

The IBM RT07 Speaker Diarization Evaluation Systems

Jing Huang, Etienne Marcheret, Karthik Visweswariah,

Gerasimos Potamianos

NIST RT07 Workshop, May 11, 2007 © 2007 IBM Corporation

Alex Inc.	1			1
The state of the s	renn	Raca	anchice	
	1936 1991 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL STATES AND ADDRESS		

Outline sad spkr.

- Data for training (SAD) and development
- Speech activity detection systems
 - Changes from RT06
- Speaker diarization systems:
 - IBM1: Used for speaker diarization task.
 - IBM2: Used for SASTT task.
 - Speaker model refinements.
 - SAD Impact on Speaker error rate.
 - Our brittle cluster merge threshold.
- Results on the development data (lect.)
- Results on the eval07 data (lect.)
- Post game analysis.
- Conclusions

-		-	ų.	
-		_	-	_
	-	_		_
	-			

Data for Training/Development

Training data:

- Relevant to SAD step only.
- ICSI meeting (70 hours)
- NIST meeting pilot (15 hours)
- RT04 dev/eval (2.5 hours)
- RT05 dev (6 hours)
- AMI seminars (16 hours)
- CHIL03/04 data (4 hours)
- CHIL06/07 dev (6 hours)
- 11 five-minute segments from CHIL RT06s eval

Development data:

- SAD tuning: 17 five-minute segments from CHIL RT06s eval
- SPKR tuning: 27 five-minute segments from CHIL RT06s eval (-UPC coffee break)

	and the second se
_	

SAD Systems

• RT06:

- Based on low latency telephony system:
 - Objective:
 - Minimize FA (non-stationary noise, leakage from echo cancel.)
 - Little impact on WER in clean.
 - System
 - 3 class
 - > SIL, AMN, BRN, VN (silence, background noise, breathe, vocalized noise)
 - K, S, SH, TS (unvoiced fricatives, plosives) (sp/sil = f(adjacent class))
 - > AA, AE, AH,..... (voiced)
 - Model likelihoods fused with energy contour.
 - 60 msec block average for frame level score.
 - Heuristic smoothing to deal with eating into words (FA/FR for RT tasks).

• RT07:

- Objective:
 - Min FA+FR wrt reference alignment.
 - 2 class models: (SIL, AMN, BRN, VN), (all speech phones)
 - Sp/Sil: 5 state HMM, bottom up clustering of SI AM, MAP adapt to CHIL data.

_	
	_
_	

SAD performance

- Tune FA/FR = f(num speech gauss, num sil gauss)
 - sad.<num sp gauss>.<num sil gauss>
 - 27 segment eval06:

#Sp G	#Sil G	FR	FA	DER
100	48	1.6	2.2	3.8
100	32	1.0	3.3	4.3
100	16	0.4	6.2	6.6
256	32	0.3	7.3	7.6
256	16	0.2	12.2	12.4

- 17 segment eval06
 - RT07 sys: sad.100.32 SDM = 3.0% DER
 - RT06 sys: SDM = 7.5% DER, MDM (Rover) = 5.2% DER

Speaker Diarization System (1)

- Procedure (IBM1, Diarization task) (19 dim MFCC, no c0)
 - (1) Initial uniform blocking based on minimum number of frames/spk (4k).
 - (2) Diagonal covariance single Gaussian model for each "speaker" block, "SAD" block.
 - (3) Iterative refinement of speaker models:
 - Mahalanobis measure: assign SAD block, re-estimate speaker model.
 - (4) Cluster Merging: Mahalanobis measure
 - Merge stopped on development test set tuned threshold.
 - (5) To the remaining speaker clusters make final SAD block assignment (Mah.).

Speaker Diarization System (2)

- Procedure (IBM2, SASTT) (19 dim MFCC, no c0)
 - (1) Initial uniform blocking based on minimum number of frames/spk (4k).
 - (2) FC single Gaussian model for each "speaker" block, "SAD" block.
 - (3) Iterative refinement: Maximum Log Likelihood measure.
 - (4) Cluster Merging: Likelihood loss.
 - Merge stopped on development test set tuned threshold.
 - (5) To the remaining speaker clusters make final SAD block assignment (Likelihood).

	_	
_	_	
_	_	

Model Refinement Steps

- Word level alignment (on the IBM 1 system)
 - feedback to trim SAD segments (squeeze down on SAD FA).
 - (IBM 1 + align)

GMM Speaker Models (on the IBM 2 system)

- Iterative refinement from output of cluster merge step.
 - EM to build GMM (10 mix,. diag, cov.).
 - Frame level re-labeling
 - Score for each speaker model = 150 msec smoothing window (+-75msec).
 - (IBM 2 + refine)
- Allows us to generate speaker boundaries within the SAD segments.
- Replace with SIV system?

SAD Impact on Speaker Error Rate (IBM2 system)

Reduce SAD error:

- 12.3% (0.5 Miss, 11.8 FA) → 4.3% (1.3 Miss, 3.0 FA)
- Average reduction in speaker error rate of 20.3% (56.7% at opt. merge thresh.)
- Expected? Refinement is not robust enough? Threshold is moving!

NIST RT07 Workshop, May 11, 2007 © 2007 IBM Corporation

Development test set

Merge threshold

10

Impact of word level alignment and GMM speaker level refinement (on IBM 2).

	_	_	
_		_	_

Development test set (27 seg.)

11

System	opt. thresh.	SAD (%)	Speaker	DER(%)	
		(1.3FR,3.0FA)	error(%)		
IBM 1	0.6	4.3	6.6	10.9	
IBM 2	7000	4.3	5.0	9.3	
IBM 1+align	0.6	4.3	5.6	9.9	
IBM 1+align	Site Specific	4.3	3.9	8.2	
(Sub. Diar)					
IBM 2 + refine	7000	4.3	3.2	7.5	
(Sub. SASTT)					

		= $=$
_	_	

Evaluation test set

System	opt. thresh.	SAD(%)	Speaker	DER(%)	
	(devset)	(2.4FR, 3.9FA)	error(%)		
IBM 1	0.6	6.3	21.9	28.2	
IBM 2	7000	6.3	24.8	31.1	
IBM 1+align	0.6	6.3	21.0	27.3	
IBM 1+align	Site Specific	6.3	23.7	30.0	
(Sub. Diar)					
IBM 2 + refine	7000	6.3	21.4	27.7	
(Sub. SASTT)					

Align step gives 4% relative. Refine step gives 10.9% relative

Our threshold is not stable.

12

Evaluation set, post game analysis

System	thresh.	SAD(%)	Speaker	DER(%)
		(2.4FR, 3.9FA)	error(%)	
IBM 1	0.6	6.3	21.9	28.2
IBM 2	7000	6.3	23.7	30.0
IBM 1	0.9 (opt)	6.3	18.5	24.8
IBM 2	15000(opt)	6.3	17.6	23.9
IBM 1+align	0.9(opt)	6.3	18.7	25.0
IBM 2 + refine	15000(opt)	6.3	16.5	22.8

26% - 1 spkr.

13

Conclusions

- Likelihood based FC model more sensitive to tuned threshold
 - Approx. 1% absolute reduction in speaker error rate.
- Iterative GMM refinement
 - Approx. 1% absolute reduction in speaker error rate.
- Cluster merge thresholds not generalizing:
 - Modified BIC?
- Replace Iterative GMM refinement step with SIV system.
- Multiple channels (Beamforming).
- Can't we use camera info?