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t. In this paper the authors present the UPC speakerdiarization system for the NIST Ri
h Trans
ription Evaluation (RT07s)[1℄ 
ondu
ted on the 
onferen
e environment. The presented system isbased on the ICSI RT06s system, whi
h employs agglomerative 
lusteringwith a modi�ed Bayesian Criterion (BIC) measure to de
ide whi
hpairs of 
lusters to merge and to determine when to stop merging
lusters [2℄. This is the �rst parti
ipation of the UPC in the RT SpeakerDiarization Evaluation and the purpose of this work has been the
onsolidation of a baseline system whi
h 
an be used in the futurefor further resear
h in the �eld of diarization. We have introdu
ed,as prior modules before the diarization system, an Spee
h/Non-Spee
hdete
tion module based on a Support Ve
tor Ma
hine from UPC anda Wiener Filtering from an implementation of the QIO front-end. Inthe spee
h parameterization a Frequen
y Filtering (FF) of the �lter-bank energies is applied instead the 
lassi
al Dis
rete Cosine Transformin the Mel-Cepstrum analysis. In addition, it is introdu
ed a small
hanges in the 
omplexity sele
tion algorithm and a new post-pro
essingte
hnique whi
h pro
ess the shortest 
lusters at the end of ea
h Viterbisegmentation.1 Introdu
tionAudio segmentation, sometimes referred to as a
ousti
 
hange dete
tion, 
onsistsof exploring an audio �le to �nd a
ousti
ally homogeneous segments, dete
tingany 
hange of speaker, ba
kground or 
hannel 
onditions. It is a patternre
ognition problem, sin
e it strives to �nd the most likely 
ategorization ofa sequen
e of a
ousti
 observations. Audio segmentation be
omes useful as aprepro
essing step in order to trans
ribe the spee
h 
ontent in broad
ast newsand meetings, be
ause regions of di�erent nature 
an be handled in a di�erentway.There are two basi
 approa
hes to this problem: (1) model-basedsegmentation [3℄, whi
h estimates di�erent a
ousti
 models for a 
losed set ofa
ousti
 
lasses (e.g. noise, musi
, spee
h, et
.) and 
lassi�es the audio stream by



II�nding the most likely sequen
e of models; and (2) metri
-based segmentation[4℄, whi
h de�nes some metri
 to 
ompare the spe
tral statisti
s at both sidesof su

essive points of the audio signal, and hypothesizes those boundarieswhose metri
 values ex
eed a given threshold. The �rst approa
h requiresthe availability of enough training data to estimate the models of a
ousti

lasses and does not generalize to unseen 
onditions. The se
ond approa
h,sometimes referred as blind (unsupervised) segmentation, does not su�er fromthese limitations, but its performan
e depends highly on the metri
 and thethreshold. Various metri
s have been proposed in the literature. The most 
itedare the Generalized Likelihood Ratio (GLR) [5℄ and the Bayesian InformationCriterion (BIC) [4℄.The Diarization task assume no prior knowledge about the speakers or howmany people parti
ipate in the meeting. In order to get a
quainted with theproblem, the data and the evaluation methodology, we have taken as a baselinea simpli�ed version of the International Computer S
ien
e Institute (ICSI) RT06ssystem as presented in [2℄. Our submission still uses the multi-
hannel andagglomerative 
lustering 
apabilities from ICSI's software while using our ownSpee
h A
tivity Dete
tion (SAD) algorithm, parameterization and avoiding theuse of several algorithms in order to make the system more lightweight. Hen
ewe have used an approa
h whi
h performs the 
lustering through a modi�ed BICmeasure to de
ide whi
h pairs of 
lusters to merge and to determine when tostop merging 
lusters, as in [2℄.In addition, some novelties to the diarization system are studied. Theuse of the Frequen
y Filtering (FF) parameters instead the 
lassi
al MelFrequen
y Cepstral Coe�
ients (MFCCs) has been introdu
ed in the spee
hparameterization. Other of them, a post-pro
essing module is applied after ea
hViterbi de
oding. It looks for orphan speaker segments with small durationand splits them between the adja
ent segments. Other new feature is a smallmodi�
ation to the 
luster 
omplexity algorithm. It avoids the 
reation of verysmall 
lusters, whi
h do not alter the real system out
ome greatly but do posea burden on exe
ution time.The following se
tions give a brief overview of the diarization system fo
usingin the novelties introdu
ed. Finally, the results se
tion provides the DiarizationError (DER) obtained by the system in the NIST RT07S Evaluation and some
omments.2 System des
riptionThe input signal from ea
h one of the multiple distant mi
rophones (mdm)
hannels, if they are available, is �rstWiener �ltered using the implementationfrom the QIO front-end [6℄. These 
hannels are then fed into the Beamforming
ode implemented by ICSI [7℄ in order to obtain a single enhan
ed 
hannel tobe further pro
essed. Su
h output 
hannel is analyzed by the Spee
h A
tivityDete
tor (SAD) from UPC [8℄ in order to obtain the Spee
h segments to be fedinto the 
lustering algorithm. The Non-Spee
h segments are ignored from further



