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Abstract. In this paper the authors present the UPC speaker
diarization system for the NIST Rich Transcription Evaluation (RT07s)
[1] conducted on the conference environment. The presented system is
based on the ICSI RT06s system, which employs agglomerative clustering
with a modified Bayesian Criterion (BIC) measure to decide which
pairs of clusters to merge and to determine when to stop merging
clusters [2]. This is the first participation of the UPC in the RT Speaker
Diarization Evaluation and the purpose of this work has been the
consolidation of a baseline system which can be used in the future
for further research in the field of diarization. We have introduced,
as prior modules before the diarization system, an Speech/Non-Speech
detection module based on a Support Vector Machine from UPC and
a Wiener Filtering from an implementation of the QIO front-end. In
the speech parameterization a Frequency Filtering (FF) of the filter-
bank energies is applied instead the classical Discrete Cosine Transform
in the Mel-Cepstrum analysis. In addition, it is introduced a small
changes in the complexity selection algorithm and a new post-processing
technique which process the shortest clusters at the end of each Viterbi
segmentation.

1 Introduction

Audio segmentation, sometimes referred to as acoustic change detection, consists
of exploring an audio file to find acoustically homogeneous segments, detecting
any change of speaker, background or channel conditions. It is a pattern
recognition problem, since it strives to find the most likely categorization of
a sequence of acoustic observations. Audio segmentation becomes useful as a
preprocessing step in order to transcribe the speech content in broadcast news
and meetings, because regions of different nature can be handled in a different
way.

There are two basic approaches to this problem: (1) model-based
segmentation [3], which estimates different acoustic models for a closed set of
acoustic classes (e.g. noise, music, speech, etc.) and classifies the audio stream by
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finding the most likely sequence of models; and (2) metric-based segmentation
[4], which defines some metric to compare the spectral statistics at both sides
of successive points of the audio signal, and hypothesizes those boundaries
whose metric values exceed a given threshold. The first approach requires
the availability of enough training data to estimate the models of acoustic
classes and does not generalize to unseen conditions. The second approach,
sometimes referred as blind (unsupervised) segmentation, does not suffer from
these limitations, but its performance depends highly on the metric and the
threshold. Various metrics have been proposed in the literature. The most cited
are the Generalized Likelihood Ratio (GLR) [5] and the Bayesian Information
Criterion (BIC) [4].

The Diarization task assume no prior knowledge about the speakers or how
many people participate in the meeting. In order to get acquainted with the
problem, the data and the evaluation methodology, we have taken as a baseline
a simplified version of the International Computer Science Institute (ICSI) RT06s
system as presented in [2]. Our submission still uses the multi-channel and
agglomerative clustering capabilities from ICSI’s software while using our own
Speech Activity Detection (SAD) algorithm, parameterization and avoiding the
use of several algorithms in order to make the system more lightweight. Hence
we have used an approach which performs the clustering through a modified BIC
measure to decide which pairs of clusters to merge and to determine when to
stop merging clusters, as in [2].

In addition, some novelties to the diarization system are studied. The
use of the Frequency Filtering (FF) parameters instead the classical Mel
Frequency Cepstral Coefficients (MFCCs) has been introduced in the speech
parameterization. Other of them, a post-processing module is applied after each
Viterbi decoding. It looks for orphan speaker segments with small duration
and splits them between the adjacent segments. Other new feature is a small
modification to the cluster complexity algorithm. It avoids the creation of very
small clusters, which do not alter the real system outcome greatly but do pose
a burden on execution time.

The following sections give a brief overview of the diarization system focusing
in the novelties introduced. Finally, the results section provides the Diarization
Error (DER) obtained by the system in the NIST RT07S Evaluation and some
comments.

