ASCI Terascale Simulation Requirements and Deployments

David A. Nowak ASCI Program Leader Mark Seager

ASCI Terascale Systems Principal Investigator Lawrence Livermore National Laboratory University of California

ASCI-00-003.1

*Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Overview

- ASCI program background
- Applications requirements
- Balanced terascale computing environment
- Red Partnership and CPLANT
- Blue-Mountain partnership
 - Sustained Stewardship TeraFLOP/s (SST)
- Blue-Pacific partnership
 - Sustained Stewardship TeraFLOP/s (SST)
- ✤ White partnership
- Interconnect issues for future machines

Example terascale computing environment in CY00 with ASCI White at LLNL

Oak Kidge Interconnects workshop - November 1995

SNL/Intel ASCI Red

This is a research project — a long way from being a production system.

LANL/SGI/Cray ASCI Blue Mountain 3.072 TeraOPS Peak

Aggregate link bandwidth = 0.115 TB/s

Active to a construction

Blue Mountain Planned GSN Compute Fabric

9 Separate 32x32 X-Bar Switch Networks

Expected Improvements

3 Groups of 16 Computers each

Aggregate link bandwidth = 0.461 TB/s

ASCI-00-003.10 Oak Ridge Interconnects Workshop - November 1999

Aggregate link bandwidth = 0.439 TB/s

I/O Hardware Architecture of SST

Each SST Sector

- Has local and global I/O file system
- 2.2 GB/s delivered global I/O performance
- 3.66 GB/s delivered local I/O performance
- Separate SP first level switches
- Independent command and control
- Link bandwidth = 300 Mb/s Bi-directional

Full system mode

- Application launch over full 1,464 Silver nodes
- 1,048 MPI/us tasks, 2,048 MPI/IP tasks
- High speed, low latency communication between all nodes
- Single STDIO interface

The JEEP calculation adds to our understanding the performance of insensitive high explosives

- This calculation involved 600 atoms (largest number ever at such a high resolution) with 1,920 electrons, using about 3,840 processors
- This simulation provides crucial insight into the detonation properties of IHE at high pressures and temperatures.
 - Relevant experimental data (e.g., shock wave data) on hydrogen fluoride (HF) are almost nonexistent because of its corrosive nature.
 - Quantum-level simulations, like this one, of HF- H₂O mixtures can substitute for such experiments.

Silver Node delivered memory bandwidth is around 150-200 MB/s/process

MPI_SEND/US delivers low latency and aggregate high bandwidth, but counter intuitive behavior per MPI task

LLNL/IBM White 10.2 TeraOPS Peak

Aggregate link bandwidth = 2.048 TB/s Five times better than the SST; Peak is three times better Ratio of Bytes:FLOPS is improving

ASCI-00-003.16 Oak Ridge Interconnects Workshop - November 1999

Interconnect issues for future machines

- Meed to increase Bytes: FLOPS ratio
 - Memory bandwidth (cache line) utilization will be dramatically lower for codes that utilize arbitrarily connected meshes and adaptive refinement indirect addressing.
 - Interconnect bandwidth must be increased and latency must be reduced to allow a broader range of applications and packages to scale well
- To get very large configurations (30 70 100 TeraOPS) larger SMPs will be deployed
 - For fixed B:F interconnect ratio this means that more bandwidth coming out of an SMP
 - Multiple pipes/planes will be used Optical reduces cable count
- Machine footprint is growing 24,000 square feet may require optical
- Network interface paradigm
 - Virtual memory direct memory access
 - Low-latency remote get/put
- ✤ Reliability Availability and Serviceability (RAS)

ASCI Terascale Simulation Requirements and Deployments

David A. Nowak ASCI Program Leader Mark Seager

ASCI Terascale Systems Principal Investigator Lawrence Livermore National Laboratory University of California

ASCI-00-003.1

*Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.