 
reduction techniques are presented and compared. 
 
Key Words: Monte Carlo, variance reduction, radiation transport, reactor pressure vessel. 

 
 

1. INTRODUCTION 
 
Increasing computational speed enables Monte Carlo analysts to simulate enough particle 
histories to consider increased computer run time in lieu of variance reduction.  However, some 
problems remain challenging enough to require the effective use of variance reduction 
techniques in order to achieve reliable results in a timely manner so as to meet the needs of end-
users.  One such problem is described in this paper, along with the application of manual and 
automated variance reduction and the resultant success of each.  
 
The problem involves the simulation of excore neutron detector response to changing conditions 
in regions inside the reactor vessel resulting from a transient, since some transients assume credit 
for automatic initiation of reactor trip from neutron flux.  This problem affects the Steam Line 
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Break (SLB) from hot full power, where the decrease in moderator temperature causes (a) an 
increase in reactor power due to moderator temperature feedback (from a negative moderator 
temperature coefficient [MTC]) and (b) increased attenuation of neutrons and resulting decreased 
power indication by the excore neutron detectors.  Although the phenomenon of transient-
initiated changes in excore neutron detector response has been known to the nuclear power 
industry [1] since 1996, the industry response to this phenomenon has heretofore been primarily 
aimed at operational concerns.  However, failure to account for this phenomenon in analytical 
space would result in non-conservative safety analysis results when termination of the transient 
depends upon automatic reactor trip initiated by excore neutron detector indication. 
 
In addressing this phenomenon for nuclear installation safety analyses, an understanding of 
general response characteristics is not adequate; excore detector response must be quantitatively 
simulated and included in transient analysis calculations.  The modeling of excore detector 
response presents a non-trivial problem for the analyst due to geometrical complexity, optically 
thick regions, dense neutron absorption media, and the presence of neutron absorbers 
(consequential poisons, such as fission products, and intentional poisons, such as chemical shim 
for suppression of excess core reactivity during beginning of cycle operations).  The Monte 
Carlo method is considered to be the most accurate method available for solving complex 
radiation transport problems.  However, due to its nature of simulating individual particle 
histories and inferring the average behavior of the particles in the system from the average 
behavior of the individually simulated particles, the Monte Carlo method is computationally 
intensive for deep penetration problems.  The realism in transport simulations in the MCNP 
Monte Carlo computer code [2] makes it well-suited for this analysis, but robust variance 
reduction is an integral part of the analysis to ensure that all problem-significant phase space has 
been properly sampled and that the problem solution has converged.  Hence, analysis of this 
problem has focused considerable effort on achieving good statistical performance.  This work is 
described below, and results of manual and automated efforts to yield variance reduction 
parameters are compared. 
 
 

2. MODELING APPROACH AND RESULTS 

2.1 Geometry Setup & Tally Description 
 
The MCNP geometry for this problem is specified as a quarter-core model to make use of 
problem symmetry, since there are four excore neutron detectors, each detector being centered 
45° off the main axes of the core.  The input description includes specific modeling of the fuel 
pellet stack, fuel pin gap and fuel cladding, guide tubes, instrument tubes, and interstitial 
moderator (light water) constituting a 17×17 pressurized water reactor fuel assembly.  The fuel 
assembly description is filled into the fuel region inside the core baffle plates as a repeating 
lattice; the baffle plates are specified to as-built dimensions.  In the axial direction, the geometry 
is truncated at the top and bottom of the fuel pins (i.e., the geometry does not include fuel 
assembly end fittings, upper or lower core plates or core upper internals).  Additionally, as shown 
in Figure 1, the innermost region of the core is specified as a void.  This phase space elimination 
was built into the input description for the purpose of assisting problem convergence.  Thus, 
phase space elimination in the problem setup was seen to be a rudimentary but valuable variance 
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reduction tool to avoid consideration of parts of the problem for which contribution to the tally 
was judged to be insignificant.  The elimination of a central cylinder of the fuel region was done 
after careful consideration of prior analyses [3,4] showing the relative contributions to ex-vessel 
results from the various fuel assembly locations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. MCNP model for McGuire Nuclear Station quarter-core geometry 

 
 
Beyond the core baffle plates is the flow channel region inside of the core barrel but outside of 
the fuel region.  The core former plates (which are attached to the core barrel, and to which the 
baffle plates are bolted) are located in this region, and are included in the geometry input.  Next, 
the core barrel and neutron pads are modeled as a set of concentric cylinders, as is the subsequent 
reactor coolant downcomer and reactor pressure vessel regions.  The concrete shield wall behind 
the detector is included in order to simulate neutron backscatter to the detector.  Finally, the 
detector is modeled as a cylindrical volume located between the reactor pressure vessel and the 
concrete shield wall.  A track-length estimate of cell flux is performed for this volume with 
different moderator densities in the problem.  The average particle flux in a cell can be written 
as: 