2 System description

The input signal from each one of the multiple distant microphones (mdm)
channels, if they are available, is first Wiener filtered using the implementation
from the QIO front-end [6]. These channels are then fed into the Beamforming
code implemented by ICSI [7] in order to obtain a single enhanced channel to
be further processed. Such output channel is analyzed by the Speech Activity
Detector (SAD) from UPC [8] in order to obtain the Speech segments to be fed
into the clustering algorithm. The Non-Speech segments are ignored from further
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processing. The enhanced speech data is parameterized using 30 Frequency
Filtering (FF) features as described in [9] and fed into an evolution of ICST’s
speaker agglomerative clustering system [2].

n channels n channels

Wiener Acoustic FF SVM-based Agglomerative
Filtering Beamforming parameters SAD clustering

Fig. 1. Brief scheme of the UPC implementation of the RT’07 diarization system

2.1 Wiener Filtering

We used the noise reduction implementation from the QIO front-end [6]. The
Wiener filter noise reduction technique was applied on each channel input
waveform. That depends on a noise estimate made over frames judged to be
Non-Speech. Despite the SAD used in the next stages of the diarization system,
in this phase we used the procedure from the QIO front-end: The noise estimate
is initialized from the beginning of each utterance, assuming each sentence starts
with a period of Non-Speech, and updated using later frames of the utterance
decided to be Non-Speech based on an energy threshold.

2.2 Acoustic Beamforming

The Delay-and-Sum (D&S) technique [10] is one of the simplest beamforming
techniques but still gives a very good performance. It is based on the fact that
applying different phase weights to the input channels the main lobe of the
directivity pattern can be steered to a desired location, where the acoustic input
comes from. It differs from the simpler D&S beamformer in that an independent
weight is applied to each of the channels before summing them. The principle of
operation of D&S can be seen in Figure 2.

If we assume the distance between the speech source and the microphones is
enough far we can hypothesize that the speech wave arriving to each microphone
is flat. Therefore, the difference between the input signals, only taking into
account the wave path and without take care about channel distortion, is a
time delay of arrival due the different positions of the microphones with regard
to the source. So if we estimate the time 7, see Figure 2, we could synchronize
two different input signal in order to enhance the speaker information and reduce
the additive white noise.

Hence given the signals captured by N microphones, x;[n] withi=0... N—1
(where n indicates time steps) if we know their individual relative delays d(0, %)
(called Time Delay of Arrival, TDOA) with respect to a common reference
microphone xg , we can obtain the enhanced signal using Equation (1).

N-—1
y(n) = xo[n] + Z Wiziln — d(0,1)] (1)
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Fig. 2. Filter and Sum algorithm block diagram

The same technique is applied in both training and testing speech leading to
matched conditions in the identification. By adding together the aligned signals
the usable speech adds together and the ambient noise (assuming it is random
and has a similar probability function) will be reduced. Using D&S, according to
[10], we can obtain up to a 3dB SNR improvement each time that we double the
number of microphones. In order to estimate the TDOA between two segments
from two microphones we used the generalised cross correlation with phase
transform (GCC-PHAT) method [11]. Given two signals z;(n) and x;(n) the
GCC-PHAT is defined as:

_ (O[]
| (X5 (O]
where X;(f) and X,;(f) are the Fourier transforms of the two signals and [|*

denotes the complex conjugate. The TDOA for two microphones is estimated
as:

Gprar, (f) (2)

dpmar, = arg max Rpmar(dij) 3)

where RPHAT” (d) is the inverse Fourier transform of GPHAT” (f), the
Fourier Transform of the estimated cross correlation phase. The maximum value
of Rpgar,,;(d) corresponds to the estimated TDOA.

In this work we have estimated the TDOA value using a window of 500 ms. at
rate of 250 ms. applied on the wiener filtered channels. During the development
some experiments were performed with different sizes and shifts of window, but
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we did not find any improvement in the overall DER error. The weighting factor
W applied to each microphone is computed depending the cross correlation
between each channel and the reference channel.

2.3 SVM-based Speech Activity Detection

The SAD module used in this work is based on SVM classifier [12]. The developed
system showed a good performance in the last RT SAD Evaluations [8], hence
we have chosen this SAD implementation due to the fact it is adapted to NIST
metric about speech activity detection since it penalizes more the Speech class
than the Non-Speech class.

The usual training algorithm of the SVM classifier was enhanced in order to
cope with that problem of dataset reduction, proposing a fast algorithm based on
Proximal SVM (PSVM). Besides that, the SVM learning process was adjusted
in order to take into account the specific characteristics of the metric used in the
NIST Rich Transcription (RT) evaluations. The resulting SVM SAD system was
tested with the RT06 data and it showed better scores than the GMM-based
system which ranked among the best systems in the RT06 evaluation [8].

