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Introduction

The process by which humans distinguish visually
between letters of Lhe alphabet is a matter of considerable
theoretical and praclical inlerest. On the theoretical side, it
is a classical problem in psychology, and has served as a
test case for numerous theories of feature analysis and
pattern recognition. On the practical side, it is relevant to
the effective design of any textual display. Furthermore,
principles discovered in the study of letter recognition
may generalize to the perception of other types of
displayed information.

In the psychological literature, a number of theories
of letier discrimination have been proposced. These may be
roughly divided into those that are feature-based, and
those that are image-based. The former predict letter
similarity based on the sharing of particular features, such
as verlical lines, concave right curves, ele I A defect of
these models is thal they do not specify the process by
which the letter image is transformed into features.
Consequently they are of little use in font design.

The image-based models predict similarity based on
some measure of the luminance images of the letters,
such as their overlapz, or the overlap of their Fourier
spectra‘”" 1. A defect of these models is that they have not
been well motivated by basic principles of pattern
recognilion. A gencral problem with existing feature and
image-based models is that they do not work very well®.

Our goal was to construct a model of letter
recognition that remedied these flaws. First, we sought an
image-based model thal could be applied to font design.
Second, we sought a “principled” model, that is, one
which assumed that the human observer employed a
sensible and efficient recognition process. Finally, we
sought a “minimal” model that incorporated only
processes that could not be avoided. In this way we can
test whether this simplest model is adequate, or whether
other more complex processes must be considered.

There are many possible measures of legibility,
including reading rates, letter discrimination, and letter
recognition. We chose a recognition procedure in which
we collected letter confusion matrices for low contrast
letters of one font. Matrices could then be compared to
those generated by the model.

Model

Before we cnter into a detailed description of our
model it is useful to nole how it differs from most prior
models. First, rather than operating on some abstract
featurcs ours operates directly on the intensity image. This

has the advantage of obviating the difficult step of
converting the image o features, and also tests whether
such a conversion is necessary lo understand letter
discrimination. Second, rather than adopling some
arbitrary recognition strategy, we adopt an ideal observer
as the basic mechanism. This is an instance of the
minimalist principle enunciated above, since the ideal
observer is the only model which uses all available
information and which therefore assumes no arbitrary
losses of information®.

Componenls
The overall structure of the model is pictured in

Figure 1. The components are a spatial filter, a noise
source, spatial position uncertainty, and an ideal observer.
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Figure 1. Letter recognition model.

The spatial filter represents the limited resolution of
the visual system. We have modeled this filter as a
Gaussian, with a scale parameter s controlling the
amount of blur

explm (x/sF] (1)

In the frequency dormain, this is a Gaussian with a scale of
1/s, and a half-amplitude half-width of 0.47/s. Vigure 2
shows this filter, with a scales of 1.25, 2.5, and 5 pixels,
superimposed on contrast sensitivity data collected in our
lab 7. The best fit is a scale of 2.5 pixels.

Rl
EA
G
£ 20-
m -
Z 10
g | N 25 1.25
1 1 10 100

. Spatial Fréquency (cycles/deg)

Figure 2. Contrast sensitivities and three spalial filters.



The noise clement represents noise in both the signal
and in the neurons in the early visual system. We model
it by a spatially uncorrelated Gaussian process. By varying
the standard deviation of the noise we can control the

overall performance of the model.

The ideal observer maintains a memory image
(template) of cach possible letter, as it would appear after
blurring. It examines the blurred, noisy sample image, and
computes which letter is most probable®. However,
because the ideal observer does not know exactly where
the test image was, because of eye movements and the
like, it must consider multiple templates for cach letter,
cach consisting of the same template shifted by difflering
amounts horizontally or vertically. Each possible shift has
a certain probability, which may be represented
collectively by a prior density function. We represent this
uncertainty function p(x,y) as a Gaussian density with a
particular scale. A large scale means high uncertainty, a
small scale means little uncertainty. We considered scales
of 0,1, 4, and e pixels. The last value corresponds to a
uniform probability over the 32x32 pixel image.

The final output of the model is a letter name. Dala
are collected from the model by repeated Monte Carlo
trials, and compared to results from human observers.
Note that the human and model observers are presented
with the identical letter stimuli.