( )∫∫∫∫ ΩΩ= tErddVdtdE
VV ,,ˆ,1 rψφ .    (1) 

 
MCNP estimates Vφ by summing WTl /V for all particle tracks in the cell, where V is cell volume, 
and W and Tl are particle weight and track-length, respectively.  The excore neutron detectors are 
uncompensated ion chambers that operate based on the B10(n,α)Li7 interaction.  Hence, the tally 
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for this problem was modified (with a tally multiplier) to score the reaction of interest for the 
excore detector, specifically, 10B absorptions. 
 
The track-length estimate of cell flux compared favorably with a point detector tally.  The 
MCNP point detector tally is a next-event estimator, computing flux at an arbitrary point as 
follows: 
 

( ) ( )
22

,,,
R

eWptEr
π
µµ

λ−
=Φ

r ,     (2) 

 
where 

W = particle weight, 
p(µ) = value of probability density function at µ, the cosine of the angle between the 

particle trajectory and the direction to the detector, 
λ = total number of MFPs integrated over the trajectory from source or collision 

point to detector, 
R = distance from source or collision event to detector. 

 
The point detector tally was used as a means of variance reduction during the manual 
development and application of variance reduction parameters.  This is discussed later in Section 
2.3.3 of this paper. 

2.2. Neutron Source Specification 
 
Various options were considered for the neutron source specification for this problem.  A 
criticality calculation could have been performed, and the resulting neutron direction, energy, and 
weight saved to a file for use in subsequent calculations.  This option could have been used to 
write a source file at a given surface, such as the core barrel or reactor vessel, and this source 
could then be used as input to a transport calculation that tallied at the excore detector location.  
Another option considered was the use of the watt-fission spectrum in the fuel region as a fixed 
source neutron transport problem, along with allowing fissions to occur in the fuel.  The option 
selected for this simulation was to use fixed-source neutron spectra from the CASMO computer 
code [5] in 40 energy groups (specifically computed by CASMO for this lattice design), while 
using the option in MCNP to turn off fissions, and treat the neutron transport as a shielding 
problem rather than modeling a critical system.  This choice was deemed to be the most 
amenable to adjustments in source probability definition to address the effects of axial and radial 
power shape on the neutron attenuation factor and detector response, adjustments in the 
moderator density in the various regions, and to source energy biasing. 
 
This choice was evaluated and justified by comparing the results of MCNP and CASMO 
calculations.  For the MCNP calculation, the neutron source energy was specified to be the watt-
fission spectrum, fissions were allowed in the fuel, and the energy-dependent flux was tallied on 
fuel cladding surfaces (using a track-length estimate) in the same energy group structure used in 
the CASMO calculation.  The MCNP tally results were normalized and plotted against results 
from CASMO, and the comparison was deemed to be favorable, as shown in Figure 2 below. 
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Finally, two moderator density statepoints were evaluated for each of two source options as 
discussed above: (1) the watt-fission spectrum with fissions allowed, and (2) the CASMO 
multigroup energy spectrum with fissions turned off.  The neutron attenuation factors for the two 
source options were compared and found to be equivalent (within statistical uncertainty of 
approximately one percent), thus demonstrating that the choice of the fixed source model would 
yield results comparable to the more computer-intensive solution with a fission system. 
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Figure 2. Comparison of CASMO & MCNP neutron energy spectra 

 
 
Following the variance reduction efforts (described in the next section), the effects of variations 
in the radial and axial source distributions on the attenuation factor were analyzed to assess core 
power shape as an input to the attenuation factor.  Various source shapes were considered (such 
as cosine axial power shape versus homogenous axial power shape, and realistic radial power 
shape based on core flux map results versus homogenous radial power shape).  It was found that 
while the total tally mean could be affected by variations in the power shapes, the change in the 
mean at selected moderator density statepoints was not affected by the power density or shape 
assumptions. 
 



Smith and Wagner 
 

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 6/21 
 

2.3 Variance Reduction 
 
2.3.1 Test for statistical efficiency 
 
In all variance reduction efforts, the criteria used to judge success was the so-called Figure-of-
Merit (FOM), which is defined as: 
 

TRE
FOM

×
= 2

1 .      (3) 

 
Where RE is the relative error for the sample mean, and T is the total computer time taken to 
simulate n histories.[2,6]  As the RE2 should be inversely proportional to T, the FOM value 
should be approximately constant for a given set of problem parameters.  This quantity is 
deemed to be the appropriate means to ascertain the effectiveness of variance reduction efforts, 
since it includes consideration of both the resultant relative error of the sample mean and the 
computer time necessary to achieve this relative error.  Variance reduction techniques will 
usually cause increased computer time per history, but the intention is that the associated 
reduction in RE2 is greater than the increase in T, thus achieving greater statistical efficiency. 
 
2.3.2. Variance reduction motivation 
 
Most assessments of variance reduction motivation address the desired balance between user 
time to perform the variance reduction and computer time saved as a result of the user efforts.  
With increasing computer speed, it is tempting to take a diminutive view of variance reduction, 
especially since computer time is essentially free (with PC computing) and analyst time is 
expensive.  In the abstract, such assessments seem compelling, but in practice can be moderately 
or even severely misleading.  Several anecdotal justifications for robust variance reduction will 
be offered below, given from the perspective of a practitioner rather than a code developer, and 
then these observations will be summarized in three categories. 
 
In lieu of a significant expenditure of analyst time to perform variance reduction, the approach 
sometimes taken to achieving reliable Monte Carlo results is simply to run the problem for 
longer time.  However, without having achieved reliable results using variance reduction, it can 
be difficult to ascertain the existence of proper sampling of all significant phase space.  Under-
sampling can lead to pathological features of the problem, where passing statistics are seemingly 
achieved with the problem, until scores from un-sampled or under-sampled parts of the problem 
are tallied (low coverage rates are generally the result of too few large xi [scores, or observations] 
being observed, not too many [6]).  Tallying these scores can result in dramatic increase in the 
problem variance, along with possible increase in the calculated mean.  Poor statistical 
performance can cause the need to run the problem for a protracted period of time before these 
pathological features become manifest, thereby wasting not only analyst time to perform poor or 
mediocre variance reduction, but also computer time. 
 
Moreover, even if the analyst has access to powerful computing resources and is willing to 
simply run the problem until achieving passing statistics, this tradeoff of analysis time versus 
computing time can cause unintended consequences.  In regulated nuclear activities (i.e., within 
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Department of Energy, Nuclear Regulatory Commission, Environmental Protection Agency, or 
Department of Transportation jurisdictions), internal corporate or governmental quality 
assurance (QA) procedures usually require a peer review of analyses, and these peer reviews 
often result in questions and issues that can only be addressed by (sometimes an unforeseen 
number of) iterations and permutations on input, assumptions, problem boundary conditions and 
modeling choices.  For example, in the case study that is the subject of this essay, the results for 
various moderator density statepoints demonstrated that the attenuation factor computed for use 
in transient analysis calculations is not a linear function with Reactor Coolant System 
temperature.  This finding necessitated evaluations at multiple moderator density statepoints, 
each set of moderator density statepoints being evaluated for different modeling choices (such as 
permutations on core radial and axial power shape).  Unintended consequences of poor or 
mediocre variance reduction efforts can be expenditure of the same protracted computer time for 
each unforeseen computer run, thus multiplying the computational inefficiency. 
 
Finally, experienced and seasoned practitioners have often had to amend and revise existing 
analyses to address new regulatory concerns, expand the scope of application of analyses, answer 
new questions and concerns, and correct minor errors unintentionally introduced into original 
analyses in spite of painstaking preparation and review.  The legacy turned over to successors in 
the form of input development and documentation, models, and calculation files is an important 
aspect of traceability, reproducibility and maintainability.  At Duke Energy, the cornerstone 
philosophical tenet of nuclear calculation QA is supplying sufficient documentation and 
calculational tools to allow a future analyst to comprehend and reproduce the subject analyses, 
without reference to, or discourse with, the original analyst.  In the case of Monte Carlo 
calculations, the experienced analyst will desire to turn over a legacy of statistical efficiency to 
his successors in order to facilitate future use. 
 
These observations may be summarized in the following motivations for variance reduction: 
 

1. Confidence in results.  Unless a Monte Carlo problem can be considered to be properly 
sampled and converged, the results cannot be trusted and used, especially as regards 
nuclear safety related analyses. 

 
2. Timeliness of analyst response to requests for information.  Protracted computer analysis 

time may be economically inexpensive, but end-users rarely are in a position to wait for a 
protracted amount of time to apply analysis results.  Early knowledge of results usually 
means extended time to address permutations and make decisions on mode(s) of 
application of the results. 

 
3. Legacy.  Ability to efficiently modify inputs, assumptions and boundary conditions and 

adapt and adjust models to new problem variables facilitates use of the models in the 
future. 

 
Based on the above discussion and the computationally challenging nature of the problem 
considered herein, effective variance reduction was deemed to be critical to this analysis.  
Consequently, an earnest effort was made to effectively utilize the variance reduction techniques 
available in MCNP by manually developing the required variance reduction parameters and 
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iteratively applying the cell-based and mesh-based weight-window generators.  At the 
completion of this “manual” effort, where additional efforts yielded diminishing returns in terms 
of computational efficiency and reliability, a separate effort was initiated that utilized a recently 
developed code [7] that automatically generates variance reduction parameters for MCNP, based 
on three-dimensional (3-D) deterministic adjoint functions.  The two efforts and approaches, and 
the subsequent results, are described in the following sections.  
 
2.3.3. Manual application of variance reduction techniques 
 
Many of the variance reduction techniques available to the user in the MCNP code [2] were used 
in this analysis.  The specific techniques are briefly discussed below, roughly in the order in 
which they were applied.  During the process of applying each variance reduction technique, a 
number of MCNP calculations were performed to incrementally evaluate effectiveness, adjust 
the required parameters, and subsequently, develop effective values for the required parameters.  
To enable appropriate evaluation, these incremental MCNP calculations were each allowed to 
run for approximately 30 CPU minutes.   
 
Geometry splitting and Russian roulette were used in parts of the problem outside the fuel region 
in order to start the process of moving particles toward the tally region.  To effectively utilize 
this technique, many of the geometry cells were subdivided into numerous smaller cells.  These 
subdivisions were preserved in the geometry input description throughout the variance reduction 
efforts in order to provide tools to assess the relative worth of decisions and success of efforts.  
The importance factors were adjusted by trial and error with multiple MCNP runs to generate a 
particle-track profile that decreased "gracefully" towards the outer regions of the problem 
geometry, with no dramatic variations in the number of particle tracks in adjacent geometry cells. 
 
The exponential transform increases particle walks to move toward a preferred direction by 
artificially reducing the macroscopic cross section in the preferred direction and increasing the 
cross section in the opposite direction according to: 
 

( )µptt −Σ=Σ 1* ,      (4) 

 
where 

Σt* = artificially adjusted total cross section, 
Σt = true total cross section, 
p = the exponential transform parameter used to vary the degree of biasing, 
µ = cosine of the angle between the preferred direction and the particle's direction. 

 
The problem described in this essay is a "deep penetration" problem.  It was difficult to achieve 
good sampling at the periphery of the problem geometry (where the tally is being performed) due 
to the optical thickness, the dense absorption media, and the high absorption cross sections 
associated with the shielding and absorption media (i.e., UO2 fuel matrix, moderator and 
stainless steel pressure vessel).  The exponential transform proved to be a powerful and effective 
tool during the initial stages of variance reduction due to (1) the ability to move particles towards 
the tally region through dense media and thereby generate scores and (2) the ability to properly 
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sample geometrical phase space, thereby supplying the necessary information for the automated 
variance reduction features used later (i.e., the MCNP weight window generators).  Use of the 
exponential transform alone caused an increase in the FOM by more than an order of magnitude.  
The exponential transform was used only in the fuel region.  The exponential transform 
parameter (so-called "stretching parameter") was finally set through trial and error and iterative 
MCNP runs until the highest FOM was achieved.  Initial estimates of the optimum value for this 
parameter proved to be fairly accurate. 
 
Next, source energy biasing was used, although the source parameters were merely rudimentary 
estimates, and thus only marginally effective.  After geometric splitting, exponential transform, 
and source energy biasing, the MCNP cell-based weight window generator, which is a stochastic 
automated variance reduction generator, was used to generate weight window values.  During the 
random walk simulation, the weight window generator estimates particle importance (with 
respect to a specified tally) in a given space-energy region as the ratio of the total tally score 
from all particles entering the region and the total weight entering the region.  The weight 
window values are then calculated inversely proportional to the importance estimates.  To obtain 
an importance estimate for a given region, it is necessary for particles to enter that space-energy 
region and subsequently contribute to the tally of interest.  The weight window technique is a 
space- and energy-dependent facility by which splitting and roulette are applied.  An advantage 
of the weight window technique over geometry splitting and Russian roulette is that the particle 
weight games are played at both boundary crossings and collision sites, whereas splitting/roulette 
are only played at boundary crossings.  The importance factors for splitting/roulette and the cell-
based weight windows were adjusted by trial and error through iterative MCNP runs to supply a 
track distribution that had no dramatic step changes between adjacent regions.  This ensured that 
sufficient sampling of phase space occurred for the code to generate meaningful and efficient 
cell-based weight window parameters. 
 
A point detector is a deterministic estimate (from each event) of the flux at a point in space, 
using equation 2 above.  Contributions to the point detector tally are made at source and collision 
events throughout the random walk.[2]  Being a deterministic estimation of flux makes this tally 
a useful variance reduction tool, since contributions to the tally will be made from all parts of the 
system in which collisions occur and/or source particles are started.  This increases the 
contributions to weight window estimates by the weight window generator, as compared to the 
use of the track-length estimate of cell flux.  Therefore, during all phases of the manual 
application of variance reduction, a point detector was used.  The final solution (to develop 
neutron attenuation factors) used a track-length estimate of cell flux after development of the 
variance reduction parameters, which proved to increase the final FOM by a factor of 
approximately 2 over the point detector. 
 
It was intuitively predicted that the concrete behind the excore neutron detector would be 
significant in terms of backscatter and contribution to the final tally.  This intuition proved to be 
correct, and forced collisions were used to ensure proper sampling of the concrete.  The forced 
collision method is a variance reduction scheme that increases sampling of collisions in specified 
cells, splitting particles into collided and uncollided parts.  The collided part is forced to collide 
within the current cell.  The uncollided part exits the current cell without collision with weight 
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dteWW O

Σ−
= ,      (5) 

 
where 

Wo = particle weight before forced collision, 
d = distance to cell surface in the particle's direction, 
Σt = macroscopic total cross section of the cell material. 

The collided part has weight )1(
dteWW O

Σ−
−= , and collision distance x is 
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Without the use of forced collisions the concrete was poorly sampled, leading to pathological 
problems with the solution (erratic error estimates). 
 
Finally, the MCNP mesh-based weight window generator was used repeatedly to develop 
variance reduction parameters (weight windows) for the arbitrary rectangular mesh that had been 
specified.  The mesh specifications were developed by iterations on mesh size and number of 
energy groups (i.e., mesh sizes were reduced until FOM no longer increased).  It proved difficult 
to sample each mesh cell adequately to generate viable variance reduction parameters, and the 
weight window file was manually modified with user-assisted weight window parameters.  The 
FOM decreased on all further attempts to achieve increased efficiency with more than two 
energy groups.  The final variance reduction parameters included: 
 

1. Exponential transform for the fuel region; 
2. Forced collisions for the concrete behind the excore neutron detector; 
3. Source energy biasing; 
4. Mesh-based weight windows for two energy groups; and 
5. Implicit capture was turned off in the transport calculation. 

 
This last feature (turning off implicit capture) did not undesirably kill particles (in the thermal 
regime) before they participated in reactions important to the problem, given that the source 
definition was not specified for a critical system. 
 
The variance reduction parameters yielded by manual efforts were used in MCNP runs that were 
judged to be protracted enough to demonstrate that there were no pathological features remaining 
in the problem. 
 
2.3.4 Manual variance reduction results 
 
The final optimized model achieved an increase in the FOM of a factor of ~ 6500 when 
compared to an analog calculation (no variance reduction used).  Table I below outlines the 
approximate gains during the step-wise process of applying the variance reduction features 
discussed above.  Note that the step increases in FOM relate to the progressive application of 
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each variance reduction feature, and thus are not necessarily indicative of the increase in FOM 
associated with each individual variance reduction feature in the final optimized model.  
 
 

Table I. Manual Variance Reduction Results 
 

Variance Reduction 
Feature 

Step Increase in Figure of 
Merit (FOM) 

Total Increase in Figure 
of Merit (FOM) 

No variance reduction N/A 1 

Roulette / Splitting 12 12 

Exponential Transform 17 204 

Cell-Based Weight Windows 
+ Source Energy Biasing 8 1632 

Forced Collisions 2 3264 

Mesh-Based Weight 
Windows + Implicit Capture 
Turned Off 

2 6500 

 
 
For comparison purposes, an analog (unbiased) MCNP case was run for 800 minutes, yielding 
the following results: relative error = 0.8153, histories = 1,627,806.  The relationship between 
number of histories, initial relative error and desired relative error is given by: 
 

 
2











=

T

II
T RE

NRE
N ,      (7) 

 
where 

NT = target number of particles histories, 
NI = initial number of particle histories, 
REI = initial relative error, 
RET = target relative error. 

 
The relative error criterion for the problem was ≤ 1%.  Using equation 7, it would require a run 
with approximately 1.082×1010 particle histories to achieve a relative error of 0.01 with an 
unbiased calculation.  Noting that it required 800 computer minutes (on a Pentium III, 1000 MHz 
processor) to achieve 1,627,806 histories, it would therefore require ~ 5.32×106  minutes to 
achieve the relative error criterion with the unbiased problem (or 8.86×104 hours, 3693 days, or 
10.1 years). 
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2.3.5 Application of automated variance reduction 
 
At the completion of the “manual” variance reduction effort, a separate effort was initiated to 
evaluate an automated variance reduction approach for this problem.  In this section we briefly 
review the automated variance reduction methodology and discuss the application of a recently 
developed code [7], ADVANTG (Automated Deterministic VAriaNce reducTion Generator), 
that automates the generation of variance reduction parameters (source biasing and mesh-based 
weight window parameters) for MCNP based on 3-D deterministic adjoint functions.   
 
It is well-known that the adjoint function (i.e., the solution to the adjoint form of the Boltzmann 
transport equation) has physical significance [8] as a measure of the importance of a particle to 
some objective function (e.g., the response of a detector) and that this physical interpretation 
makes the adjoint function well suited for biasing Monte Carlo calculations.  Accordingly, recent 
trends in Monte Carlo code development have reflected a recognition of the benefits of using 
deterministic adjoint (importance) functions for Monte Carlo variance reduction.[9]  Even 
though manually applied variance reduction by experienced Monte Carlo practitioners can yield 
increases in computational performance on the order of thousands for difficult problems (as 
shown in the previous section), automated variance reduction based on a deterministic 
importance function is expected to yield equal or superior computational performance and 
convergence reliability, while significantly reducing the requirements for user time and 
expertise.  To evaluate these expectations, the ADVANTG code was applied to this problem and 
the results were compared to those achieved by manual application of variance reduction 
techniques, as discussed in the previous section.   
 
2.3.5.1 Automated variance reduction methodology 
 
The variance reduction approach in ADVANTG is based on the CADIS (Consistent Adjoint 
Driven Importance Sampling) methodology [10], which provides consistent relationships for 
calculating source and transport biasing parameters based on importance sampling.  The 
methodology is utilized to calculate space- and energy-dependent source biasing parameters and 
weight-window values.  The biased source distribution, ),,(ˆ Erq r  is given by the following 
relation 
 

,
),(),(
),(),(),(),(),(ˆ

∫ ∫ +

++

==
V E

drdEErErq
ErqEr

R
ErqErErq rr

rrrr
r

φ
φφ    (8) 

 
where ),,( Er

r
φ+ ),,( Erq r and R are the scalar adjoint function, the unbiased source, and the detector 

response, respectively.  The numerator is the detector response from space-energy element ( rdr , 
dE), and the denominator is the total detector response, R .  Therefore, the ratio is a measure of 
the relative contribution from each space-energy element to the total detector response.  
Although the methodology is directly applicable to angular-dependent biasing by simply 
including angular dependency in the above equation, angular-dependency was not included.   
 
For transport biasing, the weight window technique is employed.  The weight-window technique 
provides a means for assigning space- and energy-dependent importances and applying 
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geometric splitting/roulette and energy splitting/roulette, while at the same time controlling 
weight variations.  The weight-window technique requires weight window lower bounds lw , and 
the width of the window is controlled by the input parameter cu, which is the ratio of upper and 

lower weight-window bounds (
lw

w
c u

u = ).  The space- and energy-dependent weight window 

lower bounds lw  are given by [10] 
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where w is particle weight.  Because the calculational efficiency has been observed to be fairly 
insensitive to small deviations in the cu parameter, the MCNP default value of five was employed 
throughout this work.  Note that because the source biasing parameters and weight window 
lower bounds are consistent, the source particles are started with statistical weights 
(

),(ˆ
),(),(

Erq
ErqErw r

r
r

= ) that are within the weight windows, as desired.  This is an important aspect of 

the CADIS methodology because it eliminates the incompatibility between source and transport 
biasing that has been problematic in other approaches due to poor calculational efficiency and/or 
false convergence.[11]  For example, if the statistical weights of the source particles are not 
within the weight windows, the particles are immediately split or rouletted in an effort to bring 
their weights into the weight window.  This results in unnecessary splitting/rouletting and a 
corresponding degradation in computational efficiency.   
 
The CADIS methodology has been implemented in the ADVANTG code, which is a 
deterministic weight window generator (WWG) for MCNP that also generates consistent source 
biasing parameters.  The input for using ADVANTG is very similar to that of the MCNP mesh-
based stochastic WWG [2], and like the MCNP mesh-based WWG, ADVANTG outputs weight 
window values to a formatted file (i.e., the MCNP WWINP file) that may be read and utilized by 
the standard (unmodified) version of MCNP4C.  However, unlike the stochastic MCNP WWG, 
ADVANTG also produces consistent source biasing parameters, does not require repeated 
applications to iteratively develop the weight window values, and does not require user 
modification of the weight window values.  As indicated in the flowchart shown in Figure 3, 
ADVANTG automatically generates input files for material cross-section processing based on 
the GIP code [12] and 3-D (x-y-z or r-θ-z) discrete ordinates adjoint calculations with the TORT 
code.[12]  Following the GIP and TORT calculations, ADVANTG (1) reads the standard TORT 
binary output file and the MCNP unbiased source, (2) calculates the source biasing and weight 
parameters, and (3) outputs the parameters for use with MCNP4C. 
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2.3.5.2 Application of ADVANTG 
 
Although many of the geometric structures in the problem are cylindrical, and the MCNP and 
ADVANTG codes support either cylindrical or rectangular mesh-based weight windows, 
previous experience [7,11] has shown that the implementation (in MCNP) of mesh-based weight 
windows in cylindrical geometry is less efficient than for rectangular geometry.  Hence, 
rectangular mesh-based weight windows were used here.  The weight window mesh boundaries 
were selected to be consistent with the problem material boundaries, and the resolution of 
meshes between material boundaries was varied to evaluate the impact on efficiency.  Table II 
summarizes the mesh characteristics and computer time required for the discrete ordinates 
(TORT) calculations for selected cases.  Note that the CPU times listed for the TORT 
calculations are considerably less than the computational effort associated with manually 
developing the variance reduction parameters, as discussed in the previous section.  The spatial 
mesh distribution and material assignments used by TORT are shown in Figure 4.  The TORT 
calculations used the 47-group SAILOR96 library [13] and an S8 quadrature.  Although it would 
seem preferable to use a multi-group cross-section library with a fewer number of energy groups 
(to minimize the time required for the TORT calculations), subsequent studies with the 22-group 
CASK cross-section library [14] did not show improved overall efficiency.  As the reaction of 
interest in the excore detector is 10B absorption, the cross section for this reaction is used as the 
source spectrum in the adjoint TORT calculation. 
 
 

Figure 3. Automated variance reduction process with ADVANTG  
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Table II. Automated Variance Reduction Results 
 

TORT MCNP  
 

Case  
x-y-z mesh 

Total number
of meshes 

CPU time 
(minutes) 

 
FOM 

Speedup (FOM/ 
unbiased FOM) 

Unbiased n/a n/a n/a 0.0018 1
1 20×20×09 3,600 4.2 52 28,889
2 26×26×13 8,788 9.9 143 79,444
3 32×32×13 13,312 21.6 156 86,667
4 36×36×13 16,848 21.1 105 58,333
5 40×40×21 33,600 44.4 82 45,556
6 50×50×21 52,500 90.5 46 25,556

 
 
Because the ADVANTG code and associated methodology are still relatively new, sensitivity 
studies are routinely performed by the code author to assess the sensitivity of the major input 
parameters (e.g., spatial mesh, multi-group library, and quadrature order) and contribute to the 
development of guidance for future users.  The capability to generate two-dimensional plots of 
the spatial mesh and material assignments for any (and all) axial planes (see Figure 4) has proven 
quite useful for these studies.  Although not required, it is also instructive to visualize the adjoint 
function being utilized.  ADVANTG optionally prints the adjoint data in a format suitable for 
visualization with TecPlot®.  If, for example, the deterministic results included problems with 
“ray-effects,” which is not the case for this problem, it would be evident by visualization of the 
results.  Figure 5 provides plots of the Case 3 adjoint function for selected energy groups.  These 
figures illustrate the expected behavior; dramatic decline in particle importance (especially for 
the lower energies) as one moves from the detector toward the core center.  To facilitate 
comparisons, the adjoint function plots in Figure 5 use a consistent scale.  Note, however, that 
refinement of the scale reveals the importance of scattering from the periphery of the reactor 
pressure vessel and inner region of the concrete shield.  Finally, if desired, one can examine the 
generated weight window values overlaid on the MCNP geometry with the superimposed mesh 
plotting capability in MCNP4C.  
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Figure 4. Spatial mesh and material assignments for the various cases 
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Case 3, 32×32×13 Case 4, 36×36×13



A Case Study in Monte Carlo Variance Reduction 
 

American Nuclear Society Topical Meeting in Mathematics & Computations, Gatlinburg, TN, 2003 17/21 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Adjoint functions from Case 3 for selected energy groups 
 
 
For the reference model, a source spatial probability was defined for each quadrant of each 
assembly and the source energy spectrum was defined in terms of 40 energy groups.  As 
discussed previously, the source in the inner assemblies does not contribute significantly to the 
excore detectors, and thus was neglected.  With this source definition, ADVANTG was used to 
calculate a biased probability for each quadrant of each assembly and corresponding spatially-
dependent biased energy spectra.  The original (unbiased) and biased spatial source probabilities 
for case 5 are compared in Figure 6.  As intuition would predict, the source is heavily biased 
toward the core periphery.  To illustrate the importance of spatially-dependent biased energy 
spectra, the original (unbiased) spectrum is compared in Figure 7 to biased spectra from an 
assembly quadrant nearest to the detector and an assembly quadrant farthest from the detector.  
The biased spectra show the importance of the higher energy neutrons in the source regions and 
the insignificance of the lower energy neutrons, particularly as the thickness of fuel region 
between the source and detector locations increases. 
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Figure 6. Comparison of original (unbiased) and biased spatial source probabilities 

 
 

Figure 7. Comparison of original (unbiased) and biased energy spectra 
 
 
Table II includes a summary of the FOM values for the selected cases and shows FOM speedups 
in the range of 25,000 – 87,000, with respect to an unbiased case.  Additionally, comparison of 
the FOM values in Tables I and II indicates speedups in the range of ~ 4 – 13, with respect to the 
best manually-optimized case.  In all cases (i.e., manually optimized and ADVANTG cases), 
good statistical convergence behavior was achieved, and thus the comparisons made herein 
between manual and automated variance reduction are valid and meaningful.  While the 
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improvement in computational efficiency with ADVANTG is significant, the overall efficiency is 
substantially greater, as compared to the manually-developed variance reduction, when one 
considers the user-time required by an experienced Monte Carlo practitioner to develop the 
variance reduction parameters, as well as the associated computer time required to develop the 
parameters.  Note, the variance reduction parameters produced by ADVANTG were used “as is” 
(i.e., the weight window file and source biasing parameters were not manually modified in any 
way). 
 
Consistent with previous findings [7,9,15], the calculational efficiency for this problem was not 
overly sensitive to the spatial-mesh resolution of the adjoint function.  To illustrate this point, 
Figure 8 plots the speedup (FOM ratio) as a function of the total number of meshes (used for 
both the TORT calculation and the weight windows).  This behavior is considered to be 
desirable, as different users will inevitably take different approaches toward defining mesh 
resolution.  In contrast, the mesh-based WWG in MCNP has been found to be fairly sensitive to 
mesh resolution, and the temptation to define meshes that are too small to be properly sampled 
can lead to inadequate estimates of the weight windows.  The results in Figure 8 also show that 
the speedups achieved with the track-length estimator and point detector are quite comparable, 
providing an indication that the methodology is effective for both estimators.  Regarding the 
mesh distribution, it is important to capture the bulk characteristics of the problem geometry 
(e.g., material locations and thicknesses) in order to capture the physics characteristics of the 
problem.  Failure to do so can manifest itself in poor computational efficiency and/or 
convergence behavior.  However, because the process is automated, creating and utilizing 
different mesh distributions is a simple matter.   
 
 
 
 

Figure 8.  Speedup as a function of mesh refinement 
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3. CONCLUSIONS 
 
Detailed Monte Carlo analysis of the excore neutron detector response to changing conditions in 
the core resulting from a transient requires effective use of variance reduction techniques to 
accelerate and ensure proper problem convergence.  Consequently, a considerable expenditure of 
time and effort was made to effectively utilize the variance reduction techniques available in 
MCNP by manually developing the required parameters and iteratively applying the cell-based 
and mesh-based weight-window generators.  Although this process was user-time intensive, a 
computational speedup of 6500, with stable convergence characteristics, was ultimately 
achieved.  Unfortunately, neither the total CPU time nor the total user-time for this process was 
recorded, and thus it is not possible to accurately quantify this effort. However, due to the many 
sensitivity calculations required to completely study the phenomenon of interest and issues 
related to calculational confidence and legacy, the process represented a worthwhile effort to the 
overall analysis.  Recognizing the importance of verifying problem convergence for this safety-
related analysis and the potential for further increase in computational efficiency, a separate 
effort was undertaken to utilize the recently developed ADVANTG code for automated variance 
reduction based on 3-D deterministic adjoint functions.  Application of the automated variance 
reduction capability (1) yielded stable statistical convergence behavior, (2) confirmed the 
problem convergence achieved with the manually-developed variance reduction parameters, and 
(3) resulted in a maximum computational speedup of ~ 87,000, with respect to an unbiased case, 
and ~13, with respect to the best manually-optimized case.   
 
To assess the effects of decreased moderator temperature on excore detector response, 
calculations were performed using the variance reduction parameters generated via ADVANTG 
with variations in the moderator density in the fuel, flow channel, and downcomer regions.  The 
tally results from the various moderator density statepoints were utilized to generate an 
attenuation factor, in percent power indication per degree Fahrenheit, for subsequent use in time-
dependent multi-node transient analysis calculations. 
 
The MCNP result for each moderator density statepoint was converged to less than or equal to 
1% relative error.  Finally, the MCNP results were used to perform a curve fit of attenuation 
functions versus moderator density with the TableCurve 2D v5.00 software.  The resultant 
curve fit had a correlation coefficient of approximately 0.9995.  Therefore, good statistical 
performance was achieved and the results were deemed to be appropriate for application in 
nuclear installation safety analyses. 
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