A set of several hundred of thousand of examples is a usual amount of data
for classical audio and speech processing techniques that involve GMM. However,
it is an enormous number of feature vectors to be used for a usual SVM training
process and hardly makes such training feasible in practice. Alternative methods
should be effectively applied to reduce the amount of data.

Proximal Support Vector Machine (PSVM) has been recently introduced in
[13] as a result of the substitution of the inequality constraint of a classical SVM
yi(wz; +b) > 1 by the equality constraint y;(wx; + b) = 1, where y; stands for a
label of a vector x;, w is the norm of the separating hyperplane Hy, and b is the
scalar bias of the hyperplane H. This simple modification significantly changes
the nature of the optimization problem. Unlike conventional SVM, PSVM solves
a single square system of linear equations and thus it is very fast to train. As a
consequence, it turns out that it is possible to obtain an explicit exact solution
to the optimization problem [13].

Figure 3 shows a geometrical interpretation of the change. H_; and H; planes
do not bound the negatively- and the positively-labeled data anymore, but can
be viewed as prozimal planes around which the points of each class are clustered
and between which the separating hyperplane Hj lies. In the nonlinear case of
PSVM (we use a Gaussian kernel) the concept of Support Vectors (SVs) (Figure
3, in gray) disappears as the separating hyperplane depends on all data. In that
way, all training data must be preserved for the testing stage.

The proposed algorithm of dataset reduction consists of the following steps:

— Step 1. Divide all the data into chunks of 1000 samples per chunk

— Step 2. Train a PSVM on each chunk performing 5-fold cross-validation (CV)
to obtain the optimal kernel parameter and the C parameter that controls
the training error
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Fig. 3. Proxzimal Support Vector Machine based SVM.

— Step 3. Apply an appropriate threshold to select a pre-defined number of
chunks with the highest CV accuracy

— Step4. Train a classical SVM on the amount of data selected in Step 3

The proposed approach is in fact similar to Vector Quantization (VQ) used
for dataset reduction for SVM in [14]. With Step 2 some kind of clustering
is performed, and Step 3 chooses the data that corresponds to the most
separable clusters. However, unlike VQ, SVs, which are obtained with the
proposed algorithm in Step 4, are taken from the initial data. Besides, additional
homogeneity is achieved because the PSVM data clustering is performed in the
transformed feature spaces with the transformation functions that correspond
to the Gaussian kernel and the same kernel type is applied to the chosen data
in Step 4.

The second modification makes use of the knowledge of the specific NIST
metric during the training phase. The NIST metric depends strongly on the
prior distribution of Speech and Non-Speech in the test database. For example,
a system that achieves a 5% error rate at Speech portions and a 5% error rate
at Non-Speech portions, would result in very different NIST error rates for test
databases with different proportion of Speech and Non-Speech segments; in the
case of 90-to-10% ratio of Speech-to-Non-Speech the NIST error rate is 5.6%,
while in the case of 50-to-50% ratio it is 10%. For this reason, if we want to
improve the NIST scores we should penalize the errors from the Speech class
more than those from the Non-Speech class. That is possible for a discriminative
classifier as SVM in the training stage by introducing different costs for the two
classes through the different generalization parameters C_ and C. In that way,
the separating hyperplane Hy will no longer lie exactly in the middle of the H_1
and H; hyperplane (Figure 3). It is worth to mention that favouring a class
in the testing stage (after the classifier is trained) could still be done for SVM
through the bias b of the separating hyperplane.
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2.4 Speech Parameterization

The speech parameterization is based on a short-term estimation of the spectrum
energy in several sub-bands. The beamformed channel was analyzed in frames of
30 milliseconds at intervals of 10 milliseconds and 16 kHz of sampling frequency.
Each frame window is processed subtracting the mean amplitude from each
sample. A Hamming window was applied to each frame and a FFT computed.
The FFT amplitudes were then averaged in 30 overlapped triangular filters, with
central frequencies and bandwidths defined according to the Mel scale.

The squeme we present follow the classical procedure used to obtain the Mel-
Frequency Cepstral Coefficients (MFCC), however in this approach, instead of
the using Discrete Cosine Transform, such as in the MFCC procedure [15] log
filter.bank energies are filtered by a linear and second order filter. This technique
was called Frequency Filtering (FF) [9]. The filter H(2) = z— 2! have been used
in this work and it’s applied over the log of the filter-bank energies. The shape
of this filter allow a best classification due it emphasizes regions of the spectrum
with high speaker information yielding more discriminative information. This
parameters have show a good results in the last CLEAR Evaluation Campaign
in the acoustic person identification task [16].