Computations

Let the letter presented be indexed by s, and the
candidate letter by k. Then the signal received is given by
ms + n, where ms is the actual letter image and nis a
noise image. For each candidate letter image mg, we
evaluate the discriminant function
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where p is the uncertainty function, @ is the noise
standard deviation, @ indicates discrete correlation, and

|mi\| is the norm of the candidate image. This function is
monoeionic with the posterior probability that candidate k
was presenied, given a signal my + n, such as would be
produced by the sample letter image m;. The maodel
observer selects the candidale letter & for which this
discriminant is largest.

General Methods

Some of our methods are common to both
simulations and human experiments, and they are
described here. We used a font (gacha.r.7) drawn from the
font library on a SUN workstation (Fig. 3). Only upper casc
letters were used, with negative contrast. Each character
was defined on a raster of 5 pixels wide by 9 pixels tall. At
the viewing distance of 114 cm this corresponds 1o 7.5 by
13.5 min arc. This was centered in a raster of 32 by 32 pixels
to prevent wrap-areund during digital filtering.
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Figure 3. Three letters from the font gacha.r.7 used in
the experiments and simulations.

Data were collected in two phases. In Experiment |
we determined a fonf recognition contrast threshold.
This is the letter luminance contrast threshold that yields
approximately 82% correct identifications. The threshold
was determined by means of the QUEST adaptive staircase
procedure 9. On cach trial a letter was randomly selected
(with replacement} and presented Lo the observer, either
real or simulated. The observer reported the apparent
identity of the lelter. A psychometric function for the
complete alphabel was maintained, describing the
probability of recognition as a function of contrast,
independent of letter. After cach trial these data were fit
with a Weibull function, and the next trial was placed at
the 82% point of this function. A{ the conclusion of the
experiment, threshold is estimated as the 82% point of the
best fitting Weibull curve 1°. Figure 4 shows typical
simulation results from Experiment 1.
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Figure 4. Simulated results from Lxperiment 1. Circles
arc data, heavy line is the best fitting Weibull
function, light lines are confidence limits,
and bars are numbers of trials.

Experiment 2 is the collection of a confusion mairix.
Contrast was sct 1 dB below the font recognition contrast
threshold. This contrast was chosen to permit generation
of a useful confusion matrix, which requires a substantial
number of wrong answers. With contrast fixed at this
value, the complete sel of letters was presented a number
of times in random order. The number of cach lelter
response Lo each letter presented was recorded.

Simulation Methods

Simulations were carried out on a SUN workstlation



augmented with an array processor. The blur filtering,
and calculation of posterior probabilities were done in the
frequency domain. In Experiment I, 2600 trials were used.
In Experiment 2, each confusion matrix contained 26000
trials (1000 trials/letter).

We simulated filter scales of 0, 1.25, 2.5, and 5 pixels.
For a viewing dislance of 114 cm, these correspond to
frequency half-widths of e, 15.02, 751, 3.75 cycles/degree.
The uncertainly function was simulated by a Gaussian
with scales of 0, 1, 4, and o pixels. The simulation
proceeds at a rate of about 1.5 second/trial, or about 11
hours for a complete confusion matrix of 1000 trials/letter.

Psychophysical Methods

Tetters were stored in an Adage RIJ5-3000
framebulfer and displayed on a monochrome monitor
with a resolution of 20 pixels/cm. Viewing distance was
114 cm, providing an effective resolution of 40
pixels/degree. Letters were displayed with negative
contrast on a background of 100 ¢d/m2. Display was
viewed binocularly with natural pupils. A small {one
pixel} fixation point was provided between (rials.

Frame rate of the display was 60 Hz, non-interlaced.
The contrast during each presentation followed a
Gaussian time course with a scale of 87 msec and a total
duration of 200 msec. Calibration and other procedures arc

described elsewhere'’.

Responses were collected verbally and typed in by the
experimenier. Feedback was provided in Experiment 1,
but not in Lixperiment 2. Four abservers served in both
experiments. All were male between 17 and 33 years of age
with cotrected acuity.