IIIpro
essing. The enhan
ed spee
h data is parameterized using 30 Frequen
yFiltering (FF) features as des
ribed in [9℄ and fed into an evolution of ICSI'sspeaker agglomerative 
lustering system [2℄.
Fig. 1. Brief s
heme of the UPC implementation of the RT'07 diarization system2.1 Wiener FilteringWe used the noise redu
tion implementation from the QIO front-end [6℄. TheWiener �lter noise redu
tion te
hnique was applied on ea
h 
hannel inputwaveform. That depends on a noise estimate made over frames judged to beNon-Spee
h. Despite the SAD used in the next stages of the diarization system,in this phase we used the pro
edure from the QIO front-end: The noise estimateis initialized from the beginning of ea
h utteran
e, assuming ea
h senten
e startswith a period of Non-Spee
h, and updated using later frames of the utteran
ede
ided to be Non-Spee
h based on an energy threshold.2.2 A
ousti
 BeamformingThe Delay-and-Sum (D&S) te
hnique [10℄ is one of the simplest beamformingte
hniques but still gives a very good performan
e. It is based on the fa
t thatapplying di�erent phase weights to the input 
hannels the main lobe of thedire
tivity pattern 
an be steered to a desired lo
ation, where the a
ousti
 input
omes from. It di�ers from the simpler D&S beamformer in that an independentweight is applied to ea
h of the 
hannels before summing them. The prin
iple ofoperation of D&S 
an be seen in Figure 2.If we assume the distan
e between the spee
h sour
e and the mi
rophones isenough far we 
an hypothesize that the spee
h wave arriving to ea
h mi
rophoneis �at. Therefore, the di�eren
e between the input signals, only taking intoa

ount the wave path and without take 
are about 
hannel distortion, is atime delay of arrival due the di�erent positions of the mi
rophones with regardto the sour
e. So if we estimate the time τ , see Figure 2, we 
ould syn
hronizetwo di�erent input signal in order to enhan
e the speaker information and redu
ethe additive white noise.Hen
e given the signals 
aptured by N mi
rophones, xi[n] with i = 0 . . .N−1(where n indi
ates time steps) if we know their individual relative delays d(0, i)(
alled Time Delay of Arrival, TDOA) with respe
t to a 
ommon referen
emi
rophone x0 , we 
an obtain the enhan
ed signal using Equation (1).

y(n) = x0[n] +

N−1
∑

i=1

Wixi[n − d(0, i)] (1)
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Fig. 2. Filter and Sum algorithm blo
k diagramThe same te
hnique is applied in both training and testing spee
h leading tomat
hed 
onditions in the identi�
ation. By adding together the aligned signalsthe usable spee
h adds together and the ambient noise (assuming it is randomand has a similar probability fun
tion) will be redu
ed. Using D&S, a

ording to[10℄, we 
an obtain up to a 3dB SNR improvement ea
h time that we double thenumber of mi
rophones. In order to estimate the TDOA between two segmentsfrom two mi
rophones we used the generalised 
ross 
orrelation with phasetransform (GCC-PHAT) method [11℄. Given two signals xi(n) and xj(n) theGCC-PHAT is de�ned as:̂

GPHATij
(f) =

Xi(f)
[

Xj(f)
]

∗

∣

∣Xi(f)
[

Xj(f)
]