A total of 30 FF coefficients had used in this work and no A or A — A
parameters. The choice of this kind of parameters is based on the fact that
the using of the FF instead the classic MFCC has shown the best results
in both speech and speaker recognition [17]. This features have shown both
computational efficiency and robustness against noise than the MFCC. In
addition, regarding in the frequency domain imply they have frequency meaning
which permits the use of frequency techniques as masking, noise subtraction,
etc. We can find other interesting characteristics such as they are uncorrelated,
computationally simpler than MFCCs and it does not decrease clean speech
recognition results [18]. Summarizing, the FF filter can be seen as a liftering
operation performed in the spectral domain equalizing the variance of cepstral
coefficients.

2.5 Improvements in agglomerative clustering

Thequeme we present follow the classical procedure used to obtain the Mel-
Frequency Cepstral Coefficients (MFCC), however in this approach, instead
approach is based on a iterative segmentation by an ergodic Hidden Markov
Model (HMM), which models the acoustic data and their temporal evolution.
The system starts with a homogeneous splitting of the data among an initial
number of cluster equal to the initial number of states. Next the Viterbi decoding,
it merges the pair of cluster more acoustically similar by a modified version of
BIC [19]. The BIC measure also handles the stop criterion which occurs if the
remaining clusters are below a threshold in the likelihood function. In the end-
iteration each remaining state is taken to represent a different speaker.
Changes to the diarization system from ICSI are oriented towards decreasing
the runtime of the system while maintaining as much as possible the performance
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from the original. For instance, in this version it does not use delays as features,
does not perform any kind of purification to the clusters and uses linear
initialization by splitting evenly all data among the number of determined initial
clusters.

In addition, novelties to the diarization system are a post-processing module
that looks for orphan speaker segments with small duration and splits them
between both adjacent segments and a small modification to the cluster
complexity algorithm to avoid the creation of very small clusters, which do not
alter the real system outcome greatly but do pose a burden on execution time.

The cluster complexity modification allow drop off small clusters which are
modelled by a few Gaussians. The class pruned does not take part in the following
segmentations and after the next segmentation step its data is splitted among
the remaining classes.

At the end of each segmentation, the final post-processing of the boundaries
analyzes whose shortest segments normally associated to false alarms in this
kind of tracking implementation. All those segments with duration small than
1.1*MD (Minimum Duration) are processed through a sliding window. From the
pre-boundary up to the post-boundary all data inside the window are evaluated
using the model of the previous, current and posterior cluster and the new
boundary is chosen depending the maximum computed likelihood. Once the
last iteration is completed, the system reach the stop criteria and next the last
post-processing of the boundaries, the final hypothesis is obtained.

The window data are evaluated

. on the neighbour models and
Frame decision the current model
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Fig. 4. The final stage of the algorithm consists in a post-processing of the short segment
boundaries at the final of each segmentation. A sliding windows are applied on the
shortest clusters in order to decide with more accuracy the real boundaries

3 Experiments and results

This section summarizes the results for the evaluation of the UPC diarization
system. It examines the differences between the two SAD depending systems as
well as the improvement achieved by the mdm systems compared to the sdm
approach.

The Table 1 shows the performance of the SAD module in the different Rich
Transcription Evaluations conducted in the surrounding of the conference room
environment.
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SAD SVM-based
RT’05 sdm | RT'06 sdm | RT’07 sdm | RT’07 mdm-softsad | RT’07 mdm-hardsad

| 803% | 488% | 7.03% | 5.39 % | 4.72 % |

Table 1. SAD error results in the previous RT Evaluation Conference data condition.

The difference between the two mdm systems submitted is the SAD behavior.
The bias b of the separating hyperplane, see section 2.3, is chosen according to
the speaker time error and false alarms produced in the Non-Speech segments of
development data. The weighting which controls the decision boundary between
the Speech/Son-Speech classes is chosen according speaker time error and false
alarms of Non-Speech using the NIST RT06s Evaluation data. That is the same
fashion than the development of the overall diarization system. The conference
NIST RTO06s evaluation was used to perform all the development experiments
for the RTO07s.

