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Abstract. In this paper we describe the AMIDA speaker dizarization
system as it was submitted to the NIST Rich Transcription evaluation
2007 for conference room data. This is done in the context of the his-
tory of this system and other speaker diarization systems. One of the
goals of our system is to have as little tunable parameters as possible,
while maintaining performance. The system consists of a BIC segmenta-
tion/clustering initialization, followed by a combined re-segmentation/cluster
merging algorithm. The Diarization Error Rate (DER) result of our best
system is 17.0 %, accounting for overlapping speech. However, we find
that a slight altering of Speech Activity Detection models has a large
impact on the speaker DER.

1 Introduction

The AMIDA speaker diarization system is an ongoing research effort to inves-
tigate different approaches to the challenging task of speaker segmentation and
clustering of meeting recordings. This year’s efforts have been concentrated on
the use of multiple microphones recordings and exploring different modelling and
initialization approaches.

The task of speaker diarization1 is commonly summarized as determining
who spoke when, where speakers can be given arbitrary labels, i.e, no absolute
identification of speakers is required. This article describes the AMIDA system
and its performance in the Spring NIST Rich Transcription 2007 (RT07s) speaker
diarization task. As the successor of AMI, the EU-funded project AMIDA at-
tempts to develop tools that allow more effective meetings in so-called smart
meeting rooms, which are equipped with many microphones and cameras to
record the meeting process. Automatic data processing tools extract and struc-
ture information, so that meeting participants, who are not available in place
or time, can still benefit from and interact with the meeting process. The AMI
consortium has donated evaluation data for the NIST RT series since 2005.

This paper is organized as follows. First, a recapitulation of earlier TNO/AMI
work is made, and the 2007 system is described. Then, te evaluation results are
discussed, and some experiments with speaker overlap detection are described.

1 The meaning of the term diarization may not be very familiar outside this com-
munity. The word is related to diary, indicating an annotation of events with time
marks.



2 System history and design goals

In 2005, TNO participated in the speaker diarization task for the first time [16].
The system consisted of a speech activity detector (SAD), followed by a Bayesian
Information Criterion (BIC) based segmentation [8] and clustering [7] system.
We had correctly identified the importance of a good SAD as a prerequisite for
acceptable speaker Diarization Error Rates (DER), and obtained low SAD error
rates. However, we had underestimated the sensitivity of the optimal setting of
BIC parameters λ to the test set. Merely tuning the two λ’s from the optimal
setting for development test data (RT04s) to evaluation data (RT05s) reduced
DER from the evaluation results 34.2 % to a post-evaluation result of 25.4 %.

In 2006, where we participated as AMI referring to the increased effort of
co-operation, we attempted to remove the dependence of these parameters λ by
keeping the number of parameters in the speaker models before and after cluster-
ing the same [2]. The influence of λ, that penalizes such a difference in number of
model parameters, is then effectively removed from the BIC. By moving from a
full-covariance single-Gaussian speaker model to a diagonal covariance Gaussian
Mixture speaker model the system became more in-line with other current ap-
proaches [5, 10, 20], allowing Viterbi re-segmentation to fine-tune speaker change
boundaries during the clustering process. These GMM-based re-segmentation
systems showed less sensitivity to the evaluation collection [18], and the drop
in performance seen in going from development (RT05s) to evaluation (RT06s)
data of 7–12 % could partially be attributed to the RT06s data being ‘harder.’

In 2007 we re-designed the system and partially re-wrote the code base. This
year, for the first time, we utilized more information than just the Single Dis-
tant Microphone (SDM) in the Multiple Distant Microphone (MDM) condition,
an opportunity provided by ICSI by sharing their beamforming software with
the research community [3]. This allowed modeling of the beamformer’s delay-
parameters as well as provided for better quality cepstral features, by improving
the SNR.

The goals of the 2007 AMIDA system were to have almost no tunable pa-
rameters, no assumptions on the number of speakers in the meeting, reasonable
speed and better utilization of the available microphones.

3 System description

The general design of the AMIDA 2007 speaker diarization system is depicted
in Fig. 1.

3.1 Signal processing

For all signal processing steps, we used tools made available by third parties.
For the MDM condition we processed the data using the BeamformIt tool [3].
We reduced the analysis window to 32 ms and step size to 16 ms, rather than the
default 500 and 250 ms, in order have the delay feature stream synchronous to



Fig. 1. Overview of the AMIDA speaker diarization system

the cepstral features. The single microphone signal output by the beamformer
was further enhanced using a Wiener filter, by the Qualcomm-ICSI-OGI Aurora
frontend tool [1].

This signal with improved SNR was used to extract 12 PLP coefficients and
log energy, every 16 ms, as calculated over 32 ms windows by the ICSI imple-
mentation rasta [13, 12].

3.2 Speech Activity Detection

Only for this step, we augmented the features with 1st order derivatives esti-
mated over 5 consecutive frames. A two-state HMM was used for SAD, with
diagonal covariance GMMs (number of Gaussians NG = 16) for a speech and
a silence state. Because, since RT06s, the speech activity reference truth is de-
termined from SRI’s forced aligned decoding of the Individual Headset Micro-
phones, we experimented with two sets of models for speech and silence. These
are indicated in Table 1.

3.3 Initial segmentation and clustering

In order to speed up the clustering process we used our old BIC system [16] to
perform an initial clustering. Respecting silence regions as segment boundaries,



Table 1. SAD models and their training data.

Name NG Training data

AMI-dev 16 10 AMI meetings distributed as development test for RT05s
RT-FA 16 RT05s and RT06s evaluation data, with force-aligned reference

we set λ = 1 for both segmentation and clustering, which typically leads to
over-segmentation and under-clustering. If the BIC system was to produce the
final clustering, optimal values for segmentation would be λs ≈ 1.5–2 and for
clustering λc ≈ 6–14. With the ‘ideal’ values of λc,s = 1 we ended up with
typically 40 clusters after this step. The clusters found at this step were used to
train initial diagonal covariance GMMs Λ for each cluster. We used an occupancy
driven approach [4, 18] for determining the number of Gaussians NG,

NG =

⌊

Nf

RCC

+
1

2

⌋

, (1)

where Nf is the number of frames in the cluster and RCC is the ‘cluster complex-
ity ratio’, which we set to 300. This corresponds to about 4.8 seconds/Gaussian.

The clusters are also used to train single Gaussian GMMs for the delay
parameters.

3.4 Agglomerative clustering

This is the main step in the speaker diarization system. It consists of several
smaller steps.

1. First, all silence frames are removed from the feature stream, making it ap-
pear continuous. The silence regions are recovered at the end of the clustering
process. Note that the SAD for determining silence frames does not need to
be the same as in the BIC segmentation/clustering step.

2. A GMM Θ with NG = 64 was trained using all acoustic speech frames of
the meeting, for later usage in the clustering process. In speaker recognition
such a model is known as a ‘Universal Background Model’ (UBM), which is
perhaps too grand a name for a model containing only meeting speakers.

3. Using the NC initial GMMs Λ, do a Viterbi decode using GMMs as single
states in an NC parallel state topology. The new segmentation is used to
train new GMMs for the clusters, changing NG according to (1) if necessary.
This step is repeated several times, and both the cepstral and delay GMMs
are used. We mix the per-frame log likelihoods log L for the acoustic model
ΛA and delay model ΛD using linear interpolation,

log L(at, dt|ΛA, ΛD) = α log L(at|ΛA) + (1 − α) log L(dt|ΛD), (2)

where at and dt are acoustic and delay parameters at frame t. We used a
fixed value α = 0.9.



4. Using Maximum A Posteriori adaptation [11] of the GMM in step 2 to the
data of each cluster, build adapted 64-Gaussian GMMs. For each pair (i, j)
of these NC models Θi, calculate the cross likelihood ratio [15]

RCL(i, j) =
1

Ni

log
L(xi|Θj)

L(xi|Θ
) +

1

Nj

log
L(xj |Θi)

L(xj |Θ)
, (3)

where Ni,j are the number of frames contributing to the clusters i and j,
respectively. Then, determine the pair (I, J) that maximizes RCL

(I, J) = arg max
i,j

RCL(i, j). (4)

If RCL(I, J) > 0, merge the data from I and J to a single cluster, train new
GMMs Λ and continue with step 3. Otherwise, go to the final step.

5. On finalization, insert the silence frames that were removed in step 1.

3.5 Differences from other approaches

All steps described here have been used elsewhere [5, 20], but with slightly differ-
ent implementation details. The order of the delay-and-sum beamforming and
Wiener filtering is traditionally reversed [19]. We applied the filtering after the
beamforming, because we were uneasy about phase difference the Wiener filter-
ing might introduce. We did experiment with the order reversed, but did not
see a performance difference. Applying Wiener filtering to only one signal is less
computationally expensive.

The current ICSI system [19] uses a linear initial clustering with a fixed num-
ber of initial clusters, and many re-segmentation iterations for initial clustering.
Our BIC initial clustering does not assume a maximum number of speakers. This
approach is similar to the LIMSI system [20].

The use of the UBM/GMM cross likelihood ratio is similar to the LIMSI
diarization system for both Meeting [20] and Broadcast News [6] data, but we
do not use a tunable threshold as stopping criterion for RCL, but rather 0.

Also note, that we use two sets of GMMs: one set (with lower NG, depending
on the amount of data available for the cluster) for Viterbi re-segmentation, and
one set (with NG = 64) for determining the cluster to merge and the stopping
criterion. This is computationally expensive, but we found this to give us best
results for development test data.

3.6 Initialization of GMMs

We experienced problems with random k-means initialization of the GMMs. It
had a strong effect in the segmentation/clustering and led to badly reproducing
results. We therefore reverted to a more deterministic estimation of the GMM
parameters, starting with a single GMM and doubling Gaussians until the high-
est power of two below the desired NG, followed by sequentially adding a single
Gaussian until reaching NG. In the re-segmentation process, we used existing



GMMs. When NG had to grow (according to (1)), this was carried out though
adding Gaussians by splitting the Gaussian with highest variance of all feature
dimensions. In reducing NG, the GMM was retrained from scratch.

4 Results

We tabulated the results for development and evaluation data in Table 2, at RT
submission time. Results are reported in the primary evaluation measure defined
by NIST [9], the Diarization Error Rate (DER), evaluated including overlapping
speech.

Table 2. Speaker Diarization Error rate (DER) for different data sets (MDM), includ-
ing overlapped speech. First line is our original BIC-based system from 2005. SAD1
and SAD2 refer to speech activity detection used for initial BIC segmentation and fi-
nal agglomerative clustering, respectively, see Table 1. The last column shows the SAD
error for the evaluation data.

system SAD1 SAD2 RT05s RT06s RT07 SAD (RT07)

TNO’05 AMI-dev AMI-dev 21.7 % 32.4 % 26.2 % 6.4 %
AMIDA’07 AMI-dev AMI-dev 16.3 % 18.1 % 22.0 % 6.7 %
AMIDA’07 AMI-dev RT-FA - 20.1 % 17.0 % 2.9 %
AMIDA’07 RT-FA RT-FA - - 18.6 % 2.9 %

The result of the primary system (in bold), 22 %, is not particularly good.
Once again we observe that development test results (16.3 and 18.1 %, respec-
tively) do not generalize very well to the evaluation data. We blame this partly
to the unexpectedly bad SAD performance, 6.7 %, which is probably related
to the fact that the SAD models used (AMI-dev) are trained on Single Dis-
tant Microphone data, without Wiener filtering, and using manually-annotated
speech/non-speech labeling. For the RT07s reference, forced-aligned speech/non-
speech labeling is used, and models trained on beamformed, Wiener filtered data
from RT05 and RT06. This would suggest that the RT-FA SAD models should
work better. Indeed, we find lower SAD error for the evaluation data, and a
much more improved DER or 17.0 %.

We used RT06s data2 primarily for development testing, but at a later stage
looked at RT05s as well to check for dataset dependence. In retrospect, we should
have combined all available proper meetings for development testing, since per-
meeting DER tends to vary a lot. Hence, our ‘wrong choice’ to use AMI-dev
SAD models, based on RT06s performance where AMI-dev models scored better
with 18,1 % than the RT-FA models, with 20.1 %.

2 Excluding the meeting recorded at TNO, because the wrong MDM microphones had
been included in the test set.



In Table 3 we show the influence of the Delay parameter modeling on DER
for RT05s and RT06s. We can clearly observe an improvement including these
parameters.

Table 3. Influence of delay parameters on development test DER.

Delay parameters RT05s RT06s

no 20.5 % 24.3 %
yes 16.3 % 18.1 %

5 Overlapping speech

Most implementations so far [5, 10, 20, 18] have always interpreted the speaker
diarization task as a speaker segmentation and clustering task. Although theoret-
ically possible [18], the segmentation/clustering implementations do not consider
the possibility of overlapping speech, i.e., speakers speaking simultaneously. Since
the NIST Rich Transcription evaluation in Spring 2006, the primary evaluation
measure accounts overlapping speech.

Now, with the new definition of speech/non-speech in the reference, using
SRI’s forced aligned segmentation, the amount or overlapped speech has reduced
from 22 % to 8 % for RT06s, in going from manual to forced alignment. Also the
average duration of overlap reduces from 1.57 s to 0.53 s. This appears to make
the challenging task of determining the identity of overlapping speakers of less
priority. However, in the light of ICSI’s very good performance [19], overlapped
speech might gain renewed attention. For RT07s, there was a difference in DER
with and without accounting overlapping speech of about 3.5 %-point.

Last year we tried to generate, as a post-processing step, ‘two-speaker models’
by adding the probability density functions of pairs of clusters, and include
these

(

NC

2

)

models in the decoding process, including restrictions for transitions
to/from the two-speaker models. Then, we could not obtain better DER values,
so this year we tried other approaches.

As a cheating experiment, we used the reference transcription to detect over-
lapping speech. Then, as a post-processing of normal diarization output, we
included the ‘most talkative speaker’ as a second speaker in the output. This led
to a reduction of the DER of 2 %-point. Although not a dramatic improvement,
this simple ‘guess’ helps, if we know the regions of overlapping speech. In order
to detect overlapping speech, we tried the following.

– Use the output of the beamformit tool [3]. The beamformer can give an
indication if there is overlapping speech, presumably because of confusion
of the location of the sound source. We determined the detection capabil-
ity, in terms of False Alarm (FA) and missed time, and obtained 6.65 %
and 85.6 % respectively. Having small FA time is good for the DER [16],



but the detection capability is really too low to use as input for the ‘most
talkative speaker guess’ algorithm. Assuming equal variance of overlap and
non-overlap score distributions, this corresponds to a detector with an EER
of 41 %, or d′ = 0.44 [17].

– Train an overlap/non-overlap speech detector, by training GMMs on RT06s
development data, and use a Viterbi decoding to detect overlapping speech.
This did not seems to give any reasonable overlapping speech detection ca-
pability either.

6 Discussion

Our systems that included the newly trained SAD models showed an improve-
ment over our ‘baseline’ BIC speaker diarization system. Overall, the perfor-
mance of our system improved a lot since last year by inclusion of the delay
parameters and signal to noise ration improvement due to the beamforming
and Wiener filtering. However, it is quite unsatisfactory that small changes in
the application of SAD give dramatic differences (from 17.0 to 22.0 %) in DER.
Another unsatisfactory fact is that our development data set (RT06s) did not
indicate correctly what the right SAD models were. Possibly, the development
data set was too small (and hence the DER too noisy), and also the ‘algorithmic
tuning’ which had been carried out on the development data with the old AMI-
dev SAD models will have had an effect. Even though we have been striving
towards as few tunable parameters as possible, there still are the SAD models
and RCC, as well algorithmic parameter choices and design decisions (number of
re-alignment iterations, number of Gaussians in UBM, clustering criterion, etc.)
that may overtrain on the development data.

Although the importance of proper SAD is clear from the definition of DER
(SAD error is a lower bound to the DER), we have some indication that the
SAD used in the clustering process should not necessarily be the same as the
SAD used in producing the speaker diarization result. Indeed, this is what has
been realized by the ICSI team [14, 19]. where very strict speech acceptance
thresholds are applied for selecting speech frames that take part inthe speaker
clustering process. Later, for the final postprocessing of speaker segment timing,
the speech/silence boundaries are smoothed.

With the beamforming tools made available by ICSI we now have a chance
to work seriously at the problem of overlap detection. We feel that this is an
intersting task, and useful by itself: the moments of overlap can be indicative
of ‘hot spots,’ disagreement or social cohesion, in meetings. In the context of
diarization, good ovelap detection can already be helpful by simply guessing the
most talkative speaker as the second speakers. Actually identifying the overlap-
ping speakers from the acoustics and/or delay parameters will remain an even
more challenging task.
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