∗
∣

∣

(2)where Xi(f) and Xj(f) are the Fourier transforms of the two signals and []∗denotes the 
omplex 
onjugate. The TDOA for two mi
rophones is estimatedas:
d̂PHATij

= argmax
d

R̂PHAT (dij) (3)where R̂PHATij
(d) is the inverse Fourier transform of ĜPHATij

(f), theFourier Transform of the estimated 
ross 
orrelation phase. The maximum valueof R̂PHATij
(d) 
orresponds to the estimated TDOA.In this work we have estimated the TDOA value using a window of 500 ms. atrate of 250 ms. applied on the wiener �ltered 
hannels. During the developmentsome experiments were performed with di�erent sizes and shifts of window, but



Vwe did not �nd any improvement in the overall DER error. The weighting fa
tor
W applied to ea
h mi
rophone is 
omputed depending the 
ross 
orrelationbetween ea
h 
hannel and the referen
e 
hannel.2.3 SVM-based Spee
h A
tivity Dete
tionThe SAD module used in this work is based on SVM 
lassi�er [12℄. The developedsystem showed a good performan
e in the last RT SAD Evaluations [8℄, hen
ewe have 
hosen this SAD implementation due to the fa
t it is adapted to NISTmetri
 about spee
h a
tivity dete
tion sin
e it penalizes more the Spee
h 
lassthan the Non-Spee
h 
lass.The usual training algorithm of the SVM 
lassi�er was enhan
ed in order to
ope with that problem of dataset redu
tion, proposing a fast algorithm based onProximal SVM (PSVM). Besides that, the SVM learning pro
ess was adjustedin order to take into a

ount the spe
i�
 
hara
teristi
s of the metri
 used in theNIST Ri
h Trans
ription (RT) evaluations. The resulting SVM SAD system wastested with the RT06 data and it showed better s
ores than the GMM-basedsystem whi
h ranked among the best systems in the RT06 evaluation [8℄.A set of several hundred of thousand of examples is a usual amount of datafor 
lassi
al audio and spee
h pro
essing te
hniques that involve GMM. However,it is an enormous number of feature ve
tors to be used for a usual SVM trainingpro
ess and hardly makes su
h training feasible in pra
ti
e. Alternative methodsshould be e�e
tively applied to redu
e the amount of data.Proximal Support Ve
tor Ma
hine (PSVM) has been re
ently introdu
ed in[13℄ as a result of the substitution of the inequality 
onstraint of a 
lassi
al SVM
yi(wxi + b) ≥ 1 by the equality 
onstraint yi(wxi + b) = 1, where yi stands for alabel of a ve
tor xi, w is the norm of the separating hyperplane H0, and b is thes
alar bias of the hyperplane H0. This simple modi�
ation signi�
antly 
hangesthe nature of the optimization problem. Unlike 
onventional SVM, PSVM solvesa single square system of linear equations and thus it is very fast to train. As a
onsequen
e, it turns out that it is possible to obtain an expli
it exa
t solutionto the optimization problem [13℄.Figure 3 shows a geometri
al interpretation of the 
hange.H−1 and H1 planesdo not bound the negatively- and the positively-labeled data anymore, but 
anbe viewed as proximal planes around whi
h the points of ea
h 
lass are 
lusteredand between whi
h the separating hyperplane H0 lies. In the nonlinear 
ase ofPSVM (we use a Gaussian kernel) the 
on
ept of Support Ve
tors (SVs) (Figure3, in gray) disappears as the separating hyperplane depends on all data. In thatway, all training data must be preserved for the testing stage.The proposed algorithm of dataset redu
tion 
onsists of the following steps:� Step 1. Divide all the data into 
hunks of 1000 samples per 
hunk� Step 2. Train a PSVM on ea
h 
hunk performing 5-fold 
ross-validation (CV)to obtain the optimal kernel parameter and the C parameter that 
ontrolsthe training error
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Fig. 3. Proximal Support Ve
tor Ma
hine based SVM.� Step 3. Apply an appropriate threshold to sele
t a pre-de�ned number of
hunks with the highest CV a