The Tables 2 and 3 shows the results obtained by the UPC implementation
in the RT07s. As we can see, the result from the single distant condition is
improved in the multichannel approach. Other interesting feature is the behavior
of the diarization system in function of the SAD performance. The system seems
to behave in a similar fashion in spite of the differences of the SAD applied.
However, more and accurate experiments must be done in this line trying to find
the tradeoff between the speech false alarms and the diarization performance.

Overlap SPKR Error, Primary Metric
sdm |mdm—softsad| mdm-hardsad

[27.2% ] 2270% | 2259% |

Table 2. RT07s Diarization error results of the UPC implementation using the Primary
Metric of NIST which considers overlapping of speaker segments

Non-Overlap SPKR Error
sdm | mdm-softsad | mdm-hardsad

[25.06 % | 1965% | 1975% |

Table 3. RT(07s Diarization error results of the UPC implementation without
considering overlapping of speaker segments

Finally, in the Table 4 we can see the RT07s DER per show of the mdm-
softsad system as well as some experiments performed after the Evaluation.
We can observe a high variance between the DER errors from different shows,
motivated by the difficulty to tune all the parameters using the RT06s data,
around 4 hours of speech. The mdm-noFE system differs from the mdm-softsad
only in the number of FF parameters, it uses a vector size of 28. This system
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does not use the first and last coefficients of the FF. Note that the first and the
last coefficients of the FF output of each frame contain absolute energy [20], so
they can carry much noise. The last system in the Table, the mdm-nocomplez
does not implements the modification of the complexity algorithm, it means, no
pruning of the small clusters are done.

On the one hand, as we can note in Table 4, the use of the lateral-band
coefficients performs badly in the diarization system and, in overall, it is better
do not include this features in the speaker modelling. On the other hand, the
pruning of small clusters on the complexity algorithm significantly affects the
diarization error, over a 5 % of DER fall down by using the complexity algorithm
modification, see Table 4 instead the original one from ICSI. Some experiments
during the development showed a best behavior of this technique and it could
be interesting to find the minimum cluster complexity out to decide the pruning
as a tradeoff between the DER degradation and the runtime of the system.

Overlap SPKR Error
| show mdm-softsad | mdm-noE | mdm-nocomplex

CMU _20061115-1030 57.58 % 39.68 % 23.51 %
CMU _20061115-1530 11.46 % 12.64 % 15.12 %

EDI_20061113-1500 24.44 % 24.53 % 31 %
EDI 20061114-1500 17.97 % 15.39 % 17.16 %
NIST 20051104-1515 11.16 % 11.39 % 11.23 %
NIST _20060216-1347 5.62 % 11.4 % 10.77 %
VT _20050408-1500 713 % 6.9 % 7.44 %
VT _20050425-1000 49.02 % 34.3 % 28.66 %
DER global 22.70 % 19.36 % 17.83 %

Table 4. RT07s Diarization error per show of the (mdm-softsad) system. In addition
some exrperiments posterior to the Evaluation are showed, one of them without using
the first and last coefficients of the FF and the other one, without the modification of
the complezity algorithm.

4 Conclusions

In this work the authors have presented the UPC Diarization system and
the results obtained in the NIST RT07s Diarization Evaluation on Conference
room data. We have described and implementation of an agglomerative
clustering approach based on a software from the ICSI. In addition some
novelties are introduced in the diarization system. A Speech/Non-Speech
detection module based on a Support Vector Machine is studied. In the speech
parameterization the using of Frequency Filtering coefficients is introduced
and minor modifications to the complexity selection algorithm and a new
post-processing technique are tested looking for a runtime reduction while
maintiaining as much as possible the performance of the system. The results
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obtained in the RT07s show that the fine tuning of the SAD seems not affect
significativily the DER, of the global system. In addition, in the mdm approach,
the DER achieved outperforms the results from the sdm algorithm in all show
conditions. Therefore, the using of a simple delay-and-sum algorithm to enhace
the signal aids the system to obtain a better clustering. Finally, the main goal
of the UPC evaluation is achieved and a diarization system as baseline system
for further development and research have been implemented with promising
results.
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