Results and Data Analysis

Expcriment 1

Letter recognition contrast thresholds for four
observers were -15.79, -13.73, -14.61, -15.54 dB} (average =
14.91, sd = 0.94). This mean corresponds to about 18%
contrast. Bach threshold was estimated from 128 trials.

Experiment 2

Confusion matrices with 60 trials/letter were
collecled (rom the same {four observers used in
Eixperiment 1. Overall percent correct for the four
observers were: aef, 75.8; abw, 80.8; abp, 64.7; ¢jl, 78.3. The
average matrix is shown in greyscale in Figure 5.
Expressed relative to trials/letter, off diagdnal values
range from zero o 27%.

A simple comparison that can be made between
empirical and simulated confusion matrices is the
correlation. Tlowever it has been pointed out that this
exaggerates the agreement since il tends to be dominated
by the fact that both matrices have a large main diagonal
(correct responses) °. Accordingly we consider separately
the correlations between the main diagonals and the off-
diagonals of the two matrices.

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Letter Reported
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Letter Presented

Figure 5. Average confusion matrix [or four observers.

As a standard of comparison, we first generated a
predicted confusion matrix using the “physical overlap”
method described by Townsend 2. This consists of
counting the “on” pixels common to two letters when
superimposcd, and assigning matrix probabililies in
proportion to this count. We used this as a standard
because it appears to have produced the best published
performance. The off-diagonal correlation was 0.49, and
the on-diagonal was 0,12,

The correlations for our model with various
parameters are shown in Table 1. or the filter spread of
2.5 pixels and the prior density of 1 pixel, the on- and off-
diagonal correlations are 0.67 and 0.72. These are much
higher than those of the overlap model. The correlation is
somewhat sensitive to [ilter scale, but less sensitive to
uncertainty scale.

Filter Uncertainty  On Off Off, Unbiased
0 0 0.24 0.62

0 1 0.25 0.62 0.65
0 4 0.16 0.55

0 oo 0.13 0.51

125 0

1.25 1 0.39 0.67 0.74
1.25 4 0.32 0.65

1.25 co

2.5 0 0.67 0.71 0.81
2.5 1 0.67 0.72 0.86
2.5 4 0.65 0.72 (.84
2.5 oo 0.65 0.71 (.86
5 0

5 1 0.63 (.53 (.62
5 4

5 oo

overlap model 0.12 0.49 0.54

Table 1. Correlations between empirical and model
confusion matrices.

Biag

Although the correlations produced by the maodel are
substantially betier than those in the literature and than
the overlap model, considerable variance remains



unaccounted for. One probable source for this variance is
bias. This may be seen in Fig. 6 which shows the frequency
with which each letter was reported by each of the four
observers. Since each of the letters was presented equally
often, this is a rough indicator of bias.
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Figure 6. Ratio of response {otals Lo presentation totals
for cach letter.

To determine how well our model accounts for the
underlying similarity struclure we transformed the matrix
in a manner that removes bias 2 12, The off-diagonal
correlations that result are shown in the last column of
Table 1. With the best {itling parameter values {filter scale
= 2.5, uncertainty scale = 1 or infinite), a correlation of 0.86
is obtained.

Conclusions

We have shown that a very simple maodel of letter
recognition is capable of generating confusion matrices
that correlate well with empirical matrices. After bias has
been removed, little variance remains unaccounted for.
This suggests that little additional predictive power will be
gained by making the model more complex.

We must acknowledge that these conclusions apply
only to the particular conditions we explored. It will be
important o generalize these results to other letter sizes,
fonts, conditions of presentation, and measures of
performance. Indeed, a demonsiration that such
predictions could be made, without change in model
parameters (noise level, filter scale, uncertainty scale)
would greatly increase the value of the model.

One purpose of this study is the development of a
robust, easily-calculated metric for the legibility of letters
and fonts. When predictions depend upon Monte Carlo
simulation, such a metric is difficult to specify. These

simulations are necessary because position uncertainty
complicates the discriminant function in such a way that a
closed form solution is unavailable. However, the resulis
in Table 1 show that uncertainty scale has only a modest
effect on the quality of predictions. Consequently it may
prove possible to use the zero-uncertainty closed-form
solution as an approximation, and as the basis of a
legibility metric.
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