ura
y� Step4. Train a 
lassi
al SVM on the amount of data sele
ted in Step 3The proposed approa
h is in fa
t similar to Ve
tor Quantization (VQ) usedfor dataset redu
tion for SVM in [14℄. With Step 2 some kind of 
lusteringis performed, and Step 3 
hooses the data that 
orresponds to the mostseparable 
lusters. However, unlike VQ, SVs, whi
h are obtained with theproposed algorithm in Step 4, are taken from the initial data. Besides, additionalhomogeneity is a
hieved be
ause the PSVM data 
lustering is performed in thetransformed feature spa
es with the transformation fun
tions that 
orrespondto the Gaussian kernel and the same kernel type is applied to the 
hosen datain Step 4.The se
ond modi�
ation makes use of the knowledge of the spe
i�
 NISTmetri
 during the training phase. The NIST metri
 depends strongly on theprior distribution of Spee
h and Non-Spee
h in the test database. For example,a system that a
hieves a 5% error rate at Spee
h portions and a 5% error rateat Non-Spee
h portions, would result in very di�erent NIST error rates for testdatabases with di�erent proportion of Spee
h and Non-Spee
h segments; in the
ase of 90-to-10% ratio of Spee
h-to-Non-Spee
h the NIST error rate is 5.6%,while in the 
ase of 50-to-50% ratio it is 10%. For this reason, if we want toimprove the NIST s
ores we should penalize the errors from the Spee
h 
lassmore than those from the Non-Spee
h 
lass. That is possible for a dis
riminative
lassi�er as SVM in the training stage by introdu
ing di�erent 
osts for the two
lasses through the di�erent generalization parameters C− and C+. In that way,the separating hyperplane H0 will no longer lie exa
tly in the middle of the H−1and H1 hyperplane (Figure 3). It is worth to mention that favouring a 
lassin the testing stage (after the 
lassi�er is trained) 
ould still be done for SVMthrough the bias b of the separating hyperplane.



VII2.4 Spee
h ParameterizationThe spee
h parameterization is based on a short-term estimation of the spe
trumenergy in several sub-bands. The beamformed 
hannel was analyzed in frames of
30 millise
onds at intervals of 10 millise
onds and 16 kHz of sampling frequen
y.Ea
h frame window is pro
essed subtra
ting the mean amplitude from ea
hsample. A Hamming window was applied to ea
h frame and a FFT 
omputed.The FFT amplitudes were then averaged in 30 overlapped triangular �lters, with
entral frequen
ies and bandwidths de�ned a

ording to the Mel s
ale.The squeme we present follow the 
lassi
al pro
edure used to obtain the Mel-Frequen
y Cepstral Coe�
ients (MFCC), however in this approa
h, instead ofthe using Dis
rete Cosine Transform, su
h as in the MFCC pro
edure [15℄ log�lter.bank energies are �ltered by a linear and se
ond order �lter. This te
hniquewas 
alled Frequen
y Filtering (FF) [9℄. The �lter H(z) = z−z−1 have been usedin this work and it's applied over the log of the �lter-bank energies. The shapeof this �lter allow a best 
lassi�
ation due it emphasizes regions of the spe
trumwith high speaker information yielding more dis
riminative information. Thisparameters have show a good results in the last CLEAR Evaluation Campaignin the a
ousti
 person identi�
ation task [16℄.A total of 30 FF 
oe�
ients had used in this work and no ∆ or ∆ − ∆parameters. The 
hoi
e of this kind of parameters is based on the fa
t thatthe using of the FF instead the 
lassi
 MFCC has shown the best resultsin both spee
h and speaker re
ognition [17℄. This features have shown both
omputational e�
ien
y and robustness against noise than the MFCC. Inaddition, regarding in the frequen
y domain imply they have frequen
y meaningwhi
h permits the use of frequen
y te
hniques as masking, noise subtra
tion,et
. We 
an �nd other interesting 
hara
teristi
s su
h as they are un
orrelated,
omputationally simpler than MFCCs and it does not de
rease 
lean spee
hre
ognition results [18℄. Summarizing, the FF �lter 
an be seen as a lifteringoperation performed in the spe
tral domain equalizing the varian
e of 
epstral
oe�
ients.2.5 Improvements in agglomerative 
lusteringThequeme we present follow the 
lassi
al pro
edure used to obtain the Mel-Frequen
y Cepstral Coe�
ients (MFCC), however in this approa
h, insteadapproa
h is based on a iterative segmentation by an ergodi
 Hidden MarkovModel (HMM), whi
h models the a
ousti
 data and their temporal evolution.The system starts with a homogeneous splitting of the data among an initialnumber of 
luster equal to the initial number of states. Next the Viterbi de
oding,it merges the pair of 
luster more a
ousti
ally similar by a modi�ed version ofBIC [19℄. The BIC measure also handles the stop 
riterion whi
h o

urs if theremaining 
lusters are below a threshold in the likelihood fun
tion. In the end-iteration ea
h remaining state is taken to represent a di�erent speaker.Changes to the diarization system from ICSI are oriented towards de
reasingthe runtime of the system while maintaining as mu
h as possible the performan
e



VIIIfrom the original. For instan
e, in this version it does not use delays as features,does not perform any kind of puri�
ation to the 
lusters and uses linearinitialization by splitting evenly all data among the number of determined initial
lusters.In addition, novelties to the diarization system are a post-pro
essing modulethat looks for orphan speaker segments with small duration and splits thembetween both adja
ent segments and a small modi�
ation to the 
luster
omplexity algorithm to avoid the 
reation of very small 
lusters, whi
h do notalter the real system out
ome greatly but do pose a burden on exe
ution time.The 
luster 
omplexity modi�
ation allow drop o� small 
lusters whi
h aremodelled by a few Gaussians. The 
lass pruned does not take part in the followingsegmentations and after the next segmentation step its data is splitted amongthe remaining 
lasses.At the end of ea
h segmentation, the �nal post-pro
essing of the boundariesanalyzes whose shortest segments normally asso
iated to false alarms in thiskind of tra
king implementation. All those segments with duration small than
1.1*MD (Minimum Duration) are pro
essed through a sliding window. From thepre-boundary up to the post-boundary all data inside the window are evaluatedusing the model of the previous, 
urrent and posterior 
luster and the newboundary is 
hosen depending the maximum 
omputed likelihood. On
e thelast iteration is 
ompleted, the system rea
h the stop 
riteria and next the lastpost-pro
essing of the boundaries, the �nal hypothesis is obtained.
Fig. 4. The �nal stage of the algorithm 
onsists in a post-pro
essing of the short segmentboundaries at the �nal of ea
h segmentation. A sliding windows are applied on theshortest 
lusters in order to de
ide with more a

ura
y the real boundaries3 Experiments and resultsThis se
tion summarizes the results for the evaluation of the UPC diarizationsystem. It examines the di�eren
es between the two SAD depending systems aswell as the improvement a
hieved by the mdm systems 
ompared to the sdmapproa
h.The Table 1 shows the performan
e of the SAD module in the di�erent Ri
hTrans
ription Evaluations 
ondu
ted in the surrounding of the 
onferen
e roomenvironment.



IXSAD SVM-basedRT'05 sdm RT'06 sdm RT'07 sdm RT'07 mdm-softsad RT'07 mdm-hardsad
8.03 % 4.88 % 7.03 % 5.39 % 4.72 %Table 1. SAD error results in the previous RT Evaluation Conferen
e data 
ondition.The di�eren
e between the two mdm systems submitted is the SAD behavior.The bias b of the separating hyperplane, see se
tion 2.3, is 
hosen a

ording tothe speaker time error and false alarms produ
ed in the Non-Spee
h segments ofdevelopment data. The weighting whi
h 
ontrols the de
ision boundary betweenthe Spee
h/Son-Spee
h 
lasses is 
hosen a

ording speaker time error and falsealarms of Non-Spee
h using the NIST RT06s Evaluation data. That is the samefashion than the development of the overall diarization system. The 
onferen
eNIST RT06s evaluation was used to perform all the development experimentsfor the RT07s.The Tables 2 and 3 shows the results obtained by the UPC implementationin the RT07s. As we 
an see, the result from the single distant 
ondition isimproved in the multi
hannel approa
h. Other interesting feature is the behaviorof the diarization system in fun
tion of the SAD performan
e. The system seemsto behave in a similar fashion in spite of the di�eren
es of the SAD applied.However, more and a

urate experiments must be done in this line trying to �ndthe tradeo� between the spee
h false alarms and the diarization performan
e.Overlap SPKR Error, Primary Metri
sdm mdm-softsad mdm-hardsad

27.72 % 22.70 % 22.59 %Table 2. RT07s Diarization error results of the UPC implementation using the PrimaryMetri
 of NIST whi
h 
onsiders overlapping of speaker segmentsNon-Overlap SPKR Errorsdm mdm-softsad mdm-hardsad
25.06 % 19.65 % 19.75 %Table 3. RT07s Diarization error results of the UPC implementation without
onsidering overlapping of speaker segmentsFinally, in the Table 4 we 
an see the RT07s DER per show of the mdm-softsad system as well as some experiments performed after the Evaluation.We 
an observe a high varian
e between the DER errors from di�erent shows,motivated by the di�
ulty to tune all the parameters using the RT06s data,around 4 hours of spee
h. The mdm-noE system di�ers from the mdm-softsadonly in the number of FF parameters, it uses a ve
tor size of 28. This system



Xdoes not use the �rst and last 
oe�
ients of the FF. Note that the �rst and thelast 
oe�
ients of the FF output of ea
h frame 
ontain absolute energy [20℄, sothey 
an 
arry mu
h noise. The last system in the Table, the mdm-no
omplexdoes not implements the modi�
ation of the 
omplexity algorithm, it means, nopruning of the small 
lusters are done.On the one hand, as we 
an note in Table 4, the use of the lateral-band
oe�
ients performs badly in the diarization system and, in overall, it is betterdo not in
lude this features in the speaker modelling. On the other hand, thepruning of small 
lusters on the 
omplexity algorithm signi�
antly a�e
ts thediarization error, over a 5 % of DER fall down by using the 
omplexity algorithmmodi�
ation, see Table 4 instead the original one from ICSI. Some experimentsduring the development showed a best behavior of this te
hnique and it 
ouldbe interesting to �nd the minimum 
luster 
omplexity out to de
ide the pruningas a tradeo� between the DER degradation and the runtime of the system.Overlap SPKR Errorshow mdm-softsad mdm-noE mdm-no
omplexCMU_20061115-1030 57.58 % 39.68 % 23.51 %CMU_20061115-1530 11.46 % 12.64 % 15.12 %EDI_20061113-1500 24.44 % 24.53 % 31 %EDI_20061114-1500 17.97 % 15.39 % 17.16 %NIST_20051104-1515 11.16 % 11.39 % 11.23 %NIST_20060216-1347 5.62 % 11.4 % 10.77 %VT_20050408-1500 7.13 % 6.9 % 7.44 %VT_20050425-1000 49.02 % 34.3 % 28.66 %DER global 22.70 % 19.36 % 17.83 %Table 4. RT07s Diarization error per show of the (mdm-softsad) system. In additionsome experiments posterior to the Evaluation are showed, one of them without usingthe �rst and last 
oe�
ients of the FF and the other one, without the modi�
ation ofthe 
omplexity algorithm.4 Con
lusionsIn this work the authors have presented the UPC Diarization system andthe results obtained in the NIST RT07s Diarization Evaluation on Conferen
eroom data. We have des
ribed and implementation of an agglomerative
lustering approa
h based on a software from the ICSI. In addition somenovelties are introdu
ed in the diarization system. A Spee
h/Non-Spee
hdete
tion module based on a Support Ve
tor Ma
hine is studied. In the spee
hparameterization the using of Frequen
y Filtering 
oe�
ients is introdu
edand minor modi�
ations to the 
omplexity sele
tion algorithm and a newpost-pro
essing te
hnique are tested looking for a runtime redu
tion whilemaintiaining as mu
h as possible the performan
e of the system. The results



XIobtained in the RT07s show that the �ne tuning of the SAD seems not a�e
tsigni�
ativily the DER of the global system. In addition, in the mdm approa
h,the DER a
hieved outperforms the results from the sdm algorithm in all show
onditions. Therefore, the using of a simple delay-and-sum algorithm to enha
ethe signal aids the system to obtain a better 
lustering. Finally, the main goalof the UPC evaluation is a
hieved and a diarization system as baseline systemfor further development and resear
h have been implemented with promisingresults